七年级数学下册数据的分析平均数中位数众数平均数平均数
大洼县第二中学七年级数学下册 第6章 数据的分析6.1 平均数、中位数、众数6.1.1 平均数第1课

6.1 平均数、中位数、众数6。
1。
1 平均数第1课时平均数【知识与技能】在现实的情景中理解平均数的意义,认识平均数的优、缺点.【过程与方法】通过探究,使学生掌握平均数的概念,利用平均数解决一些实际问题。
【情感态度】培养学生对数学的感悟能力。
【教学重点】平均数的意义及平均数的计算.【教学难点】正确运用平均数处理一些实际问题.一、情景导入,初步认知在小学我们已经学过平均数,你能用平均数的知识解决下面的问题吗?某校有24人参加了“希望杯〞数学课外活动小组,分成三组进行竞争,在一次“希望杯〞初赛前进行了摸底考试,成绩如下:甲:80、79、81、82、90、85、94、98乙:90、83、78、84、82、96、97、80丙:93、82、97、80、88、83、85、83怎样比拟这次考试三个小组的数学成绩呢?解决这个问题我们只需要用到平均数,在小学我们学过平均数,但非常浅显,现在我们继续学习平均数,希望通过这节课的学习,同学们能加深对平均数概念的理解。
【教学说明】通过实际问题的导入,使学生初步感知平均数。
二、思考探究,获取新知1.一个小组10名同学的身高(单位:cm〕如下表所示:(1〕计算10名同学身高的平均数.〔2〕在数轴上标出表示这些同学的身高及其平均数。
〔3〕观察表示平均数的点与其他的点的位置关系,你能得出什么结论?解:(1〕平均数为:x=〔151+156+153+158+154+161+155+157+154+157〕÷10=155。
6(cm〕。
〔2)在数轴上为:(3)这些点都位于x两侧,不会都在平均数的一侧;x可以作为这组同学的身高的代表值,它反映了这组同学的身高的平均水平。
【归纳结论】平均数是一组数据的数值的代表值,它刻画了这组数据整体的平均水平。
2.某农业技术员试种了三个品种的棉花各10株,秋收时他清点了这30株棉花的结桃数并记录在下表,哪个品种更好?分析:平均数可以作为一组数据的数值的代表值,要比拟哪个品种较好,只要确定这三种棉花的平均结桃数就可以了。
初中数学数据分析知识点(详细全面)

第五讲、数据分析一、数据的代表(一)、(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=叫做这n 个数的平均数,x 读作“x 拔”。
注:如果有n 个数n x x x ,,,21 的平均数为x ,则①n ax ax ax ,,,21 的平均数为a x ; ②b x b x b x n +++,,,21 的平均数为x +b ; ③b ax b ax b ax n +++,,,21 的平均数为a x b +。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
(3)平均数的计算方法 ①定义法:当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++=②加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x k k ++=2211,其中n f f f k =++ 21。
③新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x '11=,a x x '22=,…,a x x n n '=。
)'''(1'21n x x x nx +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
(4)算术平均数与加权平均数的区别与联系①联系:都是平均数,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等,均为1)。
平均数、中位数和众数数学教案设计

平均数、中位数和众数数学教案设计第一章:平均数的概念与计算1.1 导入:通过一个实际问题引入平均数的概念,如“小明身高1.4米,小华身高1.3米,他们的平均身高是多少?”1.2 讲解平均数的定义:平均数是一组数据的总和除以数据的个数。
1.3 演示计算平均数的方法:以一组具体的数据为例,展示如何计算平均数。
1.4 练习:让学生解决一些有关平均数的问题,巩固对平均数概念的理解。
第二章:中位数的概念与计算2.1 导入:通过一个实际问题引入中位数的概念,如“一组数据按照大小顺序排列,中间的那个数是什么?”2.2 讲解中位数的定义:中位数是一组数据按照大小顺序排列后,位于中间位置的数。
2.3 演示计算中位数的方法:以一组具体的数据为例,展示如何计算中位数。
2.4 练习:让学生解决一些有关中位数的问题,巩固对中位数概念的理解。
第三章:众数的概念与计算3.1 导入:通过一个实际问题引入众数的概念,如“一组数据中出现次数最多的数是什么?”3.2 讲解众数的定义:众数是一组数据中出现次数最多的数。
3.3 演示计算众数的方法:以一组具体的数据为例,展示如何计算众数。
3.4 练习:让学生解决一些有关众数的问题,巩固对众数概念的理解。
第四章:平均数、中位数和众数的应用4.1 导入:通过一个实际问题引入平均数、中位数和众数在生活中的应用,如“一家公司的员工工资如何通过平均数、中位数和众数来描述?”4.2 讲解平均数、中位数和众数在生活中的应用:解释平均数、中位数和众数在描述数据集中趋势方面的作用。
4.3 演示如何应用平均数、中位数和众数:以一组具体的数据为例,展示如何应用平均数、中位数和众数来描述数据。
