证据推理与模型认知
关于证据推理与模型认知的一些思考

关于证据推理与模型认知的一些思考证据推理是一种通过搜集、分析和评估各种证据来推断出某个事实或结论的过程。
证据推理是科学研究、法律判断、历史研究等领域中重要的思维方法。
在日常生活中,我们也常常需要通过证据推理来做出决策或判断。
证据推理的过程中,我们需要搜集尽可能多的证据,并对这些证据进行全面的分析和评估。
在搜集证据时,我们可以通过观察、调查、实验等方法来获取相关的信息。
在分析和评估证据时,我们需要考虑证据的可靠性、权威性和相关性等因素,以确定证据的有效性和可信度。
模型认知是指在认知过程中使用心理模型来理解和解决问题的思维方式。
模型是对问题的一种简化和抽象,通过模型我们可以理清事物之间的关系,揭示事物之间的规律。
使用模型进行思考和推理可以帮助我们更加清晰地理解问题的本质和解决方式。
证据推理与模型认知在一定程度上是相互关联的。
证据推理需要依赖具体的证据和数据来进行推断,而模型认知可以提供一种思考问题的框架和理论基础,帮助我们更好地理解和解释证据。
在进行证据推理的过程中,我们可以运用模型来帮助我们整理和分析证据,从而得出明确的结论。
模型可以引导我们从不同角度和多个维度来评估证据,从而避免片面和主观的偏见。
通过模型认知,我们可以将证据归类、归纳和分类,揭示事物之间的逻辑和关联,进而推断出结论。
模型认知也需要依赖证据推理来验证和修正模型。
在构建模型时,我们需要对已有的证据进行充分的分析和评估,以确保模型的科学性和准确性。
通过证据推理,我们可以发现模型中的不足或错误,并及时进行修正和改进。
在实际应用中,证据推理和模型认知都有其独特的优势和局限性。
证据推理强调实证的数据和事实,能够提供具体的证据和信息,有助于我们做出准确和可靠的判断。
而模型认知则更注重理论和抽象,可以提供一种更深入和综合的思维方式,有助于我们更好地理解问题的本质和规律。
证据推理和模型认知也存在一些共同的挑战和难点。
证据推理和模型认知都需要依赖于有效的数据和信息,但现实世界中的数据常常存在不完整和不准确的情况,这对于推理过程的准确性和可靠性构成了一定的挑战。
证据推理与模型认知

从高中化学核心素养的构建来看,证据推理和模式建构是文化基础维度下科学精神素养的理性思考的两个基本点。
通过对高中化学课程的研究,要求学生能够解释证据与结论之间的关系,确定形成科学结论所需的证据和寻找证据的途径;能够根据材料及其变化的信息,抽象总结和构建模型,以及运用模型思维理解材料质量及其变化的一般规律[2]。
6目前,许多教师设计了基于证据的课堂教学推理和模式认知,反映了大多数化学教师对化学核心素养教学建设的积极态度;在研究这些教师的成绩的过程中,笔者对化学核心素养的本义进行了分析和比较。
现在,我将把这些想法提供给大家参考和交流。
1没有证据在科学探究过程中,实验事实与待验证猜想之间存在三种逻辑关系:①可以证明是正确的;②可以证明猜想是错误的;③猜想不能被证明。
可以说,前两个实验事实是要证明的猜想的证据(在第一种关系中,实验事实是要验证的猜想的积极证据,在第二种关系中,实验事实是对要验证的猜想的否定。
证据),不能说第三条证据是要证实的猜想的证据,也就是说,它不是证据。
例如,已知溶液中只有一种氯化物溶质;假设溶质为BaCl2。
①如果在溶液中加入白色的酸液滴,则会使溶液中的硝酸盐滴不溶解,如果实验事实是在溶液中加入1-2滴Na2SO4溶液,溶液中没有白色沉淀,则推测为负证据;③但如果实验事实是在溶液中加入1-2滴AgNO3溶液会导致白色沉淀,那么这不是投机的证据,勘探活动必须重新设计。
2逆向推理它可以解释证据与结论之间的关系,不仅包括证据推理中的结论,还包括结论逆向推理所需的证据。
强调逆向推理的原因之一是科学探究中运用了两个推理方向:逆向推理是从猜想中推断出必要的证据,设计实验收集证据;正推理用于推断猜想是否属实,根据实验得出结论和结论。
