数学模型的优势和作用

数学模型的优势和作用
数学模型的优势和作用

数学模型在小学数学教学中的作用

结构

一、数学模型的简介。

二、建立数学模型的基本原则

三、建立数学模型的基本方法

四、小学数学中基本模型

五、模型在小学数学小数学习中的体现

六、小学数学教学中的小学教学中的实录

正文

一、数学模型的简介。

1 什么是数学模型?

数学模型,一般是指用数学语言、符号或图形等形式来刻画、描述、反映特定的问题或具体事物之间关系的数学结构。小学数学中的数学模型,主要的是确定性数学模型,广义地讲,一般表现为数学的概念、法则、公式、性质、数量关系等。数学模型具有一般化、典型化和精确化的特点。

2 数学模型的意义

(1)建立数学模型是数学教学本质特征的反映。

①数学模型是对客观事物的一般关系的反映,也是人们以数学方式认识具体事物、描述客观现象的最基本的形式。例如,舍去一切具体情景,行程问题的基本模型是:路程=速度×时间(s=vt),只不过在具体问题解决时,需要对这个模型进行一次构建还是多次构建的问题。因此,数学模型有效地反映了思维的过程,是将思维过程用语言符号外化的结果。显然,学生对数学模型的理解、把握与构建的能力,在很大程度上反映了他的数学思维能力、数学观念及意识。

②人们在以数学方式研究具体问题时,是通过分析、比较、判断、推理等思维活动,来探究、挖掘具体事物的本质及关系的,而最终以符号、模型等方式将其间的规律揭示出来,使复杂的问题本质化、简洁化,甚至将其一般化,使某类问题的解决有了共同的程序与方法。因此,可以说,数学模型不仅反映了数学思维的过程,而且是高级的、高效的数学思维的反映。

2建立数学模型是数学问题解决的有效形式。

①数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,就是将数学理论知识应用于实际问题的过程。并且,建立模型更为重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,在建立模型,形成新的数学知识的过程中,学生能更加体会到数学与大自然和社会的天然联系。因而,在小学数学教学中,让学生从现实问题情景中学数学、做数学、用数学应该成为我们的一种共识,只有这样,数学教学中的“问题解决”才有了相应的环境与氛围。

②现代数学观认为,数学具有科学方法论的属性,数学思想方法是人们研究数学、应用数学、解决问题的重要策略。而建立数学模型,研究数学模型,正是问题解决过程中的中心环节,是决定问题解决程度如何的关键。当年,瑞士大数学家欧拉面对哥斯尼堡“七桥问题”时,巧妙地将陆地看成点,将桥看成线,

把实际问题转化为点线相连的数学一笔画问题,通过对所构建的模型的研究,来最终解决问题,正是这一过程的绝好例证。

二、数学模型建构的基本原则

1、简化性原则——现实世界的原型都是具有多因素、多变量、多层次的比较复杂的系统,对原型进行一定的简化即抓住主要矛盾,数学模型应比原型简化,数学模型自身也应是“最简单”的。

2、可推导原则——由数学模型的研究可以推导出一些确定的结果,如果建立的数学模型在数学上是不可推导的,得不到确定的可以应用于原型的结果,这个数学模型就是无意义的。

3、反映性原则——数学模型实际上是人对现实世界的一种反映形式,因此数学模型和现实世界的原型就应有一定的“相似性”,抓住与原型相似的数学表达式或数学理论就是建立数学模型的关键性技巧。

三、数学模型建构的方法

1、建立数学模型应该让学生大胆的去猜想,再在直观的事例中进行具体地分析。

猜想是一种带有一定直觉性的比较高级的思维方式,对于探索或发现性学习来说,猜想是一种非常重要的思维方法。在教学生一些数学定理之前,我们不妨可以让他们根据已有的知识大胆地去猜想一下这个定理。

2、建构数学模型应该让学生在许多直观或贴近生活的实例中进行有效地综合比较。

综合是指学生在学习的过程中将数学现象、数学实例的分析情况进行整理组合,从而形成对这一类数学知识的总体认识。比较是对有关的数学现象、数学实例,区别它们的相同之处和不同之处。数学中的比较是多方面的,包括多少与大小的比较,相同与不同的比较,结构与关系的比较,定律与性质的比较等。比较的目的是认识事物的联系与区别,明确彼此之间存在的同一性与相似性,一边解释其背后的共同模型。