4.4 练习:让学生解决一些有关平均数、中位数和众数应用的问题,巩固对这三个概念的理解。
第五章:综合练习与拓展5.1 设计一些综合性的练习题,让学生运用平均数、中位数和众数的概念和计算方法。
5.2 让学生进行小组讨论,探讨平均数、中位数和众数在实际生活中的应用,并提出自己的观点和例子。
初中数学湘教版七年级下册第6章 数据的分析6.1 平均数、中位数、众数-章节测试习题(12)

章节测试题1.【答题】为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是()A. 众数是9B. 中位数是9C. 平均数是9D. 锻炼时间不低于9小时的有14人【答案】D【分析】此题根据众数,中位数,平均数的定义解答.【解答】由图可知,锻炼9小时的有18人,∴9在这组数中出现18次为最多,∴众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,∴中位数是9.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9,∴平均数是9.由以上可知A、B、C都对,故D错.选D.2.【答题】已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A. a<13,b=13B. a<13,b<13C. a>13,b<13D. a>13,b=13【答案】A【分析】根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.【解答】∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;选A.3.【答题】某班数学兴趣小组10名同学的年龄情况如下表:年龄(岁)12 13 14 15人数 1 4 4 1则这10名同学年龄的平均数和中位数分别是()A. 13.5,13.5B. 13.5,13C. 13,13.5D. 13,14【答案】A【分析】根据中位数及平均数的定义求解即可.【解答】将各位同学的成绩从小到大排列为:12,13,13,13,13,14,14,14,14,15,中位数是=13.5,平均数是=13.5.选A.4.【答题】在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A. 7B. 8C. 9D. 10【答案】B【分析】根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.选B.5.【答题】为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为:=8.4.选B.6.【答题】一次数学模考后,李老师统计了20名学生的成绩.记录如下:有6人得了85分,有5人得了80分,有4人得了65分,有5人得了90分.则这组数据的中位数和平均数分别是()A. 82.5,82.5B. 85,81C. 82.5,81D. 85,82.5【答案】B【分析】根据中位数、平均数的定义分别列出算式,再进行计算即可.【解答】解:∵共有20个数,∴中位数是第10、11个数的平均数,∴中位数是(85+85)÷2=85;平均数是(85×6+80×5+65×4+90×5)=81;选B.7.【答题】一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A. 10,10B. 10,12.5C. 11,12.5D. 11,10【答案】D【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为:=11,中位数为:10.8.【答题】一组数据:0,1,2,3,3,5,5,10的中位数是()A. 2.5B. 3C. 3.5D. 5【答案】B【分析】根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.【解答】将这组数据从小到大排列为:0,1,2,3,3,5,5,10,最中间两个数的平均数是:(3+3)÷2=3,则中位数是3;选B.9.【答题】在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是()A. 47B. 48C. 48.5D. 49【答案】C【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,由此计算即可.【解答】解:这组数据的中位数为=48.5.10.【答题】7位同学中考体育测试立定跳远成绩(单位:分)分别是:8,9,7,6,10,8,9,这组数据的中位数是()A. 6B. 8C. 9D. 10【答案】B【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】把这组数据从小到大排序后为6,7,8,8,9,9,10,其中第四个数据为8,∴这组数据的中位数为8.选B.11.【答题】数字1、2、5、3、5、3、3的中位数是()A. 1B. 2C. 3D. 5【答案】C【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.选C.12.【答题】数据0,1,1,3,3,4的中位数和平均数分别是()A. 2和2.4B. 2和2C. 1和2D. 3和2【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.