第三章:剪切与挤压
合集下载
剪切和挤压

一、知识点
1、 了解剪切变形的特点
2、 掌握剪切实用计算 3、 掌握挤压实用计算
二、重点内容 1、 剪切实用计算 2、 挤压实用计算
本章主要内容
§3-1 剪切与挤压的概念 §3-2 剪切和挤压的强度计算
§3-1 剪切与挤压的概念
剪切的工程实例
剪切件简化如下图
铆钉连接
螺栓连接
销轴连接
平键连接
焊接连接
榫连接
§3-2 剪切和挤压的强度计算
一.剪切的强度计算
F F
F
m
m
F
剪切受力特点:作用在构件两侧面上的外 力合力大小相等、方向相反且作用线很近。
和板的材料相同,试校核其强度。
解:1.板的拉伸强度
2.板的剪切强度
Fs F 50103 A 4a 4 0.08 0.01
15.7106 15.7MPa [ ]
FN F A (b 2d )
50 103
(0.15 2 0.017) 0.01
43.1106 43.1MPa [ ]
变形特点:位于两力之间的截面发生相 对错动。
假设切应力在剪切面(m-m截面)
上是均匀分布的
F
m
m
FS
FS m
m
F
得切应力计算公式: Fs
A
切应力强度条件: 常由实验方法确定
二.挤压的强度计算
F
假设应力在挤压面上是均匀分布的
F
得实用挤压应力公式
bs
Fbs Abs
*注意挤压面面积的计算
挤压强度条件:
bs 常由实验方法确定
切应力强度条件:
挤压强度条件: 塑性材料: 脆性材料:
为充分利用材料,切 应力和挤压应力应满足
1、 了解剪切变形的特点
2、 掌握剪切实用计算 3、 掌握挤压实用计算
二、重点内容 1、 剪切实用计算 2、 挤压实用计算
本章主要内容
§3-1 剪切与挤压的概念 §3-2 剪切和挤压的强度计算
§3-1 剪切与挤压的概念
剪切的工程实例
剪切件简化如下图
铆钉连接
螺栓连接
销轴连接
平键连接
焊接连接
榫连接
§3-2 剪切和挤压的强度计算
一.剪切的强度计算
F F
F
m
m
F
剪切受力特点:作用在构件两侧面上的外 力合力大小相等、方向相反且作用线很近。
和板的材料相同,试校核其强度。
解:1.板的拉伸强度
2.板的剪切强度
Fs F 50103 A 4a 4 0.08 0.01
15.7106 15.7MPa [ ]
FN F A (b 2d )
50 103
(0.15 2 0.017) 0.01
43.1106 43.1MPa [ ]
变形特点:位于两力之间的截面发生相 对错动。
假设切应力在剪切面(m-m截面)
上是均匀分布的
F
m
m
FS
FS m
m
F
得切应力计算公式: Fs
A
切应力强度条件: 常由实验方法确定
二.挤压的强度计算
F
假设应力在挤压面上是均匀分布的
F
得实用挤压应力公式
bs
Fbs Abs
*注意挤压面面积的计算
挤压强度条件:
bs 常由实验方法确定
切应力强度条件:
挤压强度条件: 塑性材料: 脆性材料:
为充分利用材料,切 应力和挤压应力应满足
剪切与挤压

QP 0
Q=P
Q
P
5
剪力
(2)剪应力τ
剪切面上的剪应力分布是 比较复杂的,一般假定剪切应 力在截面上均匀分布: Q (a ) A 式中,A为剪切面面积。
P
P
P
P
(3)剪切强度条件
式中,[τ ]为许用剪应力
Q
A
P
Q A
(b )
塑性材料:[τ] =(0.6~0.8)[σ] ;脆性材料:[τ] =(0.8~1.0)[σ]
Pjy Pjy
挤压力和挤压面
8
挤压面的补充说明1:
jyLeabharlann P jy A jyjy
Pjy
挤压 和挤压面
A jy = d· t
1、若挤压接触面是圆柱面,如圆柱形的铆钉、销 钉、螺栓等的联接,则挤压面(有效挤压面)是 接触面(半个圆柱面)在垂直于总挤压力 Pjy 作用 线的平面上的投影,即过直径的平面。
6
P
P
QP
P P P
P
Q
A
P
P
P 2 P 2
QP 2
P
QP 2
图a 单 剪
图b 双 剪
在计算中要正确确定有几个剪切面。 图 a 只有一个剪切面,称为单剪; 图b有两个剪切面,称为双剪。
7
(4)挤压应力
工程计算中,假定挤压 应力 jy 在有效挤压面上均 匀分布。 P jy jy A jy
9
挤压面的补充说明2:
l h b
Ajy
hl Abs jy 2
2、若挤压接触面是平面,如键连接,则挤压面 (有效挤压面)就是该接触面。
10
(4)挤压强度条件
剪切和挤压

挤压强度条件:
bs
Fbs Abs
bs
塑性材料: 0.5 0.7 bs 1.5 2.5
脆性材料: 0.8 1.0 bs 0.9 1.5
材料力学
Fs F
A lb
bs
mm
材料力学
三.其它连接件的实用计算方法
焊缝剪切计算
l
有效剪切面
h
45
L
材料力学
本章小结
一、知识点
1、 了解剪切变形的特点
2、 掌握剪切实用计算 3、 掌握挤压实用计算
二、重点内容 1、 剪切实用计算 2、 挤压实用计算
材料力学
F
m
m
F
剪切受力特点:作用在构件两侧面上的外 力合力大小相等、方向相反且作用线很近。
变形特点:位于两力之间的截面发生相 对错动。
假设切应力在剪切面(m-m截面)
上是均匀分布的
F
m
m
FS
FS m
m
F
得切应力计算公式: Fs
A
切应力强度条件: Fs
A
常由实验方法确定
Fbs Abs
F cb
材料力学
bs 2
Fs A
4F
d 2
bs
Fbs Abs
F dh
为充分利用材料,切 应力和挤压应力应满足
F dh
2
4F
d 2
d 8h
材料力学
d
b
a
例1:图示接头,受轴向力F 作用。
已知F=50kN,b=150mm,δ =10mm, d=17mm,a=80mm,[σ ]=160MPa,
材料力学课件 第三章 剪切与挤压

铆钉直径 d =16mm,钢板的尺寸为 b =100mm,d =10mm,F = 90kN, 铆钉的许用应力是 [] =120MPa, [bs] =200MPa,钢板的许用拉应力
[]=160MPa. 试校核铆钉接头的强度.
d
d
F
F
第三章
d
F
剪切与挤压
d
F
F
b
F
第三章
F/4 F F/4
剪切与挤压
第三章
3.1 剪切与挤压的概念 剪切变形
剪切与挤压
螺栓
1.工程实例 (1) 螺栓连接
F
F 铆钉
(2) 铆钉连接
F F
第三章
(3) 键块联接
剪切与挤压
(4) 销轴联接
F
齿轮 m
键
d
轴
B
d1
A
d d1
F
第三章
2.受力特点 以铆钉为例
剪切与挤压
(合力) F
构件受两组大小相等、方向相
反、作用线相互很近的平行力系
F 2
挤压面
F
F 2
这两部分的挤压力相等,故应取长度 为d的中间段进行挤压强度校核. FS
FS
bs
F F 150MPa bs Abs td
故销钉是安全的.
第三章
D
剪切与挤压
思考题 (1)销钉的剪切面面积 A
h
(2)销钉的挤压面面积 Abs
d
F
第三章
D
挤压面
剪切与挤压
(3)校核钢板的拉伸强度 剪切面 F/4 F/4 F/4
F
F/4
F
+
3F/4 F/4
第三章
[]=160MPa. 试校核铆钉接头的强度.
d
d
F
F
第三章
d
F
剪切与挤压
d
F
F
b
F
第三章
F/4 F F/4
剪切与挤压
第三章
3.1 剪切与挤压的概念 剪切变形
剪切与挤压
螺栓
1.工程实例 (1) 螺栓连接
F
F 铆钉
(2) 铆钉连接
F F
第三章
(3) 键块联接
剪切与挤压
(4) 销轴联接
F
齿轮 m
键
d
轴
B
d1
A
d d1
F
第三章
2.受力特点 以铆钉为例
剪切与挤压
(合力) F
构件受两组大小相等、方向相
反、作用线相互很近的平行力系
F 2
挤压面
F
F 2
这两部分的挤压力相等,故应取长度 为d的中间段进行挤压强度校核. FS
FS
bs
F F 150MPa bs Abs td
故销钉是安全的.
第三章
D
剪切与挤压
思考题 (1)销钉的剪切面面积 A
h
(2)销钉的挤压面面积 Abs
d
F
第三章
D
挤压面
剪切与挤压
(3)校核钢板的拉伸强度 剪切面 F/4 F/4 F/4
F
F/4
F
+
3F/4 F/4
第三章
剪切与挤压

接触面上的压力称为挤压力,用 表示。由 挤压力引起的接触面上的表面压强,习惯上称为挤压 应力,用 表示。
图2.31 挤压的计算
➢注意:挤压与压缩的概念是不同的。压缩变形是指 杆件的整体变形,其任意横截面上的应力是均匀分 布的;挤压时,挤压应力只发生在ቤተ መጻሕፍቲ ባይዱ件接触的局部 表面,一般并不均匀分布。
➢与切应力在剪切面上的分布相类似,如图2.31(a) 所示,挤压面上挤压应力的分布也较复杂,如图 2.31(b)所示。
面积
,如图2.31(c)所示,因此有
➢应用名义挤压应力的概念,也可通过试验得到
材料的极限挤压应力u,除以适当的安全因数n,
即得材料的许用挤压应力
➢对于剪切问题,工程上有时会遇到剪切破坏。例如, 车床传动轴的保险销,当载荷超过极限值时,保险销 首先被剪断,从而保护车床的重要部件。而冲床冲剪 工件,则是利用剪切破坏来达到加工目的的。剪切破 坏的条件为
图2.31 挤压的计算
➢为了简化计算,工程中同样采用挤压的实用计算, 即假设挤压应力在挤压面上是均匀分布的,如图2.31 (c)所示。
图2.31 挤压的计算
➢按这种假设所得的挤压应力称为名义挤压应力。
当接触面为平面时,挤压面就是实际接触面;对
于圆柱状联接件,接触面为半圆柱面,挤压面面
积 。取为实际接触面的正投影面,即其直径面
只有一个剪切面的剪切称为单剪,如上述两例。 有两个剪切面的剪切称为双剪,如图2.29中螺栓所受 的剪切。剪切面上的内力仍然由截面法求得,它也 是分布内力的合力,称为剪力,用F表示,如图2.30 (a)所示。剪切面上分布内力的集度即为切应力τ, 如图2.30(b)所示。
图2.29 双剪实例
图2.30 剪力
图2.31 挤压的计算
➢注意:挤压与压缩的概念是不同的。压缩变形是指 杆件的整体变形,其任意横截面上的应力是均匀分 布的;挤压时,挤压应力只发生在ቤተ መጻሕፍቲ ባይዱ件接触的局部 表面,一般并不均匀分布。
➢与切应力在剪切面上的分布相类似,如图2.31(a) 所示,挤压面上挤压应力的分布也较复杂,如图 2.31(b)所示。
面积
,如图2.31(c)所示,因此有
➢应用名义挤压应力的概念,也可通过试验得到
材料的极限挤压应力u,除以适当的安全因数n,
即得材料的许用挤压应力
➢对于剪切问题,工程上有时会遇到剪切破坏。例如, 车床传动轴的保险销,当载荷超过极限值时,保险销 首先被剪断,从而保护车床的重要部件。而冲床冲剪 工件,则是利用剪切破坏来达到加工目的的。剪切破 坏的条件为
图2.31 挤压的计算
➢为了简化计算,工程中同样采用挤压的实用计算, 即假设挤压应力在挤压面上是均匀分布的,如图2.31 (c)所示。
图2.31 挤压的计算
➢按这种假设所得的挤压应力称为名义挤压应力。
当接触面为平面时,挤压面就是实际接触面;对
于圆柱状联接件,接触面为半圆柱面,挤压面面
积 。取为实际接触面的正投影面,即其直径面
只有一个剪切面的剪切称为单剪,如上述两例。 有两个剪切面的剪切称为双剪,如图2.29中螺栓所受 的剪切。剪切面上的内力仍然由截面法求得,它也 是分布内力的合力,称为剪力,用F表示,如图2.30 (a)所示。剪切面上分布内力的集度即为切应力τ, 如图2.30(b)所示。
图2.29 双剪实例
图2.30 剪力
剪切和挤压工程力学

成正比(图3-7)。这就是材料的剪切胡克定律
τ=Gγ
(3.5)
式(3.5)中,比例常数G与材料有关,称为材料的切变模量,是 表示材料抵抗剪切变形能力的物理量,它的单位与应力的单 位相同,常用GPa,其数值可由实验测得。一般钢材的G约为 80GPa,铸铁约为45GPa。
下一页 返回
3.3 剪切虎克定律 切应力互等定律
上一页 下一页 返回
3.3 剪切虎克定律 切应力互等定律
(τdy·dz)·dx= (τ´dy·dx)·dz
得
τ=τ´
(3.6)
为了明确切应力的作用方向,对其作如下号规定:使单元体 产生顺时针方向转动趋势的切应力为正,反之为负。则式 (3.6)应改写为
τ=-τ´
(3.7)
式(3.7)表明,单元体互相垂直两个平面上的切应力必定是同 时成对存在,且大小相等,方向都垂直指向或背离两个平面 的交线。这一关系称为切应力互等定理。
上一页 下一页 返回
6.2 剪切和挤压实用计算
当挤压面为平面时,挤压面面积即为实际接触面面积;当为 圆柱面时,挤压面面积等于半圆柱面的正投影面积,如图3-6
所示,Ajy=dl。
为了保证构件具有足够的挤压强度而正常工作,必须满足工
作挤压应力不超过许用挤压应力的条件。即挤压的强度条件
为
jy
F jy A jy
在承受剪切的构件中,发生相对错动的截面称为剪切面。剪
切面上与截面相切的内力称为剪力,用FQ表示 (图3-3d),其
大小可用截面法通过列平衡方程求出。 构件中只有一个剪切面的剪切称为单剪,如图3-3中的铆钉。
构件中有两个剪切面的剪切则称为双剪,拖车挂钩中螺栓所 受的剪切(图3-4)即是双剪的实例。
τ=Gγ
(3.5)
式(3.5)中,比例常数G与材料有关,称为材料的切变模量,是 表示材料抵抗剪切变形能力的物理量,它的单位与应力的单 位相同,常用GPa,其数值可由实验测得。一般钢材的G约为 80GPa,铸铁约为45GPa。
下一页 返回
3.3 剪切虎克定律 切应力互等定律
上一页 下一页 返回
3.3 剪切虎克定律 切应力互等定律
(τdy·dz)·dx= (τ´dy·dx)·dz
得
τ=τ´
(3.6)
为了明确切应力的作用方向,对其作如下号规定:使单元体 产生顺时针方向转动趋势的切应力为正,反之为负。则式 (3.6)应改写为
τ=-τ´
(3.7)
式(3.7)表明,单元体互相垂直两个平面上的切应力必定是同 时成对存在,且大小相等,方向都垂直指向或背离两个平面 的交线。这一关系称为切应力互等定理。
上一页 下一页 返回
6.2 剪切和挤压实用计算
当挤压面为平面时,挤压面面积即为实际接触面面积;当为 圆柱面时,挤压面面积等于半圆柱面的正投影面积,如图3-6
所示,Ajy=dl。
为了保证构件具有足够的挤压强度而正常工作,必须满足工
作挤压应力不超过许用挤压应力的条件。即挤压的强度条件
为
jy
F jy A jy
在承受剪切的构件中,发生相对错动的截面称为剪切面。剪
切面上与截面相切的内力称为剪力,用FQ表示 (图3-3d),其
大小可用截面法通过列平衡方程求出。 构件中只有一个剪切面的剪切称为单剪,如图3-3中的铆钉。
构件中有两个剪切面的剪切则称为双剪,拖车挂钩中螺栓所 受的剪切(图3-4)即是双剪的实例。
剪切与挤压

d。
。
解 (1)求螺栓所受的外力。因四个螺栓均匀分布,故每个螺栓受力相等。
设凸缘的螺栓孔传给螺栓的横向力为F(图c),取一片凸缘为研究对象(图
b),则
MO 0
M 4F D 0 2
F M 3103 10kN 2D 2150
(2)求内力。沿剪切面n-n(图c)将螺栓切开,由平衡方程可得
FS F 10kN
MPa
155.7MPa
[
]
3
F t(b
d)
110 103 10 (85 16)
MPa
159.5MPa
[
]
综上,接头安全。
图所示。
挤压强度条件为:
bs
Fbs Abs
bs
max
dd
Fbs
t
(b)
bs
(a)
(c)
计算挤压面积 Abs=dt 挤压面
[bs]—材料的许用挤压应力。
挤压面积 Abs 的确定方法
当接触面为平面时,如键联接,其接触面面积即为挤压面面积,即:
Abs
hl 2
M
当接触面为近似半圆柱侧面时(例如螺栓、销钉等联接),以圆柱 面的正投影作为挤压面积。
作用于挤压面上的力称为挤压力, 用Fbs表示,挤压力与挤压面相 互垂直。挤压力过大,可能引起 螺栓压扁或钢板在孔缘压皱或成 椭圆,导致连接松动而失效。
2.挤压的实用强度计算
工程中,假定Fbs均匀分布在计算 挤压面积Abs 上。挤压应力:
bs
Fbs Abs
Abc是挤压面在垂直于挤压力之平 面上的投影面积,名义挤压应力如
以螺栓(或铆钉)连接为例,连接处的失效形式有三种:
(1)剪切破坏:构件两部分沿剪切面发生滑移、错动。螺栓两侧在钢板接触力F 作用下,将沿m-m截面被剪断; (2)挤压破坏:在接触区的局部范围内,产生显著塑性变形。螺栓与钢板 在相互接触面上因挤压而使连接松动; (3)钢板拉断:钢板在受螺栓孔削弱的截面处被拉断。
。
解 (1)求螺栓所受的外力。因四个螺栓均匀分布,故每个螺栓受力相等。
设凸缘的螺栓孔传给螺栓的横向力为F(图c),取一片凸缘为研究对象(图
b),则
MO 0
M 4F D 0 2
F M 3103 10kN 2D 2150
(2)求内力。沿剪切面n-n(图c)将螺栓切开,由平衡方程可得
FS F 10kN
MPa
155.7MPa
[
]
3
F t(b
d)
110 103 10 (85 16)
MPa
159.5MPa
[
]
综上,接头安全。
图所示。
挤压强度条件为:
bs
Fbs Abs
bs
max
dd
Fbs
t
(b)
bs
(a)
(c)
计算挤压面积 Abs=dt 挤压面
[bs]—材料的许用挤压应力。
挤压面积 Abs 的确定方法
当接触面为平面时,如键联接,其接触面面积即为挤压面面积,即:
Abs
hl 2
M
当接触面为近似半圆柱侧面时(例如螺栓、销钉等联接),以圆柱 面的正投影作为挤压面积。
作用于挤压面上的力称为挤压力, 用Fbs表示,挤压力与挤压面相 互垂直。挤压力过大,可能引起 螺栓压扁或钢板在孔缘压皱或成 椭圆,导致连接松动而失效。
2.挤压的实用强度计算
工程中,假定Fbs均匀分布在计算 挤压面积Abs 上。挤压应力:
bs
Fbs Abs
Abc是挤压面在垂直于挤压力之平 面上的投影面积,名义挤压应力如
以螺栓(或铆钉)连接为例,连接处的失效形式有三种:
(1)剪切破坏:构件两部分沿剪切面发生滑移、错动。螺栓两侧在钢板接触力F 作用下,将沿m-m截面被剪断; (2)挤压破坏:在接触区的局部范围内,产生显著塑性变形。螺栓与钢板 在相互接触面上因挤压而使连接松动; (3)钢板拉断:钢板在受螺栓孔削弱的截面处被拉断。
剪切、挤压

解:1)取销钉为研究对象,画受 力图。
用截面 法求剪力
F FQ 2
20
2)按照剪切的强度条件设计销钉直径
FQ 50103 2 m 8.3310 4 m 2 A [ ] 60106 2 d 圆截面销钉的面积为 A 4 4A d
4 8.3310 m 3.14 32.6 mm
结 论
22
例5-3 某数控机床电动机轴与皮带轮用平键 联接如图示。已知轴的直径d=35mm,平键尺寸bhL =10mm8mm60mm,所传递的扭矩 M = 46.5Nm,键材 料为45号钢,其许用切应力为[ ]= 60MPa,许用挤 压应力为[bs ]=100MPa;带轮材料为铸铁,许用挤 压应力为[bs]=53MPa,试校核键联接的强度。
综述,整个键的联接强度足够。 挤压强度足够
25
三、强度计算实例 例5-1 已知钢板厚度 t = 10mm,其剪切极 限应力为0 = 300MPa。若用冲床钢板冲出直径 d = 25mm的孔,问需要多大的冲剪力F? 解:因为剪切面是钢板内被 冲床冲出的圆饼体的柱形侧 面,受力情况如图所示。 剪切面积为 F A d t 2510mm2
式中:[ ] — 材料的许用 切应力,单位为Pa或MPa。
17
二、挤压的强度条件 如图所示的螺 栓联接,钢板的圆孔可 能被挤压成长圆孔,或 螺栓的表面被压溃。因 此,除了进行剪切强度 计算外,还要进行挤压 强度计算。其强度条件 为
Fbs bs [ bs ] Abs
式中:[bs ] — 材料的许用挤压应力,单位MPa。 18
11
• 均匀分布假设:与切应力的实用计算一样,在工 程实际中也采用实用计算方法来计算挤压应力。 即假定在挤压面上应力是均匀分布的,挤压应力 在有效挤压面上均匀分布。则有 挤压应力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脆性
(1.7 - 2.0) t (0.9 -1.5) t
环境与建筑工程系
平键
第三章 剪切与扭转
键槽 传动轴 挤压面为平面: 皮带轮
b
F
hl Abs 2
l
F
h
环境与建筑工程系
挤压面计算面积的确定: 挤压面为平面时: 计算面积为实际挤压面面积
第三章 剪切与扭转
一、知识点 1、 了解剪切变形的特点 2、 掌握剪切实用计算 3、 掌握挤压实用计算 二、重点内容 1、 剪切实用计算 2、 挤压实用计算
环境与建筑工程系
(5)挤压强度校核
第三章 剪切与扭转
bs
Fbs pbL/ 2 pbL 2.0 0.06 0.15 50MPa [ bs ] A挤 td 2td 2 0.012 0.015
结论:该联接满足强度要求。
环境与建筑工程系
第三章 剪切与扭转
本章小结
挤压面为半个圆柱面时:
计算面积为实际挤压面在直径 平面上的投影面积
环境与建筑工程系
第三章 剪切与扭转
Fs F A lb
Fbs F bs Abs cb
环境与建筑工程系
第三章 剪切与扭转
Fs 4 F 2 A d Fbs F bs Abs dh
为充分利用材料,切 应力和挤压应力应满足
如果剪力 FQ 过大,杆 件将沿着剪切面被剪断 而发生剪切破坏。 为了使构件不发生剪切 破坏,需要建立剪切强 度条件。 螺栓
剪切面
环境与建筑工程系 ቤተ መጻሕፍቲ ባይዱ3-2
步骤: 一、剪切的强度计算
第三章 剪切与扭转
剪切和挤压的强度计算
(1)根据构件的受力,确定剪切面。
(2)利用截面法求出剪切面上的剪力 FQ。
(3)采用实用计算方法,计算剪切面上的切应力 。 假设剪切面上,切应力均匀分布(名义切应力)。
环境与建筑工程系
第三章 剪切与扭转
第三章 剪切与扭转
§3-1 剪切的概念 §3-2 剪切和挤压的强度计算
环境与建筑工程系 §3-1 剪切的概念
第三章 剪切与扭转
铆钉
螺栓
联接件的作用:在被联接件间传递载荷
环境与建筑工程系
铆钉
第三章 剪切与扭转
螺栓
环境与建筑工程系
第三章 剪切与扭转
剪切件简化如下图
F 10mm 2b[ bs ]
环境与建筑工程系
例题3
第三章 剪切与扭转
已知外载集度p=2MPa, 角钢厚t=12mm, 长 L=150mm, 宽b=60mm,螺栓直径 d=15mm. 许用切应力 为 [ ] 70MPa ,许用挤压应力为[ bs ] 120MPa ,校核 该联接强度。(忽略角钢与工字钢之间的摩擦力
bs 2
F 4F 2 2 dh d
d
8h
环境与建筑工程系
第三章 剪切与扭转
d
例1:图示接头,受轴向力F 作用。
已知F=50kN,b=150mm,δ =10mm, d=17mm,a=80mm,[σ ]=160MPa, [τ ]=120MPa,[σ bs]=320MPa,铆钉 和板的材料相同,试校核其强度。 解:1.板的拉伸强度
b F
F
L
L
环境与建筑工程系
解:剪切面如图所示。剪
第三章 剪切与扭转
F/2 F
切面面积为:
A Lb
由剪切强度条件:
剪切面
F/2
F /2 [ ] A Lb 由挤压强度条件:
FQ
F L 100mm 2b[ ]
bs
Fbs F /2 [ bs ] Abs b
结论:强度足够。
环境与建筑工程系
第三章 剪切与扭转
例题2 两矩形截面木杆,用两块钢板连接如图示。已知拉杆的 截面宽度 b=25cm,沿顺纹方向承受拉力F=50KN,木材的顺纹许 用剪应力为 [ ] 1MPa, 顺纹许用挤压应力为 bs ] 10MPa 。试 [ 求接头处所需的尺寸L和 。
环境与建筑工程系 铆钉连接
第三章 剪切与扭转 螺栓连接
销轴连接
环境与建筑工程系
F
第三章 剪切与扭转
F
剪切面
受力特点: 杆件受到两个大小相等,方向相反、作用线垂 直于杆的轴线并且相互平行且相距很近的力的 作用。 变形特点: 杆件沿两力之间的截面发生错动。 剪切面:发生错动的面。
环境与建筑工程系
剪切面
b
a
2.板的剪切强度
FN F A (b 2d ) 50 103 (0.15 2 0.017) 0.01 43.1 106 43.1MP a [ ]
Fs F 50103 A 4a 4 0.08 0.01 15.7 106 15.7MPa [ ]
(4)建立剪切强度条件。
FQ A
FQ A
环境与建筑工程系
如何确定许用切应力
第三章 剪切与扭转
对材料做剪切试验,可测得剪断时的切应力值 则该材料的许用切应力为
n n —— 剪切安全系数
b。
b
试验结果:
塑性 (0.75 - 0.8) t 脆性 (0.8 - 1.0) t
F
F/2 F
F/2
F
环境与建筑工程系
F
第三章 剪切与扭转
挤压面Abs:联接件与被连接件之间的 相互作用面。此处为半个圆柱面。 挤压力Fbs:联接件与被连接件之间的相 互作用力。此处Fbs=F。
如果挤压力过大,联接件或被联接件在挤压面附近产 生明显的塑性变形,使联接件被压扁或钉孔称为长圆形, 造成联接松动。称为挤压破坏。 在有些情况下,构件在剪切破坏之前可能首先发生 挤压破坏,所以需要建立挤压强度条件。
环境与建筑工程系
第三章 剪切与扭转
例题1 图示冲床的最大冲压力为400kN,被冲剪钢板的剪切极限 应力为 300MPa ,试求此冲床所能冲剪钢板的最大厚度 t。 已知 d=34mm。 F 冲头 t
钢板
d 冲模
环境与建筑工程系
解:剪切面是钢板内被冲头冲出 的圆柱体的侧面:
第三章 剪切与扭转
F t
A dt
冲孔所需要的冲剪力:
剪切面
F A 0
故
400103 A 0 300 F
1.33103 mm
1.33103 t 12.46mm d
环境与建筑工程系
二、挤压的强度计算
第三章 剪切与扭转
挤压:连接件和被连接件在接触面上相互压紧的现象。
F/2 F/2
环境与建筑工程系
解:解 (1)角钢承受的总载荷
第三章 剪切与扭转
F pbL
(2)每个螺栓的剪力
F pbL FQ 2 2 (3)剪切强度校核 FQ pbL/ 2 2 pbL 2 2.0 0.06 0.15 50.96MPa [ ] 2 2 2 A d / 4 d 3.14 0.015 (4)单个螺栓与角钢间的挤压力 F pbL Fbs 2 2
FQ
第三章 剪切与扭转
F
剪力
F
F
剪切面
构件剪切面上的内力可用截面法求得。 将构件沿剪切面假想地截开,保留一部分考虑其平衡。
FQ F
环境与建筑工程系
单剪切:只有一个剪切面。
第三章 剪切与扭转
剪切面
环境与建筑工程系
双剪切:有两个剪切面。
第三章 剪切与扭转
剪切面
剪切面
环境与建筑工程系
第三章 剪切与扭转
环境与建筑工程系
第三章 剪切与扭转
挤压面显著的塑性变形
环境与建筑工程系
(名义)挤压应力: bs
第三章 剪切与扭转
F
Fbs Abs
挤压面面积Abs:实际挤压面在直径平 面上的投影面积。此处Abs=2td。
挤压强度条件:
bs
bs : 许用挤压应力,由试验确定。
试验结果: 塑性
Fbs bs Abs
环境与建筑工程系
第三章 剪切与扭转
3.铆钉的剪切强度
d
b
a
Fs 4F 2F 2 2 A 2 πd πd 2 50103 2 π 0.017 110106 110MP a [ ]
4.板和铆钉的挤压强度
bs
Fbs F 50103 Abs 2d 2 0.017 0.01 147 106 147MP a [ bs ]