抛物线与三角形地面积
第五讲+抛物线中三角形的面积问题

第五讲抛物线中三角形的面积问题一、抛物线内接三角形的面积问题:例、如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax²+bx+c(a≠0)经过A、B、C三点。
⑴求此抛物线的函数表达式和顶点M坐标;⑵求S△MBC;归纳:怎样求坐标系内任意三角形的面积问题:二、抛物线中三角形的等积变化:1、在抛物线上是否存在点D,使得△ABC和△ABD面积相等,若存在,求出点D的坐标,若不存在,说明理由。
2、在抛物线上是否存在点E,使得△ABC和△BCE面积相等,若存在,求出点E的坐标,若不存在,说明理由。
S△ABC。
若存在,求出点M的坐标;若不存在,请说明理由3、在抛物线上是否存在点M,使S△MBC= 134、(2011成都)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7√?若存在,求出点M的坐标;若不存在,说明理由.5、点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C 运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH 的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;6、在抛物线的对称轴上有一点P的纵坐标为5,在直线上BC求一点M使得S△PBM∶S△ABC=1:5.7、在直线BC下方抛物线上是否存在一个点F,使得△BCF的面积最大,若存在,求出点F的坐标,并求出最大面积,若不存在,说明理由。
练习:1、如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.(1)求A、B两点坐标;(2)求抛物线的解析式;(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.2、(2010玉溪)如图,在平面直角坐标系中,点A的坐标为(1,△AOB(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD 把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.yAB。
二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数的应用背景1.二次函数在实际问题中的重要性2.常见实际问题与二次函数的关系二、二次函数典型例题解析1.例题一:抛物线与直角三角形的面积问题2.例题二:抛物线与最值问题3.例题三:抛物线与交点问题4.例题四:抛物线与对称性问题三、解决二次函数实际问题的方法与技巧1.利用二次函数的基本性质2.代数法与几何法的结合3.合理运用已知条件四、总结1.二次函数与实际问题的紧密联系2.解决二次函数实际问题的策略与方法正文:二次函数在实际问题中有着广泛的应用,它不仅可以帮助我们理解许多现实中的现象,还能为解决实际问题提供有力的工具。
本文将通过解析几道典型的二次函数实际问题例题,来探讨如何巧妙地运用二次函数来解决实际问题。
首先来看一道抛物线与直角三角形的面积问题。
题目描述:已知抛物线y = ax^2 + bx + c 与x 轴相交于A、B 两点,且AB = 4,点C 到AB 的距离为h。
求抛物线与三角形ABC 的面积。
解析:通过将抛物线与x 轴相交的点A、B 坐标代入解析式,可以求得a、b、c 的值,进一步计算出顶点坐标。
由于已知AB = 4,可以根据顶点到AB 的距离公式求得h,最后利用三角形面积公式计算出结果。
接下来是抛物线与最值问题。
题目描述:已知抛物线y = ax^2 + bx + c 在x = 1 处取得最小值,求a、b、c 的值。
解析:根据抛物线的性质,可以知道当a > 0 时,抛物线开口向上,此时可以通过配方法将解析式转化为顶点式,从而求得最小值点的坐标。
当a < 0 时,抛物线开口向下,此时可以通过配方和换元法求得最值。
再来一道抛物线与交点问题。
题目描述:已知抛物线y = ax^2 + bx + c 与直线y = mx + n 相交于不同的两点,求a、b、c、m、n 的关系。
解析:将直线方程代入抛物线方程,消去y 得到一个关于x 的二次方程,通过求解该方程可以得到交点的横坐标,再代入直线方程求得纵坐标,从而得到交点坐标。
抛物线焦点弦三角形的面积(抛物线的弦相关的问题)