3、建构数学模型应该让学生从具体的实例中抽象出它们所具有的共性,再用数学的语言或符号等进行概括。

抽象是从许多数学实例或数学现象中,发现其共同的本质特点。而概括则是把抽象出来的共同点用数学的语言或符号等形式进行归纳和总结。

4、建构数学模型一定要让学生进行充分地验证,得出结论之后再进行有效的应用。

学生在初步得出结论时要给予足够的空间让学生进行充分地验证,在验证的过程中可能会发现新的现象,并在解决新问题的过程中,进一步完善自己的猜想,最终发现规律得出结论。并运用这个规律解决更多的实际问题。这不仅是一个主动学习的过程,更是发现学习、创新学习的过程。

5、建构数学模型应当以数学活动为主要形式。

由于数学思想方法不同于数学知识点,不是一个定义、概念就能代替的。有其活动形式和丰富的内涵。因此,应当在多种形式的数学活动中教授数学思想方

法。

(1)问题的生活实景——选择恰当的环境背景与相关材料引起讨论。

(2)问题的合理诠释——选择适当的数学形式,重新进行表述。

(3)问题的充分解决——展示数学思想方法形成的心理活动过程,主要通过认知对象或问题解决来进行。

(4)问题的数学模式——形成认知与思维的模式,使数学概念或模式游离于具体材料之外,进而促进学生数学观念(意识)的形成。

6、建构数学模型应当融多种思维方式于一体。

演示——概括的方法,同类比较——抽象的方法,直观思维、形象思维、抽象思维、逻辑思维等都应当在数学教学中不断地出现,使得教学过程经历:直观化——准模型化——模型化的过程。

数学模型化的思想与常见的数学知识教学不同,它应是:具体的生活实景——分析——抽象——数学描述——模型的建立——思想方法的形成——问题解决(或认识形成)——观念(意识)形成——解决更多的实际问题。

四、小学数学中的基本模型:

知识领域知识点应用举例

数与代数数的表示

自然数列:0,1,2,….

用数轴表示数

数的运算

a+b=c

C-a=b,c-a=b

a×b=c(a≠0,b≠0)

c÷a=b(a≠0),c÷b=a(b≠0)方程a+b=c

数量关系

时间、速度和路程:s=vt

数量、单价和总价;a=np

正比例关系;y/x=k

反比例关系:xy=k

用表格表示数量间的关系用图像表示数量间的关系

空间与图像用字母表示公式

三角形面积;s=1/2ab

平行四边形面积:S=ah

梯形面积:s=1/2(a+b)h

圆周长:C=2πr

圆面积:S=πr2

长方体面积:v=abc

正方体体积:V=a2

圆柱体积:v=Sh

圆锥体积:v=1/3sh

空间形式用图表表示空间和平面结构

统计与概率统计图和统计表用统计图表描述和分析各种信息可能性用分数表示可能性的大小

五、模型思想在小学小数数学教材中的体现

教材中的小数数学模型

借助直观模型和操作活动,帮助学生理解小数的意义掌握小数加减法。认识小数是学生对数的认识的又一次拓展,对学生来说,小数所表示的意义与他们的生活经验有一定的距离,所以,为了让学生真正理解小数的意义,教材提供了可供学生操作的素材。如“小数的意义”中,用直观模型说明小数与十进分数的关系。

1 利用将正方形切割成为“条,块的模型”,帮助学生理解十进分数与小数的关系,用几何模型表示小数。

2 借助计数器这个模型,介绍小数部分的数位以及数位之间的进率,让学

生进一步理解小数的意义,并练习小数的读写。

3 利用“数轴”这个数学模型进一步理解小数的意义。

4,利用“厘米、分米、米”之间是“十进制”关系,以此建立数学模型,可以直接用分母是10或100的分数或用小数表示,进一步体会小数的意义。

六,数学教学中一些运用“模型”思想的实录。

1,利用“小木条”来构建小数的意义。

在小数的意义教学中,有很多教师应用“分”这个概念,将一个实际的物体,平均分成几份,将小数这个代数内容几何化,利用学生熟悉的“长度”

概念进行形象化的教学。例如如下教学片段。

教学片段

师:我们先来思考一个问题:用1米的木条去测6分米的木条,你有什么方法吗?你说……,能把这根木条细化吗?

