《工程力学》第三章平面一般力系试卷 答案
平面一般力系习题答案教学文案

平面一般力系习题答
案
题4-5已知F1=150N,F2=200N,F3=300N,F=F’=200N.求力系向O点简化的结果;并求力系合力的大小及与原点O的距离d。
题4-6 如图所示刚架中,q = 3 kN/m,F = 6 kN,M = 10 kN⋅m,不计刚架的
自重。
求固定端A 的约束力。
题4-7 无重水平梁的支承和载荷如所示。
已知力F,力偶矩为M 的力偶和强度为q 的均匀载荷。
求支座A 和B 处的约束力。
题4-9 如图所示,各连续梁中,已知q,M,a 及θ,不计梁的自重,求各连续梁在A,B,C 三处的约束力。
题4-10 由AC 和CD 构成的组合梁通过铰链C 连接。
它的支承和受力如图所示。
已知q = 10 kN/m,M = 40 kN⋅m,不计梁的自重。
求支座A,B,D 的约束力和铰链C受力。
题4-11 求图示混合结构在荷载F的作用下,杆件1、2所受的力。
《工程力学》第三章 平面一般力系

• 故主矢R′的模为
• 主矢R′的方向从图3-3(b)中可知
图3-3
• 2.对点O的主矩 • 从图3-3(b)中可知,MO应是该平面一般力偶
系m1,m2,…,mn的合力偶矩。由平面力偶 系的合成定理可知,
• 由于Fd也等于力F对B点的矩,mB(F)=Fd,于 是得
• §3-2 平面一般力系向一点的简化 • 一、平面一般力系向一点的简化 • 在力系的作用平面内,被任选的一点O称为简
化中心。将力系中诸力平移至简化中心,同时 附加一个力偶系的过程,称为力系向给定点的 简化。
图3-2
•经 简 化 后 的 平 面 共 点 力 系 合成为一个合力R′,该合力作用点在简化 中心上;把简化后的附加力偶系m1, m2,…,mn合成得一力偶MO(图32(c))。自然,依据力的平移定理,可将 力R′和MO合成为一个力R(图3-2(d)), 这个力R就是原力系F1,F2,…,Fn的合 力。
• 二、截面法求桁架内力
• 截面法一般采用如下步骤:
• (1)先求出桁架支承约束反力。
• (2)如需求某杆的内力,可通过该杆作一 假想截面,将桁架截为两段(只截杆件, 不能截在节点上)。注意被截杆件一般不 能多于三根。任选半边桁架考虑平衡,在 杆件被截处,画出杆件内力,其指向假定 沿杆件而背离杆件被截处。
图3-5
• 二、平面一般力系向一点简化结果分析
• 1.平面一般力系向一点的简化结果
• 平面一般力系向简化中心简化,其结果可能出现 四种情况:
• (1)R′=0,MO=0
• 主矢和主矩均等于零。它表明简化后的平面汇交 力
(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
工程力学-选择题答案

第1章:1-2 选择题:(1)加减平衡力系原理适用于下列哪种情况。
(A)单一刚体;(B)单一变形体;(C)刚体系统;(D)变形体系统正确答案:A。
(2)二力平衡原理适用于下列哪种情况。
(A)单一刚体;(B)单一变形体;(C)刚体系统;(D)变形体系统正确答案:A。
(3)力的可传性原理适用于下列哪种情况。
(A)单一刚体;(B)单一变形体;(C)刚体系统;(D)变形体系统正确答案:A。
(4)作用力与反作用力定律适用于下列哪种情况。
(A)只适用刚体;(B)只适用变形体;(C)只适用平衡状态的物体;(D)任何物体正确答案:D。
(5)三力汇交定理适用于下列哪种情况。
(A)三个互不平行的共面力的作用下处于平衡状态的刚体;(B)三个共面力的作用下处于平衡状态的刚体;(C)三个互不平行的力的作用下处于平衡状态的刚体;(D)三个互不平行的共面力的作用下的刚体正确答案:A。
(6)若等式F R=F1+F2成立,下列哪种情况成立。
(A)必有F R=F1+F2;(B)不可能有F R=F1+F2;(C)必有F R>F1、F R>F2;(D)可能有F R>F1+F2;正确答案:D。
第2章:2-1 选择题:(1)平面力偶系最多可以求解未知量。
(A)1个;(B)2个;(C)3个;(D)4个正确答案:A。
(2)平面汇交力系最多可以求解未知量。
(A)1个;(B)2个;(C)3个;(D)4个正确答案:B。
(3)平面平行力系最多可以求解未知量。
正确答案:B。
(A)1个;(B)2个;(C)3个;(D)4个(4)平面一般力系最多可以求解未知量。
(A)1个;(B)2个;(C)3个;(D)4个正确答案:C。
(5)平面一般力系简化的最终结果有情况。
(A)1个;(B)2个;(C)3个;(D)4个正确答案:C。
(6)作用在刚体上点A的力F,可以等效地平移到刚体上的任意点B,但必须附加一个A,此附加B。
(A )力偶;(B )力偶的矩等于力F 对点B 的矩; (C )力; (D )力的大小方向与原力相同(7)对于一般力系,其主矢与简化中心 C ,其主矩与简化中心 A 。
《工程力学(工程静力学与材料力学)(第3版)》习题解答:第3章 力系的平衡