抛物线焦点弦三角形的面积本内容主要研究抛物线焦点弦三角形的面积.以抛物线的顶点及其焦点弦的两个端点为顶点的三角形,称为抛物线的焦点弦三角形.给出三种抛物线焦点弦三角形的面积公式,根据已知条件合理选择.例:过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ) A.22 B.2 C.322 D.22解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0),因为|AF |=3,所以x 1+1=3,x 1=2,代入抛物线方程得122y =,故A (2,22),所以直线AB 的方程为22(1)=-y x ,由22220,4x y y x⎧--=⎪⎨=⎪⎩得2240y --=. 所以122y y +y 1y 2=-4,则22121219||1()[()4]222AB y y y y ⎡⎤=++-=⎢⎥⎣⎦.又可求得圆点O 到直线AB 的距离为223,故△AOB 的面积为1922322222S =⨯⨯=.[一题多解]设∠AFx =θ(0<θ<π)及|BF |=m ,则点A 到准线l :x =-1的距离为3,得1323cos cos 3θθ=+⇔=,又 232cos()1cos 2,=+π-⇔===+m m BF m m θθ,△AOB 的面积为113||||sin 1(3)22233S OF AB θ=⨯⨯⨯=⨯⨯+⨯=. 答案:C注意:前法是解决此类问题的通法,一般通过求弦长和点到直线的距离进行求解,后法则有一定的技巧性.整理:B AOF过抛物线22(0)y px p =>的焦点F 作直线交抛物线于A ,B 两点,且11(,)A x y ,22(,)B x y ,O 为坐标原点.则△AOB 的面积为(1)121||||2S OF y y =⨯⨯-=; (2) 1||2=⨯⨯S AB d ,d 为点O 到直线AB 的距离; (3)11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅其中∠AFx =θ(0<θ<π).再看一个例题:例:设F 为抛物线C :y 2=4x 的焦点,过F 且倾斜角为60°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0), ∠AFx =60°所以直线AB 的方程为3(1)=-y x ,由23(1),4⎧=-⎪⎨=⎪⎩y x y x得231020-+=x x . 所以12103x x +=,则1216||3AB x x p =++=. 又11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅ ()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅ 故△AOB 的面积为116341=32323∆=⨯⨯⨯OAB S总结:1.根据已知条件合理选择我三种抛物线焦点弦三角形的面积公式.2.掌握抛物线的焦点弦长计算方法.练习:1.已知抛物线C 的顶点在坐标原点O ,焦点为F (1,0),经过点F 的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)求抛物线C 的标准方程;(Ⅱ)若△AOB 的面积为4,求|AB |.2. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )C.6332D.943. 已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为(3,y 0)时,△AEF 为正三角形,则此时△OAB 的面积为( )A.4C.3D.3。
6.抛物线求三角形面积(割补法铅垂法)

抛物线与三角形面积问题
———割补法、铅垂法
例1:在平面直角坐标系中,已知A(1,1)、B(7,3)、C(4,7),求△ABC 的面积.解:过点C 作x 轴的垂线交AB 于点D。
1.如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴
于点B .
(1)求抛物线和直线AB 的解析式.
(2)求CAB S .2.如图,抛物线经过A(1,0),B(4,0),C(0,-4)三点,D 是直线BC 上方的抛物线上的一个动点,连接DC,DB,
(1)求抛物线的表达式.
(2)求△BCD 面积的最大值,并写出D 点的坐标.
x
C O y A B 1
1C (4,7)
B (7,3)
A (1,1)
o x y D
121-=⨯k k (3)x y A B C P E O x y A B
C Q
O
(2)3.如图,二次函数的图象经过点A(0,1),它的顶点B(1,3).
(1)求这个二次函数的表达式.
