实数知识体系构建课件
合集下载
初中实数ppt课件

为分数。
实数具有完备性,即实数集在加 法、减法、乘法和除法(除数不
为0)下是封闭的。
实数的分类
有理数
有理数包括整数和分数,其中整 数包括正整数、0和负整数。分数
则可以表示为两个整数的比,如 1/2、2/3等。
无理数
无理数是无法表示为分数的数,常 见的无理数有无限不循环小数,如 π、√2等。
实数的其他分类
实数还可以根据其性质进行分类, 如正数、负数、零、正有理数、负 有理数等。
实数的性质
实数的顺序性
对于任意两个不同的实数a和b,如果 a小于b,那么在它们之间一定存在一 个实数c,使得a小于c且c小于b。
实数的四则运算性质
实数的完备性
实数集在加法、减法、乘法和除法( 除数不为0)下是封闭的,即任何两 个实数的这四种运算的结果仍然是实 数。
减法运算
总结词
掌握减法运算的基本概念和规则
详细描述
实数的减法可以通过加法来实现,即将减数变为相反数,然后进行加法运算。例如,a - b = a + (-b) 。
乘法运算
总结词
理解乘法运算的基本概念和规则
详细描述
实数的乘法运算需要考虑正负数的特殊情况。例如,正数与正数相乘、负数与负数相乘、正数与负数相乘等。
详细描述
在建筑、工程、机械制造等领域,需要使用实数来表示物体的长度、宽度、高度等参数 。例如,在设计一座桥梁时,需要精确地测量各个部分的长度,并使用实数来表示,以
确保桥梁的安全性和稳定性。
重量测量中的实数应用
总结词
在购买商品时,我们经常需要测量物体 的重量,而实数在重量测量中的应用也 是必不可少的。
值的取值范围。
解决几何问题
在解决与几何图形相关的面积、 体积等问题时,需要比较实数的 大小,以确定相关参数的取值范
实数具有完备性,即实数集在加 法、减法、乘法和除法(除数不
为0)下是封闭的。
实数的分类
有理数
有理数包括整数和分数,其中整 数包括正整数、0和负整数。分数
则可以表示为两个整数的比,如 1/2、2/3等。
无理数
无理数是无法表示为分数的数,常 见的无理数有无限不循环小数,如 π、√2等。
实数的其他分类
实数还可以根据其性质进行分类, 如正数、负数、零、正有理数、负 有理数等。
实数的性质
实数的顺序性
对于任意两个不同的实数a和b,如果 a小于b,那么在它们之间一定存在一 个实数c,使得a小于c且c小于b。
实数的四则运算性质
实数的完备性
实数集在加法、减法、乘法和除法( 除数不为0)下是封闭的,即任何两 个实数的这四种运算的结果仍然是实 数。
减法运算
总结词
掌握减法运算的基本概念和规则
详细描述
实数的减法可以通过加法来实现,即将减数变为相反数,然后进行加法运算。例如,a - b = a + (-b) 。
乘法运算
总结词
理解乘法运算的基本概念和规则
详细描述
实数的乘法运算需要考虑正负数的特殊情况。例如,正数与正数相乘、负数与负数相乘、正数与负数相乘等。
详细描述
在建筑、工程、机械制造等领域,需要使用实数来表示物体的长度、宽度、高度等参数 。例如,在设计一座桥梁时,需要精确地测量各个部分的长度,并使用实数来表示,以
确保桥梁的安全性和稳定性。
重量测量中的实数应用
总结词
在购买商品时,我们经常需要测量物体 的重量,而实数在重量测量中的应用也 是必不可少的。
值的取值范围。
解决几何问题
在解决与几何图形相关的面积、 体积等问题时,需要比较实数的 大小,以确定相关参数的取值范
实数_PPT优秀课件10

c d 0 b a
其中:
图 1- 1- 1 a+b
a b
d c
-d-c a-d
c b
b-c
ad
总结与回顾
这节课你有什么收获?
你对本节课的内容还有哪些疑问?
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
练习:求下列各数的相反数、倒数 和绝对值: 7 (1) 7 的相反数是 7; 倒数是 7 ; 绝对值是 7 。 1 3 (2) - 8 的相反数是 2 ; 倒数是 2 ;
绝对值是 2 . 1 (3) 49 的相反数是 -7 ; 倒数是 7 ; 绝对值是 7 .
