宁波市重点名校2019届九(上)期末数学考试模拟试题4

合集下载

〖汇总3套试卷〗宁波市2019年九年级上学期数学期末练兵模拟试题

〖汇总3套试卷〗宁波市2019年九年级上学期数学期末练兵模拟试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A .B .C .D . 【答案】B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=. 故选B .2.如图下列条件中不能判定ACD ABC ∆∆的是( )A .ACD ABC ∠=∠B .ADC ACB ∠=∠ C .AB AD BC CD= D .2AC AD AB =⋅ 【答案】C【分析】根据相似三角形的判定定理对各个选项逐一分析即可.【详解】A. ACD ABC ∠=∠,A A ∠=∠可以判定ACDABC ∆∆,不符合题意; B. ADC ACB ∠=∠,A A ∠=∠可以判定ACDABC ∆∆,不符合题意; C. AB AD BC CD=不是对应边成比例,且不是相应的夹角,不能判定ACD ABC ∆∆,符合题意; D. 2AC AD AB =⋅即AD AC AC AB=且A A ∠=∠,可以判定ACD ABC ∆∆,不符合题意. 故选C .【点睛】本题考查了相似三角形的判定定理,熟练掌握判定定理是解题的关键.3.如图,点A 是双曲线6y x =-在第二象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB=120°,点C 在第一象限,随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线k y x=上运动,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】试题分析:连接CO ,过点A 作AD ⊥x 轴于点D ,过点C 作CE ⊥x 轴于点E ,∵连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB=220°,∴CO ⊥AB ,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE ,又∵∠ADO=∠CEO=90°,∴△AOD ∽△OCE ,∴AD DO AO EO EC CO ===tan60°=3,则ΔADO ΔCOE S S =3,∵点A 是双曲线6y x=-在第二象限分支上的一个动点,∴12xy =12AD•DO=12×6=3,∴12k=12EC×EO=2,则EC×EO=2.故选B .考点:2.反比例函数图象上点的坐标特征;2.综合题.4.已知函数k y x=的图象过点(1,-2),则该函数的图象必在( ) A .第二、三象限 B .第二、四象限C .第一、三象限D .第三、四象限 【答案】B【解析】试题分析:对于反比例函数y=,当k>0时,函数图像在一、三象限;当k<0时,函数图像在二、四象限.根据题意可得:k=-2.考点:反比例函数的性质5.在△ABC中,∠C=90°,AC=9,sinB=35,则AB=( )A.15 B.12 C.9 D.6【答案】A【分析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sin ACBAB=,∴935AB=,解得AB=1.故选A6.已知⊙O的半径为3cm,线段OA=5cm,则点A与⊙O的位置关系是()A.A点在⊙O外B.A点在⊙O上C.A点在⊙O内D.不能确定【答案】A【详解】解:∵5>3∴A点在⊙O外故选A.【点睛】本题考查点与圆的位置关系.7.下列实数中,有理数是()A.﹣2 B3C2﹣1 D.π【答案】A【分析】根据有理数的定义判断即可.【详解】A、﹣2是有理数,故本选项正确;B3C2﹣1是无理数,故本选项错误;D、π是无理数,故本选项错误;故选:A.【点睛】本题考查有理数和无理数的定义,关键在于牢记定义.8.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A .8B .12C .14D .16【答案】D 【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案. 【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.9.一元二次方程230x x -=的解是( )A .3x =B .0x =C .113x =,20x =D .13x =,21x = 【答案】C【解析】用因式分解法解一元二次方程即可.【详解】(31)0x x -=∴0x = 或310x -=∴10x =,213x =故选C.【点睛】本题主要考查一元二次方程的解,掌握解一元二次方程的方法是解题的关键.10.如图,在ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( )A.