生:把1米的木条平均分成10份,标上刻度,每份是1分米。

师:能用分数表示吗?能用小数表示吗?

生?:能,1/10米,0.1米

教师根据学生的回答小结:米还可以用小数来表示就是0.1米。因为1/10米还不够1米,用米作单位不能写“1”,得不到一个整数,所以我们在整数部分写上“0”,后面加上一个点,点后面写上“1”,读作“零点一”,表示1/10米。

师:这下有办法量6分米的木条了吗?表示什么?

生:有,0.6米,表示十分之六。

师:能在这把尺子找到其它的小数吗?

生:0.2米、0.3米、0.5米……

问:这些分数的分母是多少?这些小数的小数点右面有几位?是几位小数?(学生回答)师:真聪明,4分米至7分米之间用小数如何表示?为什么?

生:0.4米?0.7米?0.3米。

师:0.3米,4与7之间有三个刻度,是3分米,表示十分之三分米,用0.3米表示。

教师小结:把1米平均分成10份,这样的一份或几份表示十分之几米,可以用像0.1米、0.3米等这些一位小数来表示。(板书:一位小数、十分之几)

2、构建两位小数的意义

师:出示2号木条35厘米,能用这根1米木条去测量吗?怎么办?

生:再把这根木条平均分成100份,标上刻度,每份是1厘米。

师:每份是几厘米?是几分之几米?用分数怎么表示?

师:能用分数和小数表示吗?

生:1/100米,0.001米。

师:如果是13份呢?是几分米?是几分之几米?用分数怎么表示?

生:13分米,13/100米,0.13米。

教师根据学生的交流小结:把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0.01、0.13这种两位小数来表示。(两位小数、百分之几)

2 利用“数位”这个数学模型,进行小数间比较的学习。

在学生最初学习比较两个数的大小,从最初的同数位比较大小,到不同数位比较大小,都是以“计数器”这个模具为学习基础。当利用“计数器”来比较数的大小这个模具深深的印在了学生的头脑之中,数位这个概念就深植学生的头脑之中。而小数比较大小大多数教师也是以这个数位模型为基础进行教学。

教学片段:

师:根据你的经验,能说说对于小数应该怎样比较大小吗?

学情预设:学生可能会把整数的大小比较的方法搬到小数上,但整数毕竟跟小数有所不同,因此比较的方法也是有细微的差别的。这里旨在引导学生对小数的大小比较的方法进行猜测。

师:用你们刚才的猜测,试着比较这两个小数的大小。(14.80>13.50)

师:你还能联系实际去比较吗?(14元8角大于13元5角)

师:谁还能举出一些小数来。

(学生举数,教师板书之)

师:请你们任选两个小数进行比较,不但要比较出谁大谁小,还要跟同桌说说你比较的方法。

设计意图:先组织学生根据已有知识经验进行猜测,再通过证明去验证猜测,最后让学生自己举小数进行比较大小,整个环节不仅可以落实学生对两个小数大小比较的知识建构,还让学生体验了从猜想到验证的学习过程,对其学习方法的形成具有一定的作用,同时让学生自己举出小数进行比较,更具开放性,学生情感的体验也是较好的。

3.多个数的大小比较

多媒体展示:上届艺术节独唱比赛得分情况

师:艺术节快到了,在去年的艺术节上,我们学校的同学表现非常棒,我们来看看他们在总决赛中的得分情况。

姓名成绩

小明 8.72分

小红 9.20分

小莉 9.85分

小军 9.25分

师:你能帮老师给他们排出名次吗?谁得了第一名?