选B.13.【答题】七(1)班的6位同学在一节体育课上进行引体向上训练时,统计数据分别为7,12,10,6,9,6则这组数据的中位数是()A. 6B. 7C. 8D. 9【答案】C【分析】将该组数据按从小到大依次排列,找到位于中间位置的两个数,求出其平均数即为正确答案.【解答】解:将该组数据按从小到大依次排列为6,6,7,9,10,12,位于中间位置的数为7,9,其平均数为x==8,故中位数为8.选C.14.【答题】为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40名居民一周体育锻炼时间的中位数是()A. 4小时B. 4.5小时C. 5小时D. 5.5小时【答案】C【分析】中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【解答】由统计表可知:统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.选C.15.【答题】下列数据3,2,3,4,5,2,2的中位数是()A. 5B. 4C. 3D. 2【答案】C【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】题目中数据共有7个,把数据按从小到大的顺序排列为2,2,2,3,3,4,5,故中位数是按从小到大排列后第4个数是3,故这组数据的中位数是3.选C.16.【答题】某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.【解答】解:8,9,8,7,10的平均数为×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8.选B.17.【答题】一组数据:-1、2、1、0、3,则这组数据的平均数和中位数分别是()A. 1,0B. 2,1C. 1,2D. 1,1【答案】D【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】平均数=(-1+2+1+0+3)÷5=1;把这组数据按从大到小的顺序排列是:-1,0,1,2,3,故这组数据的中位数是:1.选D.18.【答题】爱华中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是()A. 200B. 210C. 220D. 240【答案】B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】题目中数据共有5个,按从小到大排列后为:200、200、210、220、240,位于最中间的一个数是210,∴这组数据的中位数是210;选B.19.【答题】一组数据:75、95、85、100、125的中位数是()A. 85B. 95C. 96D. 100【答案】B【分析】根据中位数的定义计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】按从小到大的顺序排列为:75,85,95,100,125,根据中位数的定义得;中位数是95.选B.20.【答题】一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为()A. 37B. 35C. 33.8D. 32【答案】B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】先对这组数据按从小到大的顺序重新排序:28,32,35,37,37,位于最中间的数是35,∴这组数的中位数是35.选B.。
七年级数学下册第6章数据的分析平均数中位数众数61.1平均数第2课时加权平均数习题课件9

.
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
2
知识点 加权平均数及其应用
1. 已知一组数据有 m 个 a,n 个 b,p 个 c,q 个 d,
则这组数据的平均数是( D )
A.a+b+4 c+d C.ma+nb+4 pc+qd
B.m+n+4 p+q D.mam++nnb++pp+c+qqd
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
21
解:(1)甲:200×25%=50(分); 乙:200×40%=80(分); 丙:200×35%=70(分). (2)甲:(75+93+50)÷3≈72.67(分); 乙:(80+70+80)÷3≈76.67(分); 丙:(90+68+70)÷3=76(分). 所以乙将被录取.
(2)你认为上述四项中,哪一项更为重要?请你按自 己的想法设计一个评分方案.根据你的方案,哪一个班 的卫生成绩最高?与同伴进行交流.
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
14
解:(1)一班 88.75 分,二班 92.25 分,三班 91 分, 二班成绩最高;
随机抽查了 20 户家庭某月的用水量,结果如下表,则这
20 户家庭这个月的平均用水量是__5_.8___吨.
用水量(吨) 4 5 6 8
户数
3 8 45
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
6
5. 某公司有 17 名员工,他们所在的部门及相应每
人所创的年利润(万元)如下表:
23
综合成绩为___7_8_.8_____分.