梯形B.矩形C.菱形D.正方形【答案】C【详解】∵在ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∵在△AFO和△CEO中,∠AFO=∠CEO,∠ FOA=∠EOC,AO=CO,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形,故选C.11.已知三角形的周长为12,面积为6,则该三角形内切圆的半径为()A.4 B.3 C.2 D.1【答案】D【分析】设内切圆的半径为r,根据公式:12rC S三角形三角形,列出方程即可求出该三角形内切圆的半径.【详解】解:设内切圆的半径为r 11262r解得:r=1故选D.【点睛】此题考查的是根据三角形的周长和面积,求内切圆的半径,掌握公式:12rC S三角形三角形是解决此题的关键.12.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹92 80 90若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.89【答案】C【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.二、填空题(本题包括8个小题)13.抛物线y=2x 2﹣4x+1的对称轴为直线__.【答案】x=1【详解】解:∵y=2x 2﹣4x+1=2(x ﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x ﹣h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).14.抛物线()222y x =-+的顶点坐标是____________【答案】(2,2)【分析】根据顶点式即可得到顶点坐标.【详解】解:∵()222y x =-+,∴抛物线的顶点坐标为(2,2),故答案为(2,2).【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a (x-h )2+k 的顶点坐标为(h ,k )是解题的关键.15.用一根长为31cm 的铁丝围成一个矩形,则围成矩形面积的最大值是 cm 1.【答案】2.【解析】试题解析:设矩形的一边长是xcm ,则邻边的长是(16-x )cm .则矩形的面积S=x (16-x ),即S=-x 1+16x ,当x=-16822b a -=-=-时,S 有最大值是:2. 考点:二次函数的最值.16.将抛物线C 1:y =x 2﹣4x+1先向左平移3个单位,再向下平移2个单位得到将抛物线C 2,则抛物线C 2的解析式为:_____.【答案】y=(x+1)2﹣1【分析】先确定抛物线C1:y=x2﹣4x+1的顶点坐标为(2,﹣3),再利用点平移的坐标变换规律,把点(2,﹣3)平移后对应点的坐标为(﹣1,﹣1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线C1:y=x2﹣4x+1=(x﹣2)2﹣3的顶点坐标为(2,﹣3),把点(2,﹣3)先向左平移3个单位,再向下平移2个单位后所得对应点的坐标为(-1,﹣1),所以平移后的抛物线的解析式为y =(x+1)2﹣1,故答案为y=(x+1)2﹣1.【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的特点.17.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.【答案】1 2【解析】∵抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴他第二次再抛这枚硬币时,正面向上的概率是:1218.如图,在Rt△ABC中,∠BAC=90°,AB=1,tanC=23,以点A为圆心,AB长为半径作弧交AC于D,分别以B、D为圆心,以大于12BD长为半径作弧,两弧交于点E,射线AE与BC于F,过点F作FG⊥AC于G,则FG的长为______.【答案】35.【分析】过点F作FH⊥AB于点H,证四边形AGFH是正方形,设AG=x,表示出CG,再证△CFG∽△CBA,根据相似比求出x即可.【详解】如图过点F作FH⊥AB于点H,由作图知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四边形AGFH是正方形,设AG=x,则AH=FH=GF=x,∵tan∠C=23,∴AC=ABtan C∠=32,则CG=32-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴CG FG=CA AB ,即32=312x x,解得x=35,∴FG=35,故答案为:35.【点睛】本题是对几何知识的综合考查,熟练掌握三角函数及相似知识是解决本题的关键.