(学生在练习纸上比较大小,并排序)

学情预设:学生的排序可能会有多种方案,比如依次写一个名次,再相应的写出选手的名字;按从小到大(从大到小)写出选手的名字;给选手标上序号,在把序号进行排序......这里要充分鼓励学生原创的符号表示方法,赞赏学生的独创性符号。

师:说说你的比较方法。

(学生叙述,老师适时在黑板上板书:先比较整数部分,整数部分相同,就比较小数部分)

师:刚才,同学们用自己的方法帮老师排出了他们的名次,有些同学的方法非常巧妙。如果要求从大到小排列,你会排吗?你会用什么符号呢?

学情预设:9.85>8.25>9.20>8.72

设计意图:学生对于从大到小或从小到大已经会采用“>”或“<”进行表示,这里让学生体会运用符号的简便性,以培养学生的符号感。

师:你们已经给小明、小红、小莉和小军排出了名次。(小莉第一,小军第二,小红

教学预设

课堂生成

第三,小明第四)

师:想一想,怎样比较小数的大小?

(学生叙述,老师适时补充,并注意引导语言表述的完整性和准确性)

归纳小结:比较小数的大小,先比较整数部分,整数部分大的数就大;如果整数部分相同就比较小数部分,先比较十分位,再比较百分位,依次比下去,哪位上的数大,那个数就大。

设计意图:通过小数的大小比较的各个环节的学习活动和思维的引导,让学生在观察比较中充分感知并经过独立思考与小组讨论的结合,让学生把自己的经验性认识内化为数学知识,建构小数的大小比较的方法。

数学模型应用问题(三)(含答案)

学生做题前请先回答以下问题 问题1:应用题的一般处理思路是什么? 问题2:应用题中建立数学模型常见的关键词和隐含数学关系有哪些? 数学模型应用问题(三) 一、单选题(共5道,每道20分) 1.今年我市水果大丰收,A,B两个水果基地分别收获水果380箱、320箱,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每箱40元和20元,从B基地运往甲、乙两销售点的费用分别为每箱15元和30元,现甲销售点需要水果400箱,乙销售点需要水果300箱. (1)设从A基地运往甲销售点x箱水果,总运费为W元,请用含x的代数式表示W,并写出x的取值范围.( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:一次函数的应用 2.(上接第1题)若总运费不超过18300元,且A地运往甲销售点的水果不低于200箱,试求出最低运费.( ) A.6000 B.7600 C.18200 D.11200 答案:C 解题思路: 试题难度:三颗星知识点:一次函数的应用 3.在“十一”期间,某公司组织318名员工外出旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租用甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人. (1)旅行社的租车方案有( ) A.1种 B.2种 C.3种 D.4种 答案:B 解题思路:

试题难度:三颗星知识点:一元一次不等式组的应用 4.(上接第3题)(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,则在租车方案中最少的租金为( ) A.5800元 B.6000元 C.6200元 D.3400元 答案:B 解题思路: 试题难度:三颗星知识点:一次函数的应用 5.(上接第3,4题)(3)旅行前,一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车恰好坐满,则旅行社的租车方案是( ) A.65座的1辆,45座的5辆,30座的1辆 B.65座的2辆,45座的3辆,30座的2辆 C.65座的3辆,45座的1辆,30座的3辆 D.65座的1辆,45座的4辆,30座的2辆 答案:B 解题思路:

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

数学建模算法分类

数学模型按照不同的分类标准有许多种类: 1.按照模型的数学方法分,有几何模型,图论模型,微分方程模型。概率模型,最优控制模型,规划论模型,马氏链模型。 2.按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型。 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。) 图像处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab来处理问题。) 数学建模方法 统计:1.预测与预报2.评价与决策3.分类与判别4.关联与因果 优化:5.优化与控制 预测与预报 ①灰色预测模型(必须掌握) 满足两个条件可用: a数据样本点个数少,6-15个 b数据呈现指数或曲线的形式 ②微分方程预测(备用) 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。(2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