平均数中位数和众数的意义分别是什么

平均数中位数和众数的意义分别是什么平均数、中位数和众数是用于描述一组数据特征的统计学指标。
它们各自有着不同的意义和应用场景。
平均数指的是一组数据的所有数值之和除以数据个数,用来衡量数据的集中趋势。
平均数的意义在于能够给出一个数据集中值的一个估计,它可以作为一组数据的“典型值”来描述整体情况。
举个例子,如果你想知道一个班级学生成绩的集中趋势,你可以计算学生们的平均分数。
平均数的一个局限性是它容易受到极端值的影响,所以在分析数据时需要结合其他指标一起考虑。
中位数是按照一组数据的数值大小排列后位于中间位置的数值,用来描述数据的集中趋势。
中位数的意义在于它能够忽略掉数据集中的极端值,而更聚焦于数据的“中间值”。
也就是说,当数据集存在极端值时,中位数能够更好地反映出数据的典型特征。
举个例子,如果你想知道一个城市居民的收入水平,你可以计算这个城市居民的收入中位数,它能够给出一个更接近大多数人实际收入的值。
众数是在一组数据中出现次数最多的数值,用来描述数据的分布情况。
众数的意义在于它可以告诉我们数据集中的“最常见”的数值是什么。
举个例子,如果你要研究一家公司员工的职位水平分布,你可以计算员工职位的众数,从而了解公司中职位分布最为密集的层级。
众数可以帮助我们理解数据的分布情况,同时也可以用于分析数据的趋势和模式。
总结来说,平均数、中位数和众数三者各自有着不同的意义和应用场景。
平均数用来描述数据的集中趋势,中位数用来忽略极端值更准确地反映数据的典型特征,众数用来表示最常出现的数值,描述数据的分布情况。
在实际应用中,我们可以根据具体的问题选择合适的统计指标来分析数据,以更好地理解和解释数据的特征。
掌握平均数中位数和众数的计算

掌握平均数中位数和众数的计算统计学中有三个常用的统计量,分别是平均数、中位数和众数。
这三个统计量可以帮助我们更好地理解和分析数据。
本文将为您详细介绍如何计算平均数、中位数和众数,并通过例子进行说明。
一、平均数的计算方法平均数是一个数据集的所有数值之和除以数据个数,用于描述数据的集中趋势。
下面是计算平均数的步骤:1. 将数据集中的所有数值相加。
2. 将结果除以数据个数。
3. 得到的结果即为平均数。
例如,我们有一组数据集:2, 4, 6, 8, 10。
我们可以按照以下步骤计算平均数:1. 将所有数值相加:2 + 4 + 6 + 8 + 10 = 30。
2. 将结果除以数据个数:30 / 5 = 6。
3. 得到的结果6即为平均数。
二、中位数的计算方法中位数是一个数据集中的中间数,它将数据集按照大小排列后,中间位置上的数值就是中位数。
下面是计算中位数的步骤:1. 将数据集中的数值按照大小顺序排列。
2. 如果数据个数为奇数,中位数就是中间位置上的数值;如果数据个数为偶数,中位数是中间位置上的两个数值的平均数。
例如,我们有一组数据集:2, 4, 6, 8, 10。
我们可以按照以下步骤计算中位数:1. 将数据集按大小排列:2, 4, 6, 8, 10。
2. 数据个数为奇数,中位数是中间位置上的数值,即6。
三、众数的计算方法众数是指一个数据集中出现次数最多的数值,一个数据集可以有一个或多个众数。
下面是计算众数的步骤:1. 统计数据集中每个数值的出现次数。
2. 找出出现次数最多的数值。
例如,我们有一组数据集:2, 4, 6, 8, 10, 4。
我们可以按照以下步骤计算众数:1. 统计数据集中每个数值的出现次数:2(1次),4(2次),6(1次),8(1次),10(1次)。
2. 出现次数最多的数值是4,因此4是该数据集的众数。
综上所述,平均数、中位数和众数是三个常用的统计量,可以帮助我们更好地了解和分析数据。
通过计算平均数,我们可以得到数据集的集中趋势;通过计算中位数,我们可以了解数据集的中间位置上的数值;通过计算众数,我们可以找出数据集中出现次数最多的数值。
初中数学湘教版七年级下册第6章 数据的分析6.1 平均数、中位数、众数-章节测试习题(8)

章节测试题1.【答题】在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:这些运动员跳高成绩的众数是()A. 1.55B. 1.60C. 1.65D. 1.70【答案】D【分析】根据众数的定义找出出现次数最多的数即可.【解答】∵1.70出现了5次,出现的次数最多,∴这些运动员跳高成绩的众数是1.70;选D.2.【答题】小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数据的众数是()A. 28B. 31C. 32D. 33【答案】C【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】在这一组数据中32是出现次数最多的,故众数是32.选C.3.【答题】一组数据:2,6,2,8,4,2的众数是()A. 8B. 6C. 4D. 2【答案】D【分析】众数是指一组数据中出现次数最多的数据.【解答】数据2,6,2,8,4,2中,2出现了3次,出现的次数最多,∴这组数据的众数是2.选D.4.【答题】某学习小组7个男同学的身高(单位:米)为:1.66,1.65,1.72,1.58,1.64,1.66,1.70,那么这组数据的众数为()A. 1.65B. 1.66C. 1.67D. 1.70【答案】B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】1.66出现两次,出现的次数最多,1.66为众数.