三、解答题(本题包括8个小题)19.如图,正方形ABCD,将边BC绕点B逆时针旋转60°,得到线段BE,连接AE,CE.(1)求∠BAE的度数;(2)连结BD,延长AE交BD于点F.①求证:DF=EF;②直接用等式表示线段AB,CF,EF的数量关系.【答案】(1) 75°;(2)①见解析②22=+AB EF CF【分析】(1)根据题意利用等腰三角形性质以及等量代换求∠BAE的度数;(2)①由正方形的对称性可知,∠DAF=∠DCF=15°,从而证明△BCF≌△ECF,求证DF=EF;②题意要求等式表示线段AB,CF,EF的数量关系,利用等腰直角三角形以及等量代换进行分析.【详解】(1)解:∵AB=BE,∴∠BAE=∠BEA.∵∠ABE=90°-60°=30°∴∠BAE=75°.(2)①证明:∴∠DAF=15°.连结CF.由正方形的对称性可知,∠DAF=∠DCF=15°.∵∠BCD=90°,∠BCE=60°,∴∠DCF=∠ECF=∠DAF=15°.∵BC=EC,CF=CF,∴△DCF≌△ECF.∴DF=EF.②过C作CO垂直BD交于O,由题意求得∠OCF=30°,设OF=x,CF=2x,3,3则6x有==-+22EF CFAB x x x x2233)2=+.【点睛】本题考查正方形相关,综合利用等腰三角形性质以及全等三角形的证明和等量替换进行分析是解题关键. 20.如图,△ABC中,DE//BC,EF//AB.求证:△ADE∽△EFC.【答案】证明见解析【解析】试题分析:根据平行线的性质得到∠ADE=∠C,∠DFC=∠B,∠AED=∠B,等量代换得到∠AED=∠DFC,于是得到结论.试题解析:∵ED∥BC,DF∥AB,∴∠ADE=∠C,∠DFC=∠B,∴∠AED=∠B,∴∠AED=∠DFC∴△ADE∽△DCF21.已知二次函数y=x2-2mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.【答案】(1)证明见解析;(2)k≥3 4 .【分析】(1)根据判别式的值得到△=(2m-1)2+3>0,然后根据判别式的意义得到结论;(2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果.【详解】(1)证:当y=0时x2-2mx+m2+m-1=0∵b2-4ac=(-2m)2-4(m2+m-1)=8m2-4m2-4m+4=4m2-4m+4=(2m-1)2+3>0∴方程x2-2mx+m2+m-1=0有两个不相等的实数根∴二次函数y=x2-2mx+m2+m-1图像与x轴有两个公共点(2)解:平移后的解析式为: y=x2-2mx+m2+m-1-k,过(0,-2),∴-2=0-0+m²+m-1-k, ∴k= m²+m+1=(m+12)²+34,∴k≥34.【点睛】本题考查了二次函数图象与几何变换以及图象与x 轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.22.(1)如图1,在ABC ∆中,点D 在边BC 上,且BD AB AC ==,AD CD =,求B 的度数;(2)如图2,在菱形EFGH 中,72E ∠=︒,请设计三种不同的分法(只要有一条分割线段不同就视为不同分法),将菱形EFGH 分割成四个三角形,使得每个三角形都是等腰三角形(不要求写画法,要求画出分割线段,标出所得三角形内角的度数).【答案】(1)36B ∠=︒;(2)详见解析.【分析】(1)设B x ∠=︒,利用等边对等角,可得C B x ∠=∠=︒,CAD C x ∠=∠=︒,根据三角形外角的性质可得2ADB DAC C x ∠=∠+∠=︒,再根据等边对等角和三角形的内角和公式即可求出x ,从而求出∠B.(2)根据等腰三角形的定义和判定定理画图即可.【详解】证明:(1)设B x ∠=︒∵AB AC =∴C B x ∠=∠=︒又∵AD CD =∴CAD C x ∠=∠=︒∴2ADB DAC C x ∠=∠+∠=︒又∵AB BD =∴2BAD ADB x ∠=∠=︒又∵180BAD ADB B ∠+∠+∠=︒∴22180x x x ++=解出:36x =∴36B ∠=︒(2)根据等腰三角形的定义和判定定理,画出如下图所示,(任选其三即可).【点睛】此题考查的是等腰三角形的性质及判定,掌握等边对等角、等角对等边和方程思想是解决此题的关键. 23.“红灯停,绿灯行”是我们过路口遇见交通信号灯时必须遵守的规则.小明每天从家骑自行车上学要经过三个路口,假如每个路口交通信号灯中红灯和绿灯亮的时间相同,且每个路口的交通信号灯只安装了红灯和绿灯.那么某天小明从家骑车去学校上学,经过三个路口抬头看到交通信号灯.(1)请画树状图,列举小明看到交通信号灯可能出现的所有情况;(2)求小明途经三个路口都遇到红灯的概率.【答案】(1)详见解析;共有8种等可能的结果;(2)1 8【分析】此题分三步完成,每一个路口需要选择一次,所以把每个路口看做一步,用树状图表示所有情况,再利用概率公式求解.