练习:
1、a、b互为相反数,c与d互为倒数则a+1+b+cd= 2 。 2、实数a,b,c,d在数轴上的对应点如图1-1所示,则 它们从小到大的顺序是 c<d<b<a 。
..
.
0.101001,22/7,- √3/3,5.15.
. ..
3 解:有理数: √ -8, 0.27,0.101001, 22/7, 5.15;
无理数: √8, π, -5.151 151 115… - √3/3; 正数: √8, π, 0.27, 0.101001, 22/7, 5.15; 负数: √-8, -5.151 151 115… - √3/3.
1、你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 2、理想不是一只细磁碗,破碎了不有锔补;理想是朵花,谢落了可以重新开放。 3、人类的幸福和欢乐在于奋斗,而最有价值的是为理想而奋斗 4、世界上最快乐的事,莫过于为理想而奋斗 5、理想的实现只靠干,不靠空谈 6、天行健,君子以自强不息 7、心如明镜台,时时勤拂拭 8、理想即寻觅目标的思维。 9、理想是世界的主宰。 10、理想失去了,青春之花也便凋零了。因为理想是青春的光和热。 11、每个人都有一定的理想,这种理想决定着他的努力和判断的方向。 12、理想就在我们自身之中,同时,阴碍我们实现理想的各种障碍,也是在我们自身之中。 13、立志要如山,行道要如水。不如山,不能坚定,不如水,不能曲达。 14、理想是力量的泉源、智慧的摇篮、冲锋的战旗、斩棘的利剑。 15、人生的真正欢乐是致力于一个自己认为是伟大的目标。 16、人的理想志向往往和他的能力成正比。 17、大丈夫行事,论是非,不论利害;论顺逆,不论成败;论万世,不论一生。——(明)黄宗羲 18、生活的理想,就是为了理想的生活。 19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 23、把理想运用到真实的事物上,便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满社会利益的、具有明确目的生活是世界上最美好的和最有意义的生活。 26、人需要理想,但是需要人的符合自然的理想,而不是超自然的理想。 27、生活中没有理想的人,是可怜的。 28、在理想的最美好的世界中,一切都是为美好的目的而设的。 29、理想的人物不仅要在物质需要的满足上,还要在精神旨趣的满足上得到表现。 30、生活不能没有理想。应当有健康的理想,发自内心的理想,来自本国人民的理想。
其中:
图 1- 1- 1 a+b
a b
d c
-d-c a-d
c b
b-c
ad
总结与回顾
这节课你有什么收获?
你对本节课的内容还有哪些疑问?
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
练习:求下列各数的相反数、倒数 和绝对值: 7 (1) 7 的相反数是 7; 倒数是 7 ; 绝对值是 7 。 1 3 (2) - 8 的相反数是 2 ; 倒数是 2 ;
绝对值是 2 . 1 (3) 49 的相反数是 -7 ; 倒数是 7 ; 绝对值是 7 .
练习:
1、a、b互为相反数,c与d互为倒数则a+1+b+cd= 2 。 2、实数a,b,c,d在数轴上的对应点如图1-1所示,则 它们从小到大的顺序是 c<d<b<a 。
..
.
0.101001,22/7,- √3/3,5.15.
. ..
3 解:有理数: √ -8, 0.27,0.101001, 22/7, 5.15;
无理数: √8, π, -5.151 151 115… - √3/3; 正数: √8, π, 0.27, 0.101001, 22/7, 5.15; 负数: √-8, -5.151 151 115… - √3/3.