浅谈数学模型在各个领域中的应用

浅谈数学模型在各个领域中的应用 发表时间:2018-05-02T11:10:12.163Z 来源:《科技中国》2017年11期作者:丁文[导读] 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 关键词:数学模型;数学建模;应用引言 数学是一种研究空间形式和数量关系的科学,它学科历史悠久,文化底蕴博大精深,如今发展迅速,在生产生活中发挥着重要的作用。然而,当今社会对数学的需求不只局限在数学理论,而更多是要求数学在实际应用中的作用,数学模型正是将理论知识与实践应用联系起来的桥梁。数学模型是通过运用数学理论和适当的数学工具、将复杂的实际问题不断简化的解题工具。数学建模的主要手段便是通过数学模型这一工具来快速解决实际问题。如今数学模型被应用于医学、生物、经济、金融等各个领域,取得了较好的经济效益和社会效益。 1.数学模型简介 1.1数学模型的定义 数学模型(Mathematical Model)是一种以解决实际问题为目的,运用数学语言和数学方法刻画出的数学结构。它利用数学的理论和方法分析和研究实际问题,并对实际的研究对象进行抽象、简化,进而利用数学知识解决现实生活中的问题。从另一种意义上来讲,它是一种将理论与实践紧密结合、并借此来解决各种复杂问题的最便捷的工具,对社会各个领域的发展都有重要意义。图1为数学建模流程图。 图1 数学建模流程 1.2模型分类 由于数学应用广泛,各领域对数学模型的要求各不相同,可根据不同的分类方法将数学模型分作许多种类。根据系统各量是否随时间的变化而变化可分为静态模型和动态模型,前者一般用代数方程式表达,后者则采用微分方程。分布参数模型和集中参数模型均用来描述动态特性,前者主要用偏微分方程表达,后者通过常微分方程来表达。上述各类用微分方程描述的模型都是连续时间模型,即模型中的时间变量是在一定区间内连续变化,与之相对的是离散时间模型,这是一种用差分方程描述的将时间变量离散化的数学模型。此外,还有根据变量间的关系是否确定区分的随机性模型和确定性模型;根据是否含有参数区分的参数模型和非参数模型;根据变量间的关系是否满足线性关系,是否满足叠加原理区分的线性模型和非线性模型,其中非线性模型中各量之间的关系不是线性的,不满足叠加原理,在某种情况下可转化为线性模型。 1.3数学建模 将实际问题进行抽象、简化,得到数学模型,然后对模型进行求解,再对模型的合理性进行分析、检验,最后将合理的模型应用到实际问题中,这便是数学建模。建立数学模型的过程,大体分为分析问题构建模型、运用数学方法数学工具求解、根据实际问题代入检验、应用于解决实际问题四个步骤,其中由于种种原因前三个步骤常常多次重复已求得最优解决方案。如今数学建模的应用很广,无论是在医学、军事、交通、经济、金融等较大课题,还是在日常计划、工作规划等较小事物中,都取得了较大的成就。 2.数学模型在各领域的应用 2.1数学模型在医学领域的应用

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学模型的分类有哪些

数学模型的分类有哪些 数学模型可以按照不同的方式分类,下面介绍常用的几种. 1.按照模型的应用领域(或所属学科)分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等. 2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等. 按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模. 3.按照模型的表现特性又有几种分法:

确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化. 线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的. 离散模型和连续模型指模型中的变量(主要是时间变量)取为离 散还是连续的. 虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法. 4.按照建模目的分:有描述模型、分析模型、预报模型、优化模

数学建模和计算机的重要性

数学建模与计算机的联系及重要性 摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。本文浅谈了数学建模与计算机在人类生产和生活中的重要性。 关键词:数学建模计算机重要性 当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。 一、数学建模与计算机息息相关 其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。例如下面有这样一道

题就是利用数学软件lingo 求解的。 例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大? 解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型 为: 目标函数 12max 200300z x x =+ 约束条件 1212100,120,160, 0,1,2. i x x x x x i ≤??≤??+≤??≥=? 编写LINGO 程序如下: MODEL: SETS: SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J; ENDSETS DATA: A=1,2 ; B=100,120; C=200,300; ENDDATA

数学建模感想

学习数学建模心得体会 这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。 这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。 数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案……这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

浅析数学建模的重要意义

浅析数学建模的重要意义 【摘要】本文针对数学建模在工程技术、自然科学等领域的重要地位,在查阅大量文献的基础上,在数学建模的优势、建模步骤、应用等方面进行了探讨,并与结语部分总结了数学建模在教学中的重要性及其未来发展的趋势。 【关键词】数学建模教学创新 数学建模[1]就是用数学语言描述实际现象的过程,是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。高新技术的发展离不开数学的支持,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高。 一、优势 数学建模具有很大的优势,特别是在培养创新意

识和创造能力、训练快速获取信息和资料的能力、锻炼快速了解和掌握新知识的技能、培养团队合作意识和团队合作精神、增强写作技能和排版技术、荣获国家级奖励有利于保送研究生、荣获国际级奖励有利于申请出国留学、更重要的是训练人的逻辑思维和开放性思考方式等方面尤为突出。 二、建模步骤 第一步――准备工作,了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。第二步――假设,根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。第三步――建模,在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构,利用获取的数据资料,对模型的所有参数做出计算(或近似计算[2])。第四步――分析,对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。第五步――检验,将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,

数学模型应用问题(讲义和习题)含答案

数学模型应用问题(讲义) ? 课前预习 1. 填写下列表格,并回忆相关概 念. 2. 解下列方程 [](10)38010(12)1750x x ---= 10(8)200106400.5x x -?? --?= ??? ? 知识点睛 应用题的处理思路 1. 理解题意,梳理信息 通过列表或画线段图等方式,对信息分类整理. 2. 辨识类型,建立模型 根据所属类型,围绕关键词、隐含的数学关系,建立数学

类型常考虑: ①所属的数学模型(方程不等式问题、函数问题、测量问题); ②实际生活的背景(工程问题、行程问题、经济问题). 常见关键词: ①共需、同时、刚好、恰好、相同……,考虑方程; ②不超过、不多于、少于、至少……,考虑不等式(组); ③最大利润、最省钱、运费最少、尽可能少、最小值……,考虑函数(一次函数、二次函数), 根据函数性质求取最值. 隐含的数学关系: ①原材料供应型(使用量≤供应量) ②容器容量型(载重量≥货物量) 3.求解验证,回归实际 ①结果是否符合题目要求; ②结果是否符合实际意义. ?精讲精练 1.某次地震后,政府为安置灾民,准备从某厂调拨用于搭建帐篷的帆布5 600 m2和撑杆2 210 m. (1)该厂现有帆布4 600 m2和撑杆810 m,不足部分计划安排110人进行生产.若每人每天能生产帆布50 m2或撑杆 40 m,则应分别安排多少人生产帆布和撑杆,才能确保同时完成各自的生产任务? (2)计划用这些材料在某安置点搭建甲、乙两种规格的帐篷共100顶,若搭建一顶甲型帐篷和一顶乙型帐篷所需帆布与撑杆的数量及安置人数如下表所示,则这100顶帐篷最多能安置多少灾

数学建模的作用意义

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来, 随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用, 而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪

类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计

数学建模的作用意义

数学建模的作用意义 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型, 实际上,照片、玩具、地图、电路图等都是模型, 它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作岀简化假设、分析内在规律等工作的基础上, 用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深

度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添 翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次 人才,对理工、经济、金融、管理科学等各专业 的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝

数学模型的优势和作用

数学模型在小学数学教学中的作用 结构 一、数学模型的简介。 二、建立数学模型的基本原则 三、建立数学模型的基本方法 四、小学数学中基本模型 五、模型在小学数学小数学习中的体现 六、小学数学教学中的小学教学中的实录 正文 一、数学模型的简介。 1 什么是数学模型? 数学模型,一般是指用数学语言、符号或图形等形式来刻画、描述、反映特定的问题或具体事物之间关系的数学结构。小学数学中的数学模型,主要的是确定性数学模型,广义地讲,一般表现为数学的概念、法则、公式、性质、数量关系等。数学模型具有一般化、典型化和精确化的特点。 2 数学模型的意义 (1)建立数学模型是数学教学本质特征的反映。 ①数学模型是对客观事物的一般关系的反映,也是人们以数学方式认识具体事物、描述客观现象的最基本的形式。例如,舍去一切具体情景,行程问题的基本模型是:路程=速度×时间(s=vt),只不过在具体问题解决时,需要对这个模型进行一次构建还是多次构建的问题。因此,数学模型有效地反映了思维的过程,是将思维过程用语言符号外化的结果。显然,学生对数学模型的理解、把握与构建的能力,在很大程度上反映了他的数学思维能力、数学观念及意识。 ②人们在以数学方式研究具体问题时,是通过分析、比较、判断、推理等思维活动,来探究、挖掘具体事物的本质及关系的,而最终以符号、模型等方式将其间的规律揭示出来,使复杂的问题本质化、简洁化,甚至将其一般化,使某类问题的解决有了共同的程序与方法。因此,可以说,数学模型不仅反映了数学思维的过程,而且是高级的、高效的数学思维的反映。 2建立数学模型是数学问题解决的有效形式。 ①数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,就是将数学理论知识应用于实际问题的过程。并且,建立模型更为重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,在建立模型,形成新的数学知识的过程中,学生能更加体会到数学与大自然和社会的天然联系。因而,在小学数学教学中,让学生从现实问题情景中学数学、做数学、用数学应该成为我们的一种共识,只有这样,数学教学中的“问题解决”才有了相应的环境与氛围。 ②现代数学观认为,数学具有科学方法论的属性,数学思想方法是人们研究数学、应用数学、解决问题的重要策略。而建立数学模型,研究数学模型,正是问题解决过程中的中心环节,是决定问题解决程度如何的关键。当年,瑞士大数学家欧拉面对哥斯尼堡“七桥问题”时,巧妙地将陆地看成点,将桥看成线,

高中开设数学建模课程的意义与定位_1

高中开设数学建模课程的意义与定位 开设高中数学建模课程有利于推动高中数学课程的教学改革和发展,下面是小编搜集的一篇探究高中数学建模课程建设的论文范文,欢迎阅读查看。 1、高中开设数学建模课程的背景 在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。 要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。 国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。 第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应

用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。 第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。当前的高中数学课程就是教师讲基本的数学知识,学生记忆、计算、生搬硬套的过程,造成高中学生知识面窄,思维不够发散,与高中数学教学的任务严重不符,脱离了真正数学教学的轨道。 第三,一些高中数学教师教学方法单一,纯粹就是黑板粉笔授课,实行满堂灌,不仅缺乏多媒体等现代化教学手段教学,更是没有所谓的数学实验课程。这样的教学方法造成学生被动学习,无法理解,无法应用,导致大批学生产生厌学情绪。教师讲解基本的数学内容,要求学生记住公式,然后利用公式和常用的方法去做题,其目的是去应对高考。对高中学生进行问卷调查发现,当前的高中学生中有80% 多的学生普遍认为数学很难学,不能理解,更不用说去应用。当前的高中数学教学模式使得学生更加反感数学学习,从而使得高中数学教

数学模型应用题

数学模型应用题 一.选择题(共14小题) 1.(2011?恩施州)小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下: 时刻12:0013:0014:30 碑上的数是一个两位数,数字 之和为6 十位及个位数字及12:00时所看 到的正好颠倒了 比12:00时看到的两位数 中间多了个0 则12:00时看到的两位数是() A.24B.42C.51D.15 2.(2012?百色)某县政府2011年投资0.5亿元用于保障性房建设,计划到2013年投资保障性房建设的资金为0.98亿元.如果从2011年到2013年投资此项目资金的年增长率相同,那么年增长率是() A.30%B.40%C.50%D.60% 3.(2011?台湾)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为平方公分,则此方格纸的面积为多少平方公分?() A.11B.12C.13D.14 4.(2013?资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是

A.10人B.11人C.12人D.13人 5.(2013?潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是() A.40B.45C.51D.56 6.(2012?武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)及乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是() A.①②③B.仅有①②C.仅有①③D.仅有②③7.(2012?牡丹江)已知等腰三角形周长为20,则底边长y关于腰长x的函数图象是() A.B.C.D. 8.(2013?绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)及开机后用时(min)

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

相关文档
最新文档