【详解】(1)列树状图如下:由树状图可以看出,共有8种等可能的结果,即:红红红、红红绿、红绿红、红绿绿、绿红红、绿红绿、绿绿红、绿绿绿、(2)由(1)可知P(三次红灯)1 8 =.【点睛】此题考查的是用树状图法求概率.树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上的一个动点(不与点B. C重合),连结AE,并作EF⊥AE,交CD边于点F,连结AF.设BE=x,CF=y.(1)求证:△ABE∽△ECF;(2)当x为何值时,y的值为2;【答案】(1)见解析;(2)x的值为2或1时,y的值为2【分析】(1)①先判断出∠BAE=∠CEF,即可得出结论;(2)利用的相似三角形得出比例式即可建立x,y的关系式,代入即可;【详解】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°.∵AE⊥EF,∴∠AEF=90°=∠B.∴∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∵∠B=∠C,∴△ABE∽△ECF.②∵△ABE∽△ECF.∴AB BE EC CF=,∵AB=1,BC=8,BE=x,CF=y,EC=8−x,∴68xx y=-.∴y=−16x2+43x.∵y=2,−16x2+43x=2,解得 x 1=2,x 2=1.∵0<x <8,∴x 的值为2或1.【点睛】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,解本题的关键是用方程的思想解决问题.25.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,过点B 作AC 的平行线,过点C 作DB 的平行线,它们相交于点E .求证:四边形OBEC 是正方形.【答案】见解析【分析】根据已知条件先证明四边形OBEC 是平行四边形,再证明∠BOC=90°,OC=OB 即可判定四边形OBEC 是正方形.【详解】∵//BE OC ,//CE OB ,∴四边形OBEC 是平行四边形,∵四边形ABCD 是正方形,∴OC OB =,AC BD ⊥,∴90BOC ∠=,∴四边形OBEC 是矩形,∵OC OB =,∴四边形OBEC 是正方形.【点睛】本题考查正方形的性质和判定,解题的关键是熟练掌握正方形的性质和判定.26.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?【答案】(1)y=﹣5x 2+800x ﹣27500(50≤x≤100);(2)当x=80时,y 最大值=4500;(3)70≤x≤1.【分析】(1) 根据题目已知条件, 可以判定销量与售价之间的关系式为一次函数, 并可以进一步写出二者之间的关系式; 然后根据单位利润等于单位售价减单位成本, 以及销售利润等于单位利润乘销量, 即可求出每天的销售利润与销售单价之间的关系式.(2) 根据开口向下的抛物线在对称轴处取得最大值, 即可计算出每天的销售利 润及相应的销售单价.(3) 根据开口向下的抛物线的图象的性质,满足要求的x 的取值范围应该在﹣5(x ﹣80)2+4500=4000的两根之间,即可确定满足题意的取值范围.【详解】解:(1)y=(x ﹣50)[50+5(100﹣x )]=(x ﹣50)(﹣5x+550)=﹣5x 2+800x ﹣27500,∴y=﹣5x 2+800x ﹣27500(50≤x≤100);(2)y=﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y 最大值=4500;(3)当y=4000时,﹣5(x ﹣80)2+4500=4000,解得x 1=70,x 2=1.∴当70≤x≤1时,每天的销售利润不低于4000元.【点睛】本题主要考查二次函数的应用.27.某商场经销-种进价为每千克50元的水产品,据市场分析,每千克售价为60元时,月销售量为500kg ,销售单价每涨1元时,月销售量就减少10kg ,针对这种情况,请解答以下问题:(1)当销售单价定为65元时,计算销售量和月销售利润;(2)若想在月销售成本不超过12000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?【答案】(1)销售量:450kg ;月销售利润:6750元;(2)销售单价定为90元时,月销售利润达到8000元,且销售成本不超过12000元【分析】(1)利用每千克水产品的销售利润×月销售量=月销售利润列出函数即可;(2)由函数值为8000,列出一元二次方程解决问题.【详解】解:(1)销售量:500(6560)10450()kg --⨯=,月销售利润:450(6550)6750⨯-=(元);(2)因为月销售成本不超过12000元,∴月销售数量不超过1200050240()kg ÷=;设销售定价为x 元,由题意得:(50)50010(60)[]8000x x ---=,解得1290,70x x ==;当90x =时,月销售量为50010(9060)200240-⨯-=<,满足题意;当70x =时,月销售量为50010(7060)400240-⨯-=>,不合题意,应舍去.