工程力学(工程静力学与材料力学)习题与解答第3章 力系的平衡3-1 试求图示两外伸梁的约束反力FRA 、FRB ,其中(a )M = 60kN ·m ,FP = 20 kN ;(b )FP = 10 kN ,FP1 = 20 kN ,q = 20kN/m ,d = 0.8m 。
知识点:固定铰支座、辊轴支座、平面力系、平衡方程 难易程度:一般 解答:图(a-1) 0=∑x F ,FAx = 00=∑A M ,05.34R P =⨯+⨯--B F F M 05.342060R =⨯+⨯--B F FRB = 40 kN (↑)=∑y F ,0P R =-+F F F B Ay20-=Ay F kN (↓)图(b-1),M = FPd 0=∑A M ,03221P R P =⋅-⋅++⋅d F d F d F dqd B即 032211P R P =-++F F F qd B 02032108.02021R =⨯-++⨯⨯B FFRB = 21 kN (↑)=∑y F ,FRA = 15 kN (↑)3-2 直角折杆所受载荷,约束及尺寸均如图示。
试求A 处全部约束力。
A MB Ay F B R F CAx F PF(a) M A B B R F A R F P 1F C qdBD(b)(a )(b ) 习题3-1图FMB习题3-3图sF W A F ABF BF AN F(a)知识点:固定端约束、平面力系、平衡方程 难易程度:一般 解答: 图(a ): 0=∑x F ,0=Ax F=∑y F ,=Ay F (↑)0=∑A M ,0=-+Fd M M AM Fd M A -=3-3 图示拖车重W = 20kN ,汽车对它的牵引力FS = 10 kN 。
试求拖车匀速直线行驶时,车轮A 、B 对地面的正压力。
知识点:固定端约束、平面力系、平衡方程 难易程度:一般解答: 图(a ):0)(=∑F A M 08.214.1NB S =⨯+⨯-⨯-F F W6.13NB =F kN=∑y F ,4.6NA =F kN3-4 图示起重机ABC 具有铅垂转动轴AB ,起重机重W = 3.5kN ,重心在D 。
工程力学习题册第三章 答案