(2)过点A 作AC⊥AB 交抛物线于点C,P 是直线AC 上方抛物线上的
一点,当△APC 面积最大时,求点P 的坐标和△APC 面积的最大
值.(提示:若两条直线互相垂直,则)
4.如图,抛物线c bx x y ++-=2与x 轴交于A(1,0),B(-3,0)两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC 的面积最大?若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.。
抛物线上动点p的三角形面积-定义说明解析

抛物线上动点p的三角形面积-概述说明以及解释1.引言1.1 概述在数学中,抛物线是一种具有特定形状的曲线,其形状类似于开口向上的U形。
它是由一个定点和一条直线(称为准线或直线段)确定的曲线,其中定点被称为焦点,准线表示为直线段AB。
抛物线是一种非常重要的曲线,广泛应用于物理学、工程学等领域。
本文将围绕着抛物线上的动点P展开讨论。
在抛物线上,动点P具有自由运动的能力,并且可以在曲线上任意选择不同的位置。
我们将重点研究动点P所形成的三角形的面积,并探究如何计算这个面积。
通过研究动点P在抛物线上的运动以及三角形的面积计算方法,我们可以深入理解抛物线曲线的几何特征,并且可以应用这些知识解决实际问题。
同时,对抛物线上动点P的三角形面积的意义和应用也将在文章中进行探讨。
最后,在总结部分我们将对本文的内容进行总结,并展望未来对抛物线相关问题的研究方向。
本文旨在提供一个清晰的抛物线上动点P三角形面积的计算方法,并希望读者通过阅读本文能够对抛物线的几何特性有更深入的了解。
【1.2 文章结构】本文将分为以下几个部分来探讨抛物线上动点P的三角形面积的计算方法。
每个部分的内容如下:(1)引言:在引言部分,我们将概述本文的主题和研究对象,并介绍文章的结构和目的。
同时,我们也将对抛物线的定义和性质进行简要介绍。
(2)正文:在正文部分,我们将分为三个小节来详细阐述抛物线上动点P的三角形面积的计算方法。
首先,我们会介绍抛物线的定义和性质,包括其数学表达和几何特征。
然后,我们会讨论动点P在抛物线上的运动规律,这一部分将包括动点P在不同位置的情况下的三角形面积的变化规律。
最后,我们将介绍具体的计算方法,包括利用向量、坐标和参数方程等不同的方法来计算动点P的三角形面积。
(3)结论:在结论部分,我们将对前面的研究结果进行总结,并探讨抛物线上动点P的三角形面积的一些意义和应用。
同时,我们也会展望未来可能的研究方向和可进一步发展的领域。
通过以上的安排,我们旨在全面而系统地介绍抛物线上动点P的三角形面积的计算方法,并探讨其应用的可能性,为相关领域的研究和实践提供一定的参考和指导。
抛物线焦点三角形面积公式

抛物线焦点三角形面积公式
抛物线焦点三角形面积公式:
1、抛物线焦点三角形的基本概念:抛物线焦点三角形是一种由抛物线的两个焦点所围成的三角形。
它是一种特殊的三角形,因为它的全部边都是由两个抛物线的焦点和一条直线组成的。
2、抛物线两个焦点间距离公式:在抛物线中,首先需要计算两个焦点之间的距离,计算公式如下:
距离=抛物线焦点距离=2*抛物线离心率。
3、抛物线焦点三角形面积公式:抛物线焦点三角形的面积可通过下式计算:
S=½*[(2*焦点距离)+(外边长)^2-4*(外边长*内边长)].