∴销售单价定为90元时,月销售利润达到8000元,且销售成本不超过12000元.【点睛】此题考查了一元二次方程的应用,利用基本数量关系:每千克水产品的销售利润×月销售量=月销售利润列函数解析式,用配方法求最大值以及函数与方程的关系.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列事件中,是必然事件的是()A.明天一定有雾霾B.国家队射击运动员射击一次,成绩为10环C.13个人中至少有两个人生肖相同D.购买一张彩票,中奖【答案】C【分析】必然事件是一定发生的事情,据此判断即可.【详解】A.明天有雾霾是随机事件,不符合题意;B.国家队射击运动员射击一次,成绩为10环是随机事件,不符合题意;C.总共12个生肖,13个人中至少有两个人生肖相同是必然事件,符合题意;D.购买一张彩票,中奖是随机事件,不符合题意;故选:C.【点睛】本题考查了必然事件与随机事件,必然事件是一定发生的的时间,随机事件是可能发生,也可能不发生的事件,熟记概念是解题的关键.2.若|m|=5,|n|=7,m+n<0,则m﹣n的值是( )A.﹣12或﹣2 B.﹣2或12 C.12或2 D.2或﹣12【答案】C【分析】根据题意,利用绝对值的意义求出m与n的值,再代入所求式子计算即可.【详解】解:∵|m|=5,|n|=7,且m+n<0,∴m=5,n=﹣7;m=﹣5,n=﹣7,可得m﹣n=12或2,则m﹣n的值是12或2.故选:C.【点睛】本题考查了绝对值的意义,掌握绝对值的意义求值是关键.3.若四边形ABCD是⊙O的内接四边形,且∠A︰∠B︰∠C=1︰3︰8,则∠D的度数是A.10°B.30°C.80°D.120°【答案】D【解析】试题分析:设∠A=x,则∠B=3x,∠C=8x,因为四边形ABCD为圆内接四边形,所以∠A+∠C=180°,即:x+8x=180,∴x=20°,则∠A=20°,∠B=60°,∠C=160°,所以∠D=120°,故选D考点: 圆内接四边形的性质4.如图,在△ABC中,cosB=22,sinC=35,AC=5,则△ABC的面积是()A.212B.12 C.14 D.21【答案】A【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,2,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴2253,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.5.已知四边形ABCD 是平行四边形,下列结论中正确的有( )①当AB =BC 时,四边形ABCD 是菱形;②当AC ⊥BD 时,四边形ABCD 是菱形;③当∠ABC =90°时,四边形ABCD 是菱形:④当AC =BD 时,四边形ABCD 是菱形;A .3个B .4个C .1个D .2个 【答案】D【分析】根据菱形的判定定理判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴①当AB =BC 时,四边形ABCD 是菱形;故符合题意;②当AC ⊥BD 时,四边形ABCD 是菱形;故符合题意;③当∠ABC =90°时,四边形ABCD 是矩形;故不符合题意;④当AC =BD 时,四边形ABCD 是矩形;故不符合题意;故选:D .【点睛】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.6.若()1A 4,y -,21B ,y 4⎛⎫-⎪⎝⎭,()3C 3,y 为二次函数2y (x 2)9=+-的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 【答案】B【解析】试题分析:根据二次函数的解析式得出图象的开口向上,对称轴是直线x=﹣2,根据x >﹣2时,y 随x 的增大而增大,即可得出答案.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,A (﹣4,y 1)关于直线x=﹣2的对称点是(0,y 1),∵﹣<0<3,∴y 2<y 1<y 3,故选B .点评:本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.7.方程221x =的解是( )A .12x =±B .2x =±C .12x =D .x【答案】B【解析】按照系数化1、开平方的步骤求解即可. 【详解】系数化1,得212x =开平方,得2x =± 故答案为B. 【点睛】此题主要考查一元二次方程的求解,熟练掌握,即可解题. 8.对于抛物线221y x x =--,下列说法中错误的是()A .顶点坐标为()12,-B .对称轴是直线1x =C .当1x >时,y 随x 的增大减小D .抛物线开口向上 【答案】C【分析】A.将抛物线一般式化为顶点式即可得出顶点坐标,由此可判断A 选项是否正确; B.根据二次函数的对称轴公式即可得出对称轴,由此可判断B 选项是否正确;C.由函数的开口方向和顶点坐标即可得出当1x >时函数的增减性,由此可判断C 选项是否正确;D.根据二次项系数a 可判断开口方向,由此可判断D 选项是否正确. 【详解】()222112y x x x =-=---,∴该抛物线的顶点坐标是()1,2-,故选项A 正确, 对称轴是直线1x =,故选项B 正确,当1x >时,y 随x 的增大而增大,故选项C 错误, 1a =,抛物线的开口向上,故选项D 正确,故选:C . 【点睛】本题考查二次函数的性质.对于二次函数 y=ax 2+bx+c(a≠0),若a>0,当x ≤2ba-时,y 随x 的增大而减小;当x ≥2b a -时,y 随x 的增大而增大.若a<0,当x ≤2b a -时,y 随x 的增大而增大;当x ≥2ba-时,y随x 的增大而减小.在本题中能将二次函数一般式化为顶点式(或会用顶点坐标公式计算)得出顶点坐标是解决此题的关键.9.如图,周长为定值的平行四边形ABCD 中,60B ∠=,设AB 的长为x ,周长为16,平行四边形ABCD 的面积为y ,y 与x 的函数关系的图象大致如图所示,当63y =时,x 的值为( )A .1或7B .2或6C .3或5D .4【答案】B【分析】过点A 作AE ⊥BC 于点E ,构建直角△ABE ,通过解该直角三角形求得AE 的长度,然后利用平行四边形的面积公式列出函数关系式,即可求解. 【详解】如图,过点A 作AE ⊥BC 于点E ,∵∠B =60°,边AB 的长为x , ∴AE =AB •sin60°=32x ∵平行四边形ABCD 的周长为16, ∴BC =12(16−2x )=8−x , ∴y =BC •AE =(8−x )×32x (0≤x ≤8). 当63y =(8−x )×32x =63解得x 1=2,x 2=6 故选B. 【点睛】考查了动点问题的函数图象.掌握平行四边形的周长公式和解直角三角形求得AD 、BE 的长度是解题的关键.10.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C3 2 D3 3【答案】A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠3,EC=cos∠C×DC=12DC,又∵DC+BD=BC=AC=32 DC,∴332332DCDEAC DC==,∴△DEF与△ABC的面积之比等于:2231:3 DEAC⎛⎫==⎪⎝⎭⎝⎭故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比.11x 的值可以是( ) A .2 B .0 C .1 D .9【答案】D0,可得x-5≥0,解不等式就可得到答案.【详解】∵有意义, ∴x-5≥0, ∴x ≥5,观察个选项,可以发现x 的值可以是9. 故选D. 【点睛】本题考查二次根式有意义的条件.12.二次函数y =3(x+4)2﹣5的图象的顶点坐标为( ) A .(4,5) B .(﹣4,5) C .(4,﹣5) D .(﹣4,﹣5)【答案】D【分析】根据二次函数的顶点式即可直接得出顶点坐标. 【详解】∵二次函数()2345y x +=- ∴该函数图象的顶点坐标为(﹣4,﹣5), 故选:D . 【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 二、填空题(本题包括8个小题)13.二次函数2y ax bx c =++(a ,b ,c 为常数且a ≠0)中的x 与y 的部分对应值如下表:现给出如下四个结论:①0ac <;② 当2x >时,y 的值随x 值的增大而减小;③1-是方程2(1)0ax b x c +-+=的一个根;④当13x 时,2(1)0ax b x c +-+>,其中正确结论的序号为:____.【答案】①②③④【分析】先利用待定系数法求得a b c 、、的值,13ac =-⨯<0可判断①;对称轴为直线32x =,利用二次函数的性质可判断②;方程()210ax b x c +-+=即2230x x -++=,解得1213x x =-=,,可判断③;1x =-当时,()210ax b x c +-+=;当3x =时,()210ax b x c +-+=,且函数有最大值,则当13x -<<时,()210ax b x c +-+>,即可判断④.【详解】∵1x =-时1y =-,0x =时3y =,1x =时5y =,∴135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩, 解得:133a b c =-⎧⎪=⎨⎪=