1、你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 2、理想不是一只细磁碗,破碎了不有锔补;理想是朵花,谢落了可以重新开放。 3、人类的幸福和欢乐在于奋斗,而最有价值的是为理想而奋斗 4、世界上最快乐的事,莫过于为理想而奋斗 5、理想的实现只靠干,不靠空谈 6、天行健,君子以自强不息 7、心如明镜台,时时勤拂拭 8、理想即寻觅目标的思维。 9、理想是世界的主宰。 10、理想失去了,青春之花也便凋零了。因为理想是青春的光和热。 11、每个人都有一定的理想,这种理想决定着他的努力和判断的方向。 12、理想就在我们自身之中,同时,阴碍我们实现理想的各种障碍,也是在我们自身之中。 13、立志要如山,行道要如水。不如山,不能坚定,不如水,不能曲达。 14、理想是力量的泉源、智慧的摇篮、冲锋的战旗、斩棘的利剑。 15、人生的真正欢乐是致力于一个自己认为是伟大的目标。 16、人的理想志向往往和他的能力成正比。 17、大丈夫行事,论是非,不论利害;论顺逆,不论成败;论万世,不论一生。——(明)黄宗羲 18、生活的理想,就是为了理想的生活。 19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 23、把理想运用到真实的事物上,便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满社会利益的、具有明确目的生活是世界上最美好的和最有意义的生活。 26、人需要理想,但是需要人的符合自然的理想,而不是超自然的理想。 27、生活中没有理想的人,是可怜的。 28、在理想的最美好的世界中,一切都是为美好的目的而设的。 29、理想的人物不仅要在物质需要的满足上,还要在精神旨趣的满足上得到表现。 30、生活不能没有理想。应当有健康的理想,发自内心的理想,来自本国人民的理想。
实数(共16张PPT)优秀

§1.6实数域
第一页,共16页。
第二页,共16页。
§1.6实数域
• 一、无理数的引入 • 二、实数的无限小数定义 • 三、闭区间套定义实数的方法
• 四、实数的运算 • 五、实数集的性质
第三页,共16页。
第四页,共16页。
二、实数的无限小数定义
• 阿基米德公理 • 度量线段长度 • 实数的概念 • 实数的顺序 • 实数集的稠密性
第十六页,共16页。
第六页,共16页。
第七页,共16页。
第八页,共16页。
第九页,共16页。
第十页,共16页。
第十一页,共16页。
实数 (无限小数)
有理数(无限循 环小数)
无理数(无限不 循环小数)
正有理数
零
负有理数
正无理数
负无理数
第十二页,共16页。
第十三页,共16页。
第十四页,共16页。
第十五页,共16页。
第五页,共16页。
阿基米德公理
三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义
第一页,共16页。
第二页,共16页。
§1.6实数域
• 一、无理数的引入 • 二、实数的无限小数定义 • 三、闭区间套定义实数的方法
• 四、实数的运算 • 五、实数集的性质
第三页,共16页。
第四页,共16页。
二、实数的无限小数定义
• 阿基米德公理 • 度量线段长度 • 实数的概念 • 实数的顺序 • 实数集的稠密性
第十六页,共16页。
第六页,共16页。
第七页,共16页。
第八页,共16页。
第九页,共16页。
第十页,共16页。
第十一页,共16页。
实数 (无限小数)
有理数(无限循 环小数)
无理数(无限不 循环小数)
正有理数
零
负有理数
正无理数
负无理数
第十二页,共16页。
第十三页,共16页。
第十四页,共16页。
第十五页,共16页。
第五页,共16页。
阿基米德公理
三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义
《实数》课件完整版PPT初中数学5

问题思考 3
2.开方开不尽的数
总结性质
1 无理数的概念
定义:无限不循环的小数叫做无理数.
无理数的特征:
1.圆周率π及一些含有π的数
2.开方开不尽的数,如: 3、5、7 等
注意:带根号 的数不一定 都是无理数
3.有一定的规律,但不循环的无限小数,如:
▪… …
基础小练
1.判断下列数哪些是有理数?哪些是无理数?
一对应的,即每一个实数都可以用数轴上的一个点来表示;反过 来,数轴上的每一个点都表示一个实数.
与规定有理数的大小一样,对于数轴上的任意两个点,右边 的点表示的实数总比左边的点表示的实数大.
有理数关于相反数和绝对值的意义同样适合于实数.
基础小练
6.① 2 的相反数是____, π 的相反数是____,0的相反数是____.
反过来,数轴上的每一个点都表示一个实数.
数 两种分类: ①根据实数的定义; 3.有一定的规律,但不循环的无限小数,如:
变式:课本P56 T2 Enter the text content directly here, the text format will not change.
(2)看它是不是不循环小
无限循环小数 3.有一定的规律,但不循环的无限小数,如:
数 实 正无理数 无理数: 无限不循环小数.
边长为1个单位长度的正方形,对角线长为多少
数 0 直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O' ,点O' 对应的数是多少?
数轴上A,B两点表示的数是-1和 ,有一点C满足A,B,C三点中总有一点是另外两点所在线段的中点,求点C所表示的数.
正无理数 负有理数 如图,数轴上A,B两点表示的数分别为 和5.
人教版初一数学 6.3 实数的概念 第1课时PPT课件

学习难点:理解无理数的概念和实数与数轴上的点一
一对应的关系.
导入新课(创设情境)
1
3 7 3 1 2 7
把, - , , , - , , 化成小数,并观察其特点.