选B.5.【答题】学业考试体育测试结束后,某班体育委员将本班50名学生的测试成绩制成如下的统计表.这个班学生体育测试成绩的众数是()A. 30分B. 28分C. 25分D. 10分【答案】B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】总共50个数据,出现次数最多的有28分为10人次,因此众数为28分.选B.6.【答题】数据:1,2,2,3,5的众数是()A. 1B. 2C. 3D. 5【答案】B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】众数是一组数据中出现次数最多的数,此题中1,3,5各出现了一次,2出现了两次,∴这组数据的众数是2.选B.7.【答题】在数据1、3、5、5、7中,中位数是()A. 3B. 4C. 5D. 7【答案】C【分析】根据中位数的概念求解.【解答】这组数据按照从小到大的顺序排列为:1、3、5、5、7,则中位数为:5.选C.8.【答题】数据4,5,8,6,4,4,6的中位数是()A. 3B. 4C. 5D. 6【答案】C【分析】根据中位数的概念求解.【解答】这组数据按照从小到大的顺序排列为:4,4,4,5,6,6,8,则中位数为:5.选C.9.【答题】从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A. 1B. 2C. 3D. 4【答案】C【分析】首先利用扇形图以及条形图求出总人数,进而求得每个小组的人数,然后根据中位数的定义求出这些学生分数的中位数.【解答】总人数为6÷10%=60(人),则2分的有60×20%=12(人),4分的有60-6-12-15-9=18(人),第30与31个数据都是3分,这些学生分数的中位数是(3+3)÷2=3.选C.10.【答题】气候宜人的省级度假胜地吴川吉兆,测得一至五月份的平均气温分别为17、17、20、22、24(单位:℃),这组数据的中位数是()A. 24B. 22C. 20D. 17【答案】C【分析】先把这组数据从小到大排列,再找出最中间的数即可.【解答】把这组数据从小到大排列为:17、17、20、22、24,最中间的数是20,则这组数据的中位数是20;选C.11.【答题】在开展“爱心捐助雅安灾区”的活动中,某团支部8名团员捐款分别为(单位:元):6,5,3,5,6,10,5,5,这组数据的中位数是()A. 3元B. 5元C. 6元D. 10元【答案】B【分析】根据中位数的定义,结合所给数据即可得出答案.【解答】将数据从小到大排列为:3,5,5,5,5,6,6,10,中位数为:5.选B.12.【答题】孔明同学参加暑假军事训练的射击成绩如下表:射击次序第一次第二次第三次第四次第五次成绩(环)9 8 7 9 6则孔明射击成绩的中位数是()A. 6B. 7C. 8D. 9【答案】C【分析】将数据从小到大排列,根据中位数的定义即可得出答案.【解答】将数据从小到大排列为:6,7,8,9,9,中位数为8.选C.13.【答题】如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:2009年恩施州各县市的固定资产投资情况表:(单位:亿元)单位恩施市利川县建始县巴东县宜恩县咸丰县来凤县鹤峰县州直投资额60 28 24 23 14 16 15 5下列结论不正确的是()A. 2009年恩施州固定资产投资总额为200亿元B. 2009年恩施州各单位固定资产投资额的中位数是16亿元C. 2009年来凤县固定资产投资额为15亿元D. 2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°【答案】D【分析】利用建始县的投资额÷所占百分比可得总投资额;利用总投资额减去各个县市的投资额可得来凤县固定资产投资额,再根据中位数定义可得2009年恩施州各单位固定资产投资额的中位数;利用360°×可得圆心角,进而得到答案.【解答】解:A、24÷12%=200(亿元),故此选项不合题意;B、来凤投资额:200-60-28-25-23-14-16-15-5=15(亿元),把所有的数据从小到大排列:60,28,24,23,16,15,15,14,5,位置处于中间的数是16,故此选项不合题意;C、来凤投资额:200-60-28-25-23-14-16-15-5=15(亿元),故此选项不合题意;D、360°×=108°,故此选项符合题意;选D.14.【答题】端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是()A. 22B. 24C. 25D. 27【答案】B【分析】根据中位数的定义把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:20,22,22,24,25,26,27,最中间的数是24,则中位数是24;选B.15.【答题】如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是()A. 27B. 29C. 30D. 31【答案】C【分析】根据中位数的定义求解即可.【解答】将这组数据从小到大排列为;26,27,30,31,31,∴这组数据的中位数是30,选C.16.【答题】某中学篮球队13名队员的年龄情况如下:则这个队队员年龄的中位数是()A. 15.5B. 16C. 16.5D. 17【答案】B【分析】根据中位数的定义,把13名同学按照年龄从小到大的顺序排列,找出第7名同学的年龄就是这个队队员年龄的中位数.【解答】根据图表,第7名同学的年龄是16岁,∴,这个队队员年龄的中位数是16.选B.17.【答题】数据5,7,5,8,6,13,5的中位数是()A. 5B. 6C. 7D. 8【答案】B【分析】将该组数据按从小到大排列,找到位于中间位置的数即可.【解答】将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.选B.18.【答题】我们知道:一个正整数p(p>1)的正因数有两个:1和p,除此之外没有别的正因数,这样的数p称为素数,也称质数.如图是某年某月的日历表,日期31个数中所有的素数的中位数是()A. 11B. 12C. 13D. 17【答案】C【分析】先根据素数的定义找出日历表中的素数,然后根据中位数的概念求解即可.【解答】根据素数的定义,日历表中的素数有:2、3、5、7、11、13、17、19、23、29、31,共11个,∴这组数据的中位数是13.选C.19.【答题】王先生在“六一”儿童期间,带小孩到凤凰古城游玩,出发前,他在网上查到从5月31日起,凤凰连续五天的最高气温分别为:24,23,23,25,26(单位:℃),那么这组数据的中位数是()A. 23B. 24C. 25D. 26【答案】B【分析】根据中位数的求法,将5个数字从大到小排列,找出中间的数即为中位数.【解答】将5个数字从大到小排列为23、23、24、25、26,最中间为24.∴中位数为24.选B.20.【答题】数据2,-l,0,1,2的中位数是()A. 1B. 0C. -1D. 2【答案】A【分析】将数据按从小到大依次排列,由于数据有奇数个,故中间位置的数即为中位数.【解答】解:将数据2,-l,0,1,2按从小到大依次排列为-l,0,1,2,2,中位数为1.选A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
17
(2)因为x1+2 x2=4,所以 x1+x2=8, 所以x1+1+2 x2+5=7, 即 x1+1 与 x2+5 的平均数是 7.
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
18
14. 某校举行元旦文艺演出,由参加演出的 10 个班
(1)你对 5 号和 9 号评委给分有何想法? (2)该节目的平均得分是多少?此得分能否反映该 节目的水平? (3)如果去掉一个最高分和去掉一个最低分后再计 算平均数应是多少?后一平均数能反映该节目的实际水 平吗?
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
20
解:(1)5 号给分太高,9 号给分偏低; (2)x=7.35,不能准确反映; (3)此时的平均分约为 7.16,能反映实际水平.
组 10 名学生与全班平均分的差分别为:3,0,-2,-4,
-5,9,6,11,9,-7,则这个小组的平均成绩是( D )
A.86 分
B.88 分
C.89 分
D.90 分
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
5
4. 勇士队的杜兰特当选为 2016-2017 赛季 NBA 季 后赛 MVP,下表是他总决赛 5 场比赛的得分:
23
解:(1)由图可得,2016 年机动车的拥有量为 3.40 万辆,人民路路口堵车次数的平均数为:
54+82+86+98+1824+156+196+164=120(次), 学校门口堵车次数的平均数为: 65+85+121+144+8 128+108+77+72=100(次);
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
22
根据统计图,回答下列问题: (1)写出 2016 年机动车的拥有量,分别计算 2010 年~2017 年在人民路路口和学校门口堵车次数的平均 数. (2)根据统计数据,结合生活实际,对机动车拥有量 与人民路路口和学校门口堵车次数,说说你的看法.
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
第六章 数据的分析 6.1 平均数、中位数、众数
6.1.1 平均数 第1课时 平均数
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
1
算术平均数:日常生活中,我们常用平均数表示一 组 xn,数其据平的均“平数均是水x平=”n1.(x一1+般x地2+,x对3+于…n+个x数n).x1,x2,x3,…,
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
11
9. 近年来,遵义市民汽车拥有量持续增长,2016 年至 2018 年市民汽车拥有量依次约为:11,13,15,19, x(单位:万辆),这五个数的平均数为 16,则 x 的值为_2_2__.
10. 一个班有 50 名同学,期末考试数学平均分是 82 分,其中 22 名女同学的平均分约是 80 分,男同学的平 均分约是_8_4__分(结果保留整数).
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
21
15. (2018·绍兴)为了解某地区机动车拥有量对道路 通行的影响,学校九年级社会实践小组对 2010 年~2017 年机动车拥有量、车辆经过人民路路口和学校门口的堵 车次数进行调查统计,并绘制成下列统计图:
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
场次 1 2 3 4 5 得分 38 33 31 35 39 则这 5 场比赛得分的平均数是__3_5_.2____.
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
6
5. (2018·柳州)一位同学进行五次投实心球的练习, 每次投出的成绩如表:
投实心球序次 1 2 3 4 5
成绩(m) 10.5 10.2 10.3 10.6 10.4 求该同学这五次投实心球的平均成绩.
24
(2)随着人民生活水平的提高,居民的汽车拥有量明 显增加,同时随着汽车数量的增加,也给交通带来了压 力,堵车次数明显增加,学校路口学生通过次数较多, 政府和交通部分加强重视,进行治理,堵车次数明显好 转,人民路口堵车次数不断增加,引起政府重视,加大 治理,交通有所好转.
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
25
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
12
11. 已知 3,7,4,a 四个数的平均数是 5;18,9, 7,a,b 五个数的平均数是 10,则 a=_6_,b=_1_0__.
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
13
12. 从 A、B 两麦地分别抽取 10 株麦苗,测得它们 的株高分别如下:(单位:cm)
3
2. 已知一组数 a1,a2,a3,a4,a5 的平均数为 8,则
另一组数据 a1+10,a2-10,a3+10,a4-10,a5+10 的平均数为( C )
A.6
B.8
C.10
D.12
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
4
3. 在一次数学测试中,全班平均分为 88 分,某小
各推出 1 名担任评委,每个节目演出后的得分取各个评
委所给分的平均数,下面是对某班一个节目各评委给出
的分:
评委号数 评分 评委号数 评分
1
7.20
6
7.30
2
7.25
7
7.20
3
7.00
8
7.10
4
7.10
9
6.20
5
10.00
10
7.15
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
19
xB=110×(82+84+85+89+79+80+91+89+79+ 74)=83.2(cm),
因为 xA>xB,所以 A 麦田麦苗长得高.
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
15
13. (1)已知 2,4,2x,4y 的平均数是 5;5,7,4x, 6y 的平均数是 9,求 x2+y3 的值.
C.87 分
D.84 分
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
10
8. (2018·株洲)睡眠是评价人类健康水平的一项重要 指标,充足的睡眠是青少年健康成长的必要条件之一, 小强同学通过问卷调查的方式了解到本班三位同学某天 的睡眠时间分别为 7.8 小时,8.6 小时,8.8 小时,则这 三位同学该天的平均睡眠时间是_8_._4_小__时____.
A:76,90,84,86,81,87,86,82,85,83 B:82,84,85,89,79,80,91,89,79,74分让我在这里遇见你,遇上你是我的 缘
14
解:xA=110×(76+90+84+86+81+87+86+82+ 85+83)=84(cm),
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
7
解:该同学这五次投实心球的平均成绩为: 10.5+10.2+105.3+10.6+10.4=10.4. 故该同学这五次投实心球的平均成绩为 10.4 m.
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
8
6. (2018·淮安)若一组数据 3,4,5,x,6,7 的平均
数是 5,则 x 的值是( B )
A.4
B.5
C.6
D.7
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
9
7. 一个班 40 人,数学老师某一次统计这个班的数
学平均成绩为 85 分,在复查时发现漏记了一个学生的成
绩 80 分,那么这个班的实际平均成绩应为( C )
A.83 分
B.85 分
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
2
知识点 平均数及其应用
1. 我省某市五月份第二周连续七天的空气质量指
数分别为:111,96,47,68,70,77,105,则这七天
空气质量指数的平均数是( C )
A.71.8
B.77
C.82
D.95.7
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
(2)如果 x1 与 x2 的平均数是 4,求 x1+1 与 x2+5 的 平均数.
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
16
解:(1)因为 2,4,2x,4y 的平均数是 5, 所以 2+4+2x+4y=5×4,即 x+2y=7.① 因为 5,7,4x,6y 的平均数是 9, 所以 5+7+4x+6y=9×4,即 2x+3y=12.② 解由①②构成的二元一次方程组,可得xy==23., 所以 x2+y3=32+23=17.