其次,在解决问题的过程中,我们还需要运用两个方向的推理。
例如,在有机合成的过程中,我们经常使用逆向推理思维。
三是逆向推理具有发散性思维的特点。
不同程度的分歧会导致不同的证据和设计实验的方向。
浅谈高中化学学科核心素养“证据推理和模型认知”的培养

浅谈高中化学学科核心素养“证据推理和模型认知”的培养【摘要】竞争越来越激烈的今天,人们把目光投向了“教育”,投向了培养核心素养,课堂是落实核心素养的必经之路,对化学等带有抽象概念的理科而言,探究课堂上怎么落实学科核心素养是越来越多的学者在讨论的话题。
《普通高中化学课程标准(征求意见稿)》发布了适合学生全面发展的高中化学教学目标体系,从“宏观辨析与微观探析”,“变化观念与平衡思想”,“证据推理与模型认知”,“科学探究与创新意识”,“科学精神与社会责任”五个维度阐释了培养化学核心素养的具体表现目标。
本文谈高中化学学科核心素养从“证据推理与模型认知”角度的培养。
【关键词】化学学科核心素养证据推理模型认知关联看法化学学科核心素养核心素养主要指学生应具备的,能够适应终身发展和社会发展需要的必备品格和关键能力。
学科核心素养是实现核心素养的着落点。
化学作为一门学科,化学核心素养的培养体现了学科核心素养的功能。
化学学科核心素养不同于化学素养,是通过化学课程的学习形成的关键能力和必备品格。
二、证据推理证据推理是学生通过证据的推理,让学生具有证据意识,通过收集各种证据,对化学物质的组成,结构,性质以及变化规律提出提出假设,分析并推理,证实原来的假设,了解论点和结论之间的关系,并研究对象的本质特征的重要途径[1]。
证据是事物本质特征有关的可靠性材料,推理是进一步的判断,有效选择。
三、模型认知模型指教与学的过程中对知识的一种简单描述,从教学目标有关的知识点开始找出本质有关的要点,形成内在联系,通过模型可以发挥逻辑思维能力,从而反映和描述实际问题。
模型认知可以定义为在已获得的感性认识基础上,把思维流程化,理想化,从而归纳和整理有关知识点,帮助学生短时间内找出规律,掌握抽象的概念,理论知识和现象,从而找出适合自己的思维模式的过程[2]。
如今对学生建立模型意识和能力的要求越来越高,数字化实验等各种手段弥补了传统教学方式中的不足,模型认知可以帮助从简单的方法开始出发解决问题。
从三个角度建模,提升证据推理与模型认知素养——以化学平衡三道典型例题为例

从三个角度建模,提升证据推理与模型认知素养——以化学平衡三道典型例题为例摘要:化学平衡的内容较为抽象,学生很难理解透彻。
通过选取化学平衡的三道典例,依据证据推理和模型认知的素养水平的三个层次,分别从生活事实、宏观与微观结合和模型和原型的关系三个角度建模,利用思维导图将问题的解决过程可视化,提升证据推理与模型认知素养。
关键词:化学平衡;建模;证据推理;模型认知“一核四层四翼”的高考评价体系明确了必备知识、关键能力、学科素养、核心价值“四层”考查内容,可见学科素养成为一项重要的考查内容。
化学平衡作为化学的主干知识,是高考必考的内容。
这部分的内容虽然抽象难懂,但是是培养学生证据推理与模型认知的重要素材。
有些教师在讲解习题的时候,殊不知其实质是在引导学生进行“问题模型求解”建模的过程,导致学生很难理解透彻。
笔者通过选取了化学平衡的三道典例,分别从生活事实、宏观与微观的结合、模型与原型的关系三个角度建模,利用思维导图将问题的解决过程可视化,提升证据推理与模型认知素养。
一、从生活事实建模化学是一门来源于生活,又服务于生活的学科。
化学知识可以用来解释生活中的现象,生活中的现象又可以用来验证化学知识。
证据推理与模型认知素养中素养水平1指出:能从物质及其变化的事实中提取证据,能将化学事实和理论模型之间进行关联和合理匹配。
[1]典例1 在一定温度、恒容下,下列叙述不是可逆反应A(g)+4B(g)2C(s)达到化学平衡的标志的是()A.单位时间消耗amol A,同时生成4amol BB.气体的密度不再变化C.混合气体的总压强不再变化D.气体的平均相对分子质量不再变化解析:根据化学平衡的定义可知,达到化学平衡状态的标志可归纳为两种模型:1、v正=v逆;2、变量不变。
A选项可用v正=v逆这种模型解决,BCD选项可用“变量不变”这种模型解决。
B选项根据,其中m是变量,V是定值,可知密度是个变量,所以B选项是反应达到化学平衡状态的标志。
基于“证据推理与模型认知”的核心素养培养的案例研究

基于“证据推理与模型认知”的核心素养培养案例研究——以《离子反应》为例随着高考从“知识立意”走向“能力立意”以及社会对人才的综合素养要求越来越高,核心素养渐渐成为热门词汇。
2016年,关于《中国学生发展核心素养》一文就提出“将根据不同学年阶段学生及课程的特点制定出具有一定操作性的学生核心素养结构框架”;其后,2017年又重新修订的高中阶段课程标准,在各学科新的课程标准中都渗透着学科核心素养,以高中化学来说,其核心素养包括:“宏观辨识与微观探析”、“变化观念与平衡思想”、“实验探究与创新意识”、“证据推理与模型认知”和“科学精神与社会责任”五大素养。
其中,“证据推理与模型认知”是化学核心素养的思维核心,它又被称为“上位素养”[1]。
因此,在教学实践中如何有效的培养学生的学科核心素养?特别是学习和掌握“证据推理与模型认知”这一上位素养成为摆在学校和教师面前的难题。
一、证据推理和模型认知的概念及辩证关系什么是“证据推理”?从概念上来说,“证据推理”是基于一定证据的推理,它主要通过分析收集的数据(或证据)对结论做出逻辑推理。
但这里的推理并非完全正确,所以需要相关的实验进一步验证它。
在化学学科教学过程中,这一过程主要表现为:学生根据所收集到的数据或观察到的实验现象,对物质的结构或性质等做出预定的假设,再通过相关的实验来检验真伪,并在这个过程中获取相关的化学知识。
狭义上来说,“模型认知”是指人们对于“模型”的认识与理解,这里的模型多指客观实物模型。
但在化学学科中,模型可分为实物模型和非实物模型大类别。
比如常见的以公式或方程等用数学语言描述的模型,就属于实物模型的一种。
而像用文字语言描述的语义模型或者用二维、三维坐标系描述的数学图像模型,则属于非实物模型的范畴。
[2]在化学核心素养培养中,想要出色的完成教学任务,“证据推理”与“模型认知”缺一不可,前者是后者的认知基础,后者是对前者的进一步完善和验证,两者相辅相成辩证统一。
化学学科核心素养之证据推理与模型认知在高中教学中的培养探析

化学学科核心素养之 "证据推理与模型认知 "在高中教学中的培养探析摘要:化学是高中学习内容的重要组成部分,且早于2014年教育部就提出学生发展核心教育素养体系,因此发展化学学科核心素养是教育者的重要使命,高中阶段亦不容小视。
化学学科核心素养分为五个维度,其中维度之一的“证据推理与模型认知”是化学学科核心素养关键所在,属于思维核心。
世界万物皆是变化的,化学学科是我们认识世界了解世界的重要途径。
只有更好地认识世界,才能更好地利用万物,其关于我们社会地发展,人类的进步。
因此要充分培养高中化学的学科素养——证据推理与模型认知,从而提高高中化学教学效果,提高学生的化学文化知识和道德素养,促进科技的发展。
关键词:化学学科;证据推理与模型认知;高中教学引言:在全球科技化的形势下,不断加强化学教育是无可厚非的,化学有助于我们了解世间万物,解释世间奥秘。
高中生作为家庭、祖国未来的希望,让其具备全方位的能力,是社会各界人士广泛关注和十分重视的问题。
因此在高中教育中除了让学生掌握基础化学文化知识的基础上外,着重培养其化学学科核心素养亦十分重要。
课堂既是知识传播的主要途径也是能力培养的重要平台,而核心素养“证据推理与模型认知”则是在化学知识基础上,培养学生推理分析和建立化学知识模型验证推理结论的有效方式,因此在化学课堂中培养学生的“证据推理与模型认知”素养有助于学生全面发展。
一、培养证据推理与模型认知,激发学生兴趣化学知识相对较为抽象,学习兴趣显得十分重要。
虽然教师都理解兴趣的重要性,但由于教学任务,教学资源和教师自身素养的限制和影响,在课堂上如何在有限的时间内充分调动学生学习积极性是个难题。
且在传统教学中,课堂中多以老师为主导,学生多以听讲为主,导致学生课堂参与感不高;教师也并不能真正了解学生掌握的状况。
最终形成局面则是教师对学生的积极性调动不够,学生对抽象知识实际掌握不牢固,仅停死记硬背。
教师只是一味的追求讲授更多的知识点,赶课程进度,或许可以完成教学任务,但这一想法是不正确的。
证据推理与模型认知

从高中化学核心素养的构建角度来看,证据推理和模型构建是文化基础维度下科学精神素养理性思考的两个基本点。
通过对高中化学课程的研究,要求学生能够解释证据与结论之间的关系,确定形成科学结论所需的证据以及寻找证据的方式;能够根据材料及其变化的信息进行抽象总结和构建模型,并通过模型思维来理解材料质量及其变化的一般规律[2]。
6.目前,许多教师基于证据设计了课时教学推理和模型认知,反映了大多数化学教师对化学核心素养教学建设的积极态度;在对这些教师的成就进行研究的过程中,我与对化学核心素养的设计者的化学核心素养的本义进行了分析比较。
现在,我将这些思想提供给您参考和交流。
1,无证据在科学探究的过程中,实验事实与要验证的猜想之间存在三种逻辑关系:①可以证明是正确的;②猜想可以证明是错误的;③该猜想无法得到证明。
可以说前两种实验事实是要证明的猜想的证据(在第一种关系中,实验事实是要验证的猜想的肯定证据,而在第二种关系中,实验事实是要验证的猜想的否定证据),而不能说第三个证据是要验证的猜想的证据,即非证据。
例如,已知溶液中只有一种氯化物溶质;推测是溶质是BaCl2。
①如果实验事实是:向溶液中加入1-2滴Na2SO4溶液将导致白色沉淀,然后向溶液中加入1-2滴硝酸将不会溶解白色沉淀物,则事实是猜想的积极证据;相反,如果实验事实是通过向溶液中加入1-2滴Na2SO4溶液,溶液中没有白色沉淀,则该事实是推测的负面证据;③但是,如果实验事实是向溶液中加入1-2滴AgNO3溶液会导致白色沉淀,那么这不是推测的证据,必须重新设计勘探活动。
2,逆向推理它可以解释证据与结论之间的关系,不仅包括证据推理中的结论,还包括结论逆向推理中所需的证据。
强调反向推理的原因之一是在科学探究中使用了两个推理方向:反向推理用于从猜想和设计实验中推断所需的证据以收集证据;并运用积极推理来推断该猜想是否成立,并根据实验获得的结论得出结论。
其次,在解决问题的过程中,我们还需要使用两个推理方向。
关于证据推理与模型认知的一些思考

关于证据推理与模型认知的一些思考在现代科学中,证据推理和模型认知是两个核心概念。
证据推理是指将已有的数据和证据结合起来,通过逻辑思考和统计方法得出结论,以此来支持或反驳某种理论或假设。
模型认知则是指科学家们通过构建和验证不同的模型,来解释复杂的自然现象,并尝试更好地理解自然规律。
这两个概念在科学研究中起着至关重要的作用,为研究者提供了实现科学进步的关键方法。
证据推理的本质是把问题拆分成更小更容易解决的部分,并逐一寻找证据和数据,以找到最优解。
在推理的过程中,科学家们通常会采用区分现象和因果关系的方法,从而通过寻找可重复性和相关性,验证某个特定的假设是否成立。
同时,在这个过程中,科学家们常常会面对不确定性和不完备性。
因此,他们需要密切关注不同证据之间的相互关系,并不断分析和比较不同假设的合理性,以此来发现可能的局限和错误。
相比之下,模型认知更关注底层的原理和机制,并试图使用可观测现象的模拟和预测来验证和调整模型。
模型通常是基于现有知识和数据,构建的描述自然现象的复杂理论。
构建模型的过程需要科学家具备一定的技能和经验,并严格遵守科学原则和理论框架。
在构建模型的过程中,科学家们通常会使用不同的方法,如计算机建模和数学公式推导等,以便确保所建立的模型能够真正反映自然现象。
同时,科学家们还需要不断检查和修改自己的模型,以确保其与实际观测相符合。
在现代科学中,证据推理和模型认知虽然有不同的方法,但它们共同也面临许多相似的复杂挑战。
其中最重要的挑战就是不确定性、可重复性和数据质量。
这些因素使得科学家们不得不时刻保持谨慎的态度,并注意到互相关联的不同证据数据之间的重要关系。
此外,不同科学家之间的不同方法和目标也可能导致分歧和争议。
这些挑战在科学领域中是不可避免的,只有通过相互协作和开放性的思维,以及高质量和正确性的证据和数据,才能推动科学的持续发展。
总之,证据推理和模型认知是现代科学中的核心概念。
它们提供了一个有序和可重复的方式,去探索自然现象,并解答人类最本质的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证据推理与模型认知
“证据推理与模型认知”是化学学科学习乃至科学研究中要求学习者思想上需要建立的一个强大武器。
“宏观辨识与微观探析”是学科特点决定的对学习基本的要求。
“变化观念与平衡思想”是对学习者思想观念上的一种更深入的要求。
“证据推理与模型认知”是对学习者进入更高级层次,提升研究性学习能力以及独立思考、独立分析问题能力的一种素养要求。
首先谈谈对“证据推理”的理解。
“证据”就是要求学生具有获取证据、筛选证据的能力。
先说证据的来源,学生获取证据来源可以是课本、课外书籍、网络资料、实验数据等等形式。
获取证据后,还要具有要筛选证据的能力。
尽量选择比较权威的证据,证据如果有冲突需要进一步分析比对择取其中较可靠的数据。
有些证据是正面证明的,同时注意也有些数据是证伪的,找寻逆向证伪的证据也是一个好的思路。
有了证据还要建立观点与证据之间的逻辑关联以进行推理。
一种方法是证据正向支持观点,此时最好多方证据从不同角度佐证观点。
另一种方法是逆向驳斥观点,这种证伪的方法往往很具杀伤力,但基于化学的学科特点证伪并非意味着观点完全错误。
例如,我们说浓度越大反应越快这一观点。
并不能因为某些极个别的反应完全推翻这一结论,这一点是化学科比较独特的一个特点。
很多观点或结论往往不能放之四海皆准。
只要能解决大部分问题,能解释说明绝大部分现象就不错了。
通过正向、逆向多方证据的反复推理论证我们即可了解一
个观点或理论的内涵与外延以及适用范围。
接下来谈谈模型认知问题。
模型含义是模式、样式的意思。
分为实物模型和思想模型等类型。
实物模型在化学上主要是用于分子结构、晶体结构等知识的认知与理解。
因为此类微观的化学知识具有看不见、摸不着及其抽象的特点,借助于实物模型(3d计算机模型也可归入此类,实际上实物模型的虚拟化)可以更好地理解、认识相关知识。
所以在此类教学中利用好实物模型,或教师制作精良的计算机3d模型、动画就非常有价值。
思想模型是指解决问题的一种思维方式,包括概念原理模型、数学模型、复合模型等类型。
模型认知对学生来讲是至关重要的,是建立学科理论框架的重要工作。
教学中应该下大力气解决一些最基本的模型的认知与建立。
模型认知教学主要包括以下几步:①模型初步认识,解决模型是什么的问题;②模型建立的证据,解决模型为什么的问题;③模型的运用,是理论联系实际,解决模型有啥用的问题;④模型的评价与重构,模型在运用过程中不可避免的会出现一些不适用的情况(尤其是化学学科),通过模型评价找出模型适用条件重构模型的内涵外延,甚至发展处高级的新模型。
模型认知教学对于学生形成科学、完善的学科理论至关重要。
所以教学中要下大力气解决。