100 5 2 16 3 3 22
问题1:任意写一个分数,一定能写成有限小数或是无
限循环小数吗?
问题2:整数能写成小数形式吗?3可以看成是3.0吗?
解:
扩展应用
将下列各数分别填入下列相应的括号内:
1
4
3
3
, 7,π,- 16,- 5,- 8, 9, ,
4
9
0, 25,0.323 223 2223…
无理数:
3
9,
7,π, - 5,0.323 223 2223…
有理数: 1 , - 1 6 , - 3 8 ,
4
4
, 0,
9
25
探究新知
学生活动四【一起探究】
与有理数一样,在实数范围内:
(1)正数大于零,负数小于零,正数大于负数;
(2)两个正数,绝对值大的数较大;
(3是什么?
2.实数的概念是什么?
3.实数与数轴有什么关系?
当堂训练
1.判断对错:
(1)实数不是有理数就是无理数. ( √ )
(2)无理数都是无限不循环小数. ( √ )
定义去辨别,而不能从形式上去分辨.常见的无理数有
π或含π的数或式子;开不尽方的数,如 2, 3等;还有构
造型,如1.010 010 001 000 01…(每相邻两个1之间依
次多1个0),有理数和无理数统称为实数.
探究新知
学生活动二【一起探究】
思考:仿照有理数的分类,实数怎么分类?
一对应的关系.
导入新课(创设情境)
1
3 7 3 1 2 7
把, - , , , - , , 化成小数,并观察其特点.
100 5 2 16 3 3 22
问题1:任意写一个分数,一定能写成有限小数或是无
限循环小数吗?
问题2:整数能写成小数形式吗?3可以看成是3.0吗?
解:
扩展应用
将下列各数分别填入下列相应的括号内:
1
4
3
3
, 7,π,- 16,- 5,- 8, 9, ,
4
9
0, 25,0.323 223 2223…
无理数:
3
9,
7,π, - 5,0.323 223 2223…
有理数: 1 , - 1 6 , - 3 8 ,
4
4
, 0,
9
25
探究新知
学生活动四【一起探究】
与有理数一样,在实数范围内:
(1)正数大于零,负数小于零,正数大于负数;
(2)两个正数,绝对值大的数较大;
(3是什么?
2.实数的概念是什么?
3.实数与数轴有什么关系?
当堂训练
1.判断对错:
(1)实数不是有理数就是无理数. ( √ )
(2)无理数都是无限不循环小数. ( √ )
定义去辨别,而不能从形式上去分辨.常见的无理数有
π或含π的数或式子;开不尽方的数,如 2, 3等;还有构
造型,如1.010 010 001 000 01…(每相邻两个1之间依
次多1个0),有理数和无理数统称为实数.
探究新知
学生活动二【一起探究】
思考:仿照有理数的分类,实数怎么分类?
实数ppt课件

。
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
《实数》数学教学PPT课件(3篇)

5
| 3 | 3 , | 0 | 0 , | - | .
例2 比较下列各组数中两个数的大小:
(1)3.14与π;
3
(2)-√3与√-3.
解:(1)∵π≈3.141,
∴3.14<π.
(2)∵ -√3 ≈-1.732,
3
√-3
≈-1.442
3
∴ -√3< √-3
例3 求下列各数的相反数和绝对值:
随堂测试
1 3
1.在实数− 5 , −27, 2 , 16, 8, 0中,无理数的个数为( )
A.1个
B.2个
C.3个
D.4个
【答案】B
【详解】
1 3
5
2
解:在实数− , −27, , 16, 8, 0中,无理
数有 2 , 8这2个,
故选:B.
随堂测试
2.下列说法不正确的是(
)
A.如果数轴上的点表示的数不是有理数,那么就一定是无理数
()
2 3 2.
()
1 5π ;
解: (1) 5 π 2.236 3.142 5.38;
(2) 3 2 1.732 1.414 2.45 .
探究
问题1.能在直角坐标系中描示出点( ,1)吗?
2
y
直角坐标系中
的点和有序实数对
是一一对应的.
-2
-1
有序实数对
( 2,1)
A.点A
B.点B
C.点C
)
D.点D
【答案】B
【详解】
解:∵ 1< 3< 4,即1< 3<2,
∴﹣2<− 3<﹣1,
∴由数轴知,与− 3对应的点距离最近的是点B,
| 3 | 3 , | 0 | 0 , | - | .
例2 比较下列各组数中两个数的大小:
(1)3.14与π;
3
(2)-√3与√-3.