第三章平面一般力系答案一、填空(将正确的答案填写在横线上)1、作用在物体上的各力的作用线都在同一平面内 ,并呈任意分布的力系,称为平面一般力系。
2、平面一般力系的两个基本问题是平面力系的简化 ,其平面条件的的应用。
3、力的平移定理表明,若将作用在物体某点的力平移到物体上的另一点,而不改变原力对物体的作用效果,则必须附加一力偶,其力偶距等于原来的力对新作用点的距。
4、平面一般力系向已知中心点简化后得到一力和一力偶距。
5平面一般力系的平衡条件为;各力在任意两个相互垂直的坐标轴上的分量的代数和均为零力系中所有的力对平面内任意点的力距的代数和也等零。
6.平面一般力系平衡方程中,两个投影式ΣFix=0 和ΣFiy=0 保证物体不发生移动 ;一个力矩式ΣMo(Fi)=0 保证物体不发生转动。
三个独立的方程,可以求解三个未知量。
7.平面一般力系平衡问题的求解中,固定铰链的约束反力可以分解为相互垂直的两个分力固定端约束反力可以简化为相互垂直的两个分力和一个附加力偶矩。
8.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣFiX=0适用于平面一般力系,使其用限制条件为AB连线与X轴不垂直。
9.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣMc(Fi)=0的使用限制条约为ABC不在同一直线上。
10.若力系中的各力作用现在同一平面内且相互平行,称为平面平行力系。
它是平面一般力系的特殊情况。
11.平面平行力系有两个独立方程,可以解出两个未知量。
12.平面平行力系的基本平衡方程是:ΣFi X=0,ΣM O(Fi)=0二、判断题(正确的打“√”,错误的打“×”)1.作用于物体上的力,其作用线可在物体上任意平行移动,其作用效果不变。
(×)2.平面一般力系的平衡方程可用于求解各种平面力系的平衡问题。
(√)3.若用平衡方程解出未知力为负值,则表明:(1)该力的真实方向与受力图上假设的方向相反。
(√)(2)该力在坐标轴上的投影一定为负值。
工程力学静力学第三章平面一般力系

目
CONTENCT
录
• 平面一般力系的简化 • 平面一般力系的平衡 • 平面一般力系的平衡问题 • 平面一般力系的平衡问题实例分析 • 平面一般力系中的摩擦力
01
平面一般力系的简化
力的平移定理
总结词
力的平移定理指出,一个力可以等效地分解为一个在原作用点作 用的力和一个通过某一定点、大小和方向与原力相同的力。
实例三:建筑结构的受力分析
总结词
通过建筑结构受力分析,深入理解平面一般力系在建 筑领域的应用。
详细描述
建筑结构是建筑物的重要组成部分,其受力分析是确保 建筑物安全和稳定的关键环节。在建筑结构的受力分析 中,需要考虑各种力的作用,包括重力、风载荷、地震 作用等。通过建立平面一般力系,可以详细分析建筑结 构的受力情况,从而优化设计方案、提高建筑物的安全 性能和稳定性。同时,合理的建筑结构受力分析也有助 于降低工程造价、节约资源和提高经济效益。
利用平衡方程进行受力分析,可以减少试验次数, 提高设计效率,降低成本。
03
平面一般力系的平衡问题
单个刚体的平衡问题
80%
刚体平衡的概念
刚体在力的作用下,如果保持静 止或匀速直线运动,则称该刚体 处于平衡状态。
100%
平衡条件的推导
根据力的平移定理和力的平行四 边形法则,推导出平面一般力系 的平衡条件为力系的主矢等于零 ,力系的主矩也等于零。
详细描述
在平面平行力系中,所有力的作用线都在同一平面内 且相互平行。这种力系可以通过合力或合力矩定理进 行简化。合力定理指出,作用于刚体上的所有外力的 合力为零,即这些力的矢量和为零。合力矩定理则指 出,作用于刚体上的所有外力对某一定点的力矩的矢 量和为零。通过这两个定理,我们可以将复杂的平面 平行力系简化为一个或几个单一的力或力矩,便于分 析和计算。
《工程力学》详细版习题参考答案

∑ Fx
=FAx
+
FBx
+
FCx
=− 1 2
F
+
F
−
1 2
F
=0
∑ Fy
= FAy
+
FBy
+
FCy
= − 3 2
F
+
3 F = 0 2
∑ M B= FBy ⋅ l=
3 Fl 2
因此,该力系的简化结果为一个力偶矩 M = 3Fl / 2 ,逆时针方向。
题 2-2 如图 2-19(a)所示,在钢架的 B 点作用有水平力 F,钢架重力忽 略不计。试求支座 A,D 的约束反力。
(a)
(b)
图 2-18
解:(1)如图 2-18(b)所示,建立直角坐标系 xBy。 (2)分别求出 A,B,C 各点处受力在 x,y 轴上的分力
思考题与练习题答案
FAx
= − 12 F ,FAy
= − 3 F 2
= FBx F= ,FBy 0
FCx
= − 12 F ,FCy
= 3 F 2
(3)求出各分力在 B 点处的合力和合力偶
(3)根据力偶系平衡条件列出方程,并求解未知量
∑ M =0 − aF + 2aFD =0
《工程力学》
可解得 F=Ay F=D F /2 。求得结果为正,说明 FAy 和 FD 的方向与假设方向相同。 题 2-3 如 图 2-20 ( a ) 所 示 , 水 平 梁 上 作 用 有 两 个 力 偶 , 分 别 为
3-4 什么是超静定问题?如何判断问题是静定还是超静定?请说明图 3-12 中哪些是静定问题,哪些是超静定问题?
(a)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《工程力学》第三章平面一般力系试卷
一、单项选择题
1.(2 分)A
2.(2 分)B
3.(2 分)D
4.(2 分)C
5.(2 分)D
6.(2 分)B
7.(2 分)C
8.(2 分)B
9.(2 分)C
10.(2 分)C
二、判断题
11.(2 分)错误
12.(2 分)正确
13.(2 分)正确
14.(2 分)正确
15.(2 分)错误
16.(2 分)错误
17.(2 分)错误
18.(2 分)错误
19.(2 分)错误
20.(2 分)正确
三、填空题
21.答案:相互垂直;均为零;任意点;代数和也等于零(4 分)
22.答案:平面平行(1 分)
23.答案:二个;两个(2 分)
24.答案:A.B.C三点不在同一直线上(1 分)
25.答案:未知力;未知力(2 分)
四、简答题
26.(10 分)由F R=F1+F2+ … +F n可知:
平面汇交力系简化结果为一合力,此合力的作用线通过简化中心O,其大小和方向决定于原力系中各力的矢量和。
27.(10 分)不能在杆的B点加上一个力使它平衡。
还须加上一个力偶才能使它平衡。
五、计算题
28.(10 分)解题方法分析:取杠杆AOB为研究对象, 由于已知杠杆B端对阀门的作用力为400N, 所以阀门对杠杆B处的反作用力N B也是400N。
受力图和坐标建立如图所示,所求未知力为F、R OX、R OY。
列平衡方程
∑F X=0:R0X-F sin(α-β)=0(1)
∑F Y=0:-R0Y+N B+F cos(α-β)=0(2)
∑m0(F)=0:F·cosα×500-N B×300=0(3)
由式(3)得F===277.13(N)
由式(1)得R0X=P sin(α-β)=277.13×sin10°
=48.12(N)
由式(2)得R0Y=N B+P cos(α-β) =400+277.13×cos10°
=400+272.9=672.9(N)
另解:
(1) 凸轮对滚子A的压力P应沿着凸轮与滚子接触点的公法线方向。
(2)本题也可以将支座O的约束力R0X和R0Y合成为R0,然后用三力平衡汇交定理求解,但几何关系复杂,不如用平衡方程解题方便。
(3)本题与教材习题2.13类似,可进行对比。
29.(10 分)(1)取起落架主支撑杆AD(包括轮子)为研究对象。
画受力图、坐标建立如图所示。
主支撑杆所受已知力F N=30(kN),铰链A为固定铰链,约束反力为R Ax、R Ay。
铰链B也是固定铰链,但由于斜杆BC是二力杆(假设受压力),受力图如图所示,所以铰链B的约束力反力R B方向已知(与水平方向夹角为30°)。
这是平面一般力系平衡问题。
(2)列平衡方程
由∑F x=0:R Ax-R B·cos30°=0(1)
∑F y=0: -R Ay-R B·sin30+F N=0(2)
∑M A(F)=0:F N·25-R B·60·sin30°=0(3)
(3)解方程
由式(3)得
R B=·F N=25(kN)
将R B代入式(1),得
R Ax=25×=21.65(kN)
将R B代入式(2),得
R Ay=F N-R B sin30°=30-25×0.5=17.5(kN)
讨论:
力矩平衡方程的矩心可以选择在研究对象物体以外,即矩心可以选在力系作用平面上的任
意点。
本题也可以选未知力R AX、R B二力交点C为矩心,列力矩平衡方程,未出R AY,以取代式(2)。
由∑M C(F)=0:R AY·60-F N·(60-25)= 0 解得:R AY= 17.5(KN)
此法也可以验算答案是否正确.
六、绘图题
30.(10 分)。