4、该公式应用场景:抛物线焦点三角形面积计算可以在有关椭圆和抛物线的数学问题中得到应用,如抛物线的焦点定理以及大约椭圆和抛物线的物理应用等。
因此,抛物线焦点三角形面积公式是在计算椭圆和抛物线方面极其重要的公式。
抛物线内接三角形面积公式
抛物线内接三角形面积公式
抛物线的标准方程为 y = ax^2 + bx + c,其中a ≠ 0。
如果把抛物线的顶点设为坐标原点 (0,0),那么抛物线的顶点
坐标为 (h, k),其中 h = -b/(2a),k = c - b^2/(4a)。
接下来,我们设抛物线上任意一点的坐标为 (x, ax^2 + bx + c)。
我们知道,任意抛物线上的一点到抛物线顶点的距离可以用欧几里得距离公式计算:
d = √((x-h)^2 + (ax^2 + bx + c - k)^2)
现在我们要求抛物线上的三个点坐标 (x1, y1),(x2, y2),(x3,
y3),使得这个三角形与抛物线相内切。
由于内切三角形的性质,三个点到抛物线顶点的距离都是相同的。
因此我们可以将这个距离简化为:
d = √((x1-h)^2 + (ax1^2 + bx1 + c - k)^2)
根据欧几里得距离公式,这个内切三角形的面积可以通过海伦公式计算:
s = √(p(p-d1)(p-d2)(p-d3))
其中 p = (d1 + d2 + d3)/2 是三个边长的半周长。
我们可以进一步简化这个面积公式,将三个边长用 d 表示:s = √(3d^2(d-p))
其中d = √((x1-h)^2 + (ax1^2 + bx1 + c - k)^2) 是三个边长的距离,p = (3d)/2 是三个边长的半周长。
这就是抛物线内接三角形的面积公式。
抛物线内接直角三角形的一个性质及应用
抛物线内接直角三角形的一个性质及应用抛物线内接直角三角形是几何学中一个重要的定理,它告诉我们:如果一个直角三角形的一个顶点在抛物线上,那么其它两个顶点的坐标也会在这个抛物线上。
本文将简要介绍抛物线内接直角三角形的定义、性质及其应用。
首先,抛物线内接直角三角形定义为:一个直角三角形,其中一个顶点在抛物线上,另外两个顶点也在抛物线上,且抛物线的准线和直角三角形的两条腰都相交。
因此,抛物线内接直角三角形的性质有以下三点:
1)直角三角形的一个顶点在抛物线上,另外两个顶点也在同一
条抛物线上;
2)抛物线的准线与直角三角形的腰相交;
3)抛物线内接直角三角形的面积小于等于抛物线面积的一半。
此外,抛物线内接直角三角形还有一些其它特性:抛物线内接直角三角形的高度等于抛物线的端点之间的距离;两点定理说明了任何一点到抛物线上的点的距离等于直角三角形的斜边的长度。
抛物线内接直角三角形有许多实际应用,其中最为重要的是在机械设计中,抛物线被用来设计螺旋形线路,使得机械运动更加均匀,减少了摩擦力,减少了损耗。
在建筑过程中,抛物线也被用来设计电梯的曲线,使其运行曲线十分柔和,降低了电梯的震动,减少了乘客的不适感受。
另外,抛物线内接直角三角形也被用于医学领域中的X 射线成像技术,使得X射线的扫描更加准确,精确诊断病症。
综上所述,抛物线内接直角三角形是几何学中一个重要的定理,它描述了三角形和抛物线之间的关系,它的定义、性质和应用在许多不同的领域中有广泛的应用,它能够减少摩擦力、降低震动,使X射线扫描更准确,为人类带来科学和技术上的进步。
抛物线中三角形面积最大值问题的解法攻略
抛物线中三角形面积最大值问题的解法攻略
抛物线中三角形面积最大值问题是很多数学教师都会遇到的问题。
求得抛物线中三角形面
积最大值,就先要分析抛物线的基本参数,因为抛物线是一种比较复杂的曲线,需要对其
有一定的了解才可以解答此问题。
抛物线的标准方程为y=ax2+bx+c,a为抛物线的系数,a>0,抛物线呈转弯向上,a<0,呈
转弯向下;b表示抛物线的开口方向,b>0,表示开口向右,b<0,表示开口向左。
因此,
得知抛物线在某一瞬间的顶点位置,以及抛物线的开口位置,就可以求出抛物线上三角形
的端点位置。
在定位了三角形端点位置后,只需要利用海伦公式就可以求出三角形面积:S=√[p(p-
a)(p-b)(p-c)]其中p=(a+b+c)/2,a,b,c分别为三角形的三边长。
最后,把求的所有的三角形面积按从大到小排列,那么最大的面积就是抛物线中三角形面
积最大值了。
抛物线中三角形面积最大值问题,要求求解者要完全把握和理解方程抛物线的特征,以及
三角形的基本定义,之后再结合海伦公式求出最大面积。
海伦公式和抛物线方程是相结合,那么广大教师和学生并不必对此感到困惑,只需要把这两个概念理解深入,就能在一定的
时间内得出满意的答案。
抛物线三角形面积最大值
抛物线三角形面积最大值抛物线三角形面积最大值,听起来有点高大上,其实就是个数学小问题。
不过,别急,咱们慢慢来聊聊。
想象一下,阳光明媚的一天,咱们在公园里,随便找块地方坐下,开始讨论这个看似复杂的概念。
抛物线,其实就是那种弯弯曲曲的线,像是个调皮的小孩在滑滑梯,突然又调转方向。
大家对它的第一印象就是在抛物运动里,什么篮球啊、飞盘啊都和它有关系。
其实它不仅在运动中显得风光,连数学问题也逃不过它的法眼。
抛物线与三角形又有啥关系呢?简单来说,如果我们把一条抛物线和一条直线搭配,嘿,立马就能形成一个三角形。
这种三角形的面积可是可以变化的,像气球一样,吹得大大小小,关键在于你怎么把那条直线放置在抛物线上。
这就引出了一个问题:怎么才能让这个三角形的面积达到最大呢?听起来是不是有点像在玩拼图?其实不然。
想象一下,咱们把那条直线横放,抛物线在下面摇摇晃晃。
面积的公式大家都知道,底乘高除以二,但这里的“底”和“高”可不是随便的数字。
这时候,你得考虑抛物线的形状,底边得在抛物线的顶点和两侧的交点之间,这样才能得到最大面积。
是不是听起来有点拗口,但别担心,继续往下走,你会发现其实很简单。
先把心放宽,咱们来设想一下。
你想象一下,有一个小朋友在画图,他用铅笔画了一个抛物线,心里琢磨着:“我能把这条直线放在哪儿,才能让这三角形看起来更大更漂亮?”聪明的小朋友自然会选择抛物线的最高点作为参考,这样就能最大化地利用那条直线和抛物线之间的空间。
真是个小天才,是吧?我们就能得出一个结论,三角形的面积最大值其实与抛物线的对称性有关。
就像咱们的生活,很多时候,保持平衡才能让一切顺利进行。
你看,无论是在生活中还是学习里,有时候简单的选择就能给你带来意想不到的结果。
没错,抛物线三角形的面积最大值,就是通过对称和巧妙的放置来实现的。
是不是觉得这个发现有点惊喜?再说到实际应用,虽然大家可能觉得这些数学公式离生活有点远,但其实它们可以用在很多地方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线与三角形的面积抛物线与三角形面积相结合的问题涉及代数、几何的许多定理、公式,有一定的难度,近年来的中考试题中,经常出现抛物线与三角形面积结合的综合题,以考查学生的综合运用所学知识解决问题的能力。
这节课我们共同来探索一下顶点都在抛物线2y ax bx c=++上的三角形面积的求法。
1、已知抛物线: 224233y x x=--+(1)求抛物线与坐标轴交点坐标及顶点坐标;(2)画出抛物线的草图;(3)设抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于C点,顶点为D。
求:①△DAB和△CAB的面积;②四边形ABCD的面积;③△ACD的面积(4)求直线AC的解析式;(5)抛物线上有一动点P在直线AC上方,问:是否存在一点P,使△PAC的面积最大,若存在,求出△PAC的最大面积及P点坐标;若不存在,请说明理由。
2、如图,抛物线cbxxy++-=2与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.ABC练习:1、在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 作接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?2、如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.图1AB M N D图 2 O A B C M N P 图 1O ABM N 图 3O3、(2011中考题)如图1,抛物线y=mx2-1lmx+24m(m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限,且∠BAC=900.(1)填空:OB=________,)OC=________;(2)连结OA,将△OAC沿x轴翻折后得到△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值。
参考答案 (1)解:当x=0时,y=2∴抛物线与y 轴交点坐标为(0,2)当y=0时,解得:123,1x x =-= ∴抛物线与x 轴交点坐标为()()3,0-或1,0 ∵()222428213333y x x x =--+=-++∴抛物线的顶点坐标为81,3⎛⎫- ⎪⎝⎭(3)解:①1181642233DAB S AB DE ∆=⋅=⨯⨯= 1142422CABS AB OC ∆=⋅=⨯⨯= 181812211223232871336DAE BCO ABCD OCDE S S S S ∆∆=++⎛⎫=⨯⨯+⨯+⨯+⨯⨯ ⎪⎝⎭=++=四边形梯形ACD S 871323322ADE AOC OCDE S S S ∆∆∆=+-=+-⨯⨯=梯形(4)解:设直线AC 的解析式为y kx b =+, ∵直线AC 经过()()3,00,2A C -和, ∴可求得解析式为223y x =+ (5)过P 作PE//y 轴,交直线AC 于点E ; 设P 、E 的坐标分别)232,(),23432,(2++--x x E x x x D xx x x x DE 232)232()23432(22--=+-+--=∴3)23(344344)232(2122++-=--=⋅--=∴∆x xx x x S PAC当面积最大时点D 坐标为)25,23(-2、解:(1)将A(1,0),B(-3,0)代2y x bx c =-++中得10930b c b c -++⎧⎨--+=⎩=……………………(2分) ∴23b c =-⎧⎨=⎩……………………(3分)∴抛物线解析式为:223y x x =--+(2)存在 理由如下:由题知A 、B 两点关于抛物线的对称轴1x =-对称 ∴直线BC 与1x =-的交点即为Q 点, 此时△AQC 周长最小 ∵223y x x =--+ ∴C 的坐标为:(0,3) 直线BC 解析式为:3y x =+Q 点坐标即为13x y x =-⎧⎨=+⎩的解∴ 12x y =-⎧⎨=⎩∴Q(-1,2)(3)答:存在。
理由如下:设P 点2(23) (30)x x x x --+-<<,∵92BPC BOC BPCO BPCO S S S S ∆∆=-=-四边形四边形 若BPCO S 四边形有最大值,则BPC S ∆就最大, ∴BPE BPCO PEOC S S S ∆+Rt 四边形直角梯形=11()22BE PE OE PE OC =⋅++ =2211(3)(23)()(233)22x x x x x x +--++---++=233927()2228x -+++当32x =-时,BPCO S 四边形最大值=92728+∴BPC S ∆最大=9279272828+-=当32x =-时,215234x x --+=∴点P 坐标为315( )24-,练习:1、解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x . ……………2分∴ S =2133248MNP AMNS S x x x ∆∆==⋅⋅=.(0<x <4) ………………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA .BD 图 2B图 1∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线BC 相切.…………………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠∴ △AMO ∽ △ABP . ∴ 12AM AO AB AP ==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 …………………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………………… 9分 MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. ……………………………11分 综上所述,当83x =时,y 值最大,最大值是2. ……………………………12分图 4P 图 32、(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为:22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .点P 的坐标为(2,1). ②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图63、解:(1)OB=3,OC=8………………………………………………………………………4分 (2)连结AD ,交OC 于点E ∵四边形OACD 是菱形 ∴AD ⊥OC ,OE=EC=21×8=4 ∴BE=4—3=1 又∵∠BAC=900 ∴△ACE ~△BAE ∴AECEBE AE∴AE 2=BE ·CE=1×4∴AE=2… ………………………………………………………………………6分∴点A 的坐标为(4,2)…………………………………………………………7分 把点A 的坐标(4,2)代人抛物线y=mx 2-llmx+24m ,得m=-21 ∴抛物线的解析式为y=-21x 2+211x-12………………………………………9分(3) ∵直线x=n 与抛物线交于点M∴点M 的坐标为(n ,-21n 2+211n-12)由(2)知,点D 的坐标为(4,-2),由C 、D 两 点坐标求得直线CD 的解析式为y=21x-4 ∴点N 坐标为(n ,21n-4). ∴MN=(-21n 2+211n-12)一(21n-4)=-21n 2 +5n-8……………………………………………………………11分 ∴S 四边形AMCN =S △AMN +S △CMN =21MN ·CE=21(-21n 2+5n-8) ·4=-(n-5)2+9 …………………………………………………13分 ∴当n=5时,S 四边形AMCN 最大值 =9 …………………………………………14分。