解:(1)∵π≈3.141,
∴3.14<π.
(2)∵ -√3 ≈-1.732,
3
√-3
≈-1.442
3
∴ -√3< √-3
例3 求下列各数的相反数和绝对值:
随堂测试
1 3
1.在实数− 5 , −27, 2 , 16, 8, 0中,无理数的个数为( )
A.1个
B.2个
C.3个
D.4个
【答案】B
【详解】
1 3
5
2
解:在实数− , −27, , 16, 8, 0中,无理
数有 2 , 8这2个,
故选:B.
随堂测试
2.下列说法不正确的是(
)
A.如果数轴上的点表示的数不是有理数,那么就一定是无理数
()
2 3 2.
()
1 5π ;
解: (1) 5 π 2.236 3.142 5.38;
(2) 3 2 1.732 1.414 2.45 .
探究
问题1.能在直角坐标系中描示出点( ,1)吗?
2
y
直角坐标系中
的点和有序实数对
是一一对应的.
-2
-1
有序实数对
( 2,1)
A.点A
B.点B
C.点C
)
D.点D
【答案】B
【详解】
解:∵ 1< 3< 4,即1< 3<2,
∴﹣2<− 3<﹣1,
∴由数轴知,与− 3对应的点距离最近的是点B,
实数教学课件

感谢您的观看
THANKS
。
04 实数的应用
在数学中的应用
01
02
03
代数运算
实数可用于解决代数方程 、不等式和函数等问题, 如求解一元二次方程、求 函数的极值等。
几何学
实数与几何学紧密相关, 如长度、角度、面积和体 积等都可以用实数表示。
概率论与统计学
在概率论和统计学中,实 数用于描述随机事件发生 的可能性以及数据的分布 和统计分析。
金融与经济
在金融和经济领域,实数被用于描述货币交易、投资回报、成本 和利润等经济活动。
科学实验与工程设计
在科学实验和工程设计中,实数用于测量各种参数、计算结果和评 估设计方案的有效性。
计算机科学
在计算机科学中,实数用于表示数字、编码和算法等,并用于处理 数据和执行计算任务。
05 实数的扩展知识
无理数的定义与性质
无理数
无理数是一些无法表示为两个整数的比的数,如圆周率π、自然对数的底数e等 。无理数在实数中占据了大部分,它们在数学分析和高等数学中有着广泛的应 用。
02 实数的运算
加法运算
总结词
理解加法运算的意义,掌握加法运算的规则和技巧。
详细描述
实数的加法运算是指将两个或多个实数相加,得到一个新的实数。在进行加法运 算时,应遵循实数的加法规则,即同号数相加取相同的符号,异号数相加取绝对 值较大数的符号,并把绝对值相减。
实数集是数学中最基本的概念之一,它具有完备性和连续性 ,是数学分析和高等数学的基础。实数在日常生活中有着广 泛的应用,如长度、重量、时间等计量单位都是用实数来表 示的。
实数的性质
实数的四则运算
实数的连续性
实数的加法、减法、乘法和除法满足 交换律、结合律和分配律,这些性质 使得实数在数学中具有重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无理数集合
三、知识巩固
1. x取何值时,下列各式有意义
(1) 4 x
(2)3 4 x
(3) 2x 1 x2
解(1)x≤4
(2) X为任何实数
(3) x 1 且x 2 2
2.解方程:
不
(1).9(3 y)2 4
解: (3 y)2 4 9
3 y 4 9
2
(2). 2(7 x 2)3 125 0
解:
3
27(x
2)3
125
3
(x 2)3 125
3
27
2 125 x 3
要
y 3 3
遗
y 2 1 或y 3 2
漏
3
3
3
27
x 25
33
x 1
当方程中出现平方时,若有解,一般都有
两个解
当方程中出现立方时,一般都有一个解
(4)若 x 54.77,则x=___3_0_0_0
2、已知 3 3 1.442 ,3 30 3.107
3 300 6.694 ,,求(1)3 0.3 __0_._6694
(2)3000的立方根约为 14;.42
(3)3 x 31.07 则 , x _30_0_00_
3、若 x 22 2 x ,则 x的取值范围是x≤2___
4、已知 a、b、c 位置如图所示,
试化简
a
b0 c
(1) a2 a b c a b c2
解:原式=-a-(b-a)+(c-a)-(c-b)
=-a-b+a+c-a-c+b=-a
(2) a b c b 2c b a2
平方根
立方根
表示方法
a 的取值
正数
性
0
质 负数
开
方 是本身
a a≥ 0
正数(一个) 0
没有
0,1
a
a≥ 0
互为相反数(两个)
0 没有
求一个数的平方根 的运算叫开平方
0
3a a 是任何数
正数(一个)
0 负数(一个)
求一个数的立方根 的运算叫开立方
0,1,-1
练习:1、—8是64 的平方根, 64的平方根是±8;
a= 1
,x= 4
几个基本公式:(注意字母 的取值范围)
a a 0
a2 a = 0 a 0
a (a 0)
2 a a
a 0
3 a3 a a为任何数
3
3
a
a
a为任何数
3 a = - 3 a a为任何数
练习:
1、若a 0,求 a2 3 a3的值
4.若 3 (4 x)3 =4-x成立,则x的取值范围是( D ) A.x≤4 B. x≥4 C. 0 ≤x ≤ 4 D.任意实数
四、知识提高 1、已知 3 1.732 , 30 5.477
(1) 300 __1_7_.3_2_ (2) 0.3 ___0_.5_4_77
(3)0.03的平方根约为 0.1;732
一般地,如果一个数的立方等于a,那 么这个数就叫做a的立方根,也叫做a的
三次方根.记作 3 a
其中a是被开方数,3是根指数,符号 “3 ”读做“三次根号”.
5.立方根的性质:
一个正数有一个正的立方根;
一个负数有一个负的立方根, 零的立方根是零。
区别
你知道算术平方根、平方根、立方根联系和区别吗?
算术平方根
64 ___8__ -64的立方根是__-_4__ 9 __3__
3 9 的平方根是 。
2 3 64 2、 的立方根是( ), 3 的平方根是 (
)
3.当x _<_0__._5_ 时,2x-1没有平方根
4.若(3 x7)3 7 x,则x的值是 _X_=_7___
5.一个正数x的两个平方根分别是a+1和a-3,则
本章知识结构 图
乘 互为逆运算 方
开平方
开 方 开立方
算术平方根
平方根 立方根 负的平方根
有理数 无理数
实数
1.算术平方根的定义:
一般地,如果一个正数x的平方等于
a,即 x2 =a,那么这个正数x叫做a的
算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
特殊:0的算术平 方根是0。
解:原式=-a+a =0
; 2、若m n,求(m n)2 3 (n m)3的值
解:原式=n-m+n-m =2n-2m
无限不循环的小数 叫做无理数. 有理数和无理数统称实数. 实数与 数轴上的点是一一对应的
在实数范围内,相反数、倒数、绝对值的意义
和有理数范围内的相反数、倒数、绝对值的意
记作:0 0
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方
根).
这就是说,如果x 2 = a ,那么 x 就叫做 a 的平方根.a的平方根记为± a
3.平方根的性质: 正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
4.立方根的定义:
义完全一样 在进行实数的运算时,有理数的运算法则及 运算性质同样适用。
实数的分类
有限小数及无限循环小数
有理数
实 数
无理数
无限不循环小数
整数 分数
正整数 0
负整数 正分数
负分数
正无理数
负无理数
(1)、
一般有三种情况
2、“ ”,“3 ”开不尽的数
(3)、 类似于0.0100100010 0001
3 2,
, 5, 2
2,
1, 4
20 ,
3
4 , 0,
9
5, 3 8,
7,
0.3737737773 (相邻两个3之间的7的个数逐次加1)
1 , 5 , 42
4, 9
0,
3 8,
有理数集合
3 2,
7, ,2,Fra bibliotek20 ,
3
5, 0.3737737773
1.已知 x 和 x 的和为0,则x的范围是为( B )
A.任意实数 B.非正实数 C .非负实数 D. 0
2.若- 3 m
=
7
3
,则m的值是
(B )
8
A 7
B 7
7
C
8
8
8
D
343 512
3. 若 (x 2)2 2 x成立,则x的取值范围是( A )
A.x≤2 B. x≥2 C. 0 ≤x ≤ 2 D.任意实数
练习:
1、判断下列说法是否正确:
1.实数不是有理数就是无理数。 ( )
2.无限小数都是无理数。
()
3.无理数都是无限小数。
()
4.带根号的数都是无理数。
()
5.两个无理数之和一定是无理数。( )
6.所有的有理数都可以在数轴上表示,反过来, 数轴上所有的点都表示有理数。( )
2.把下列各数分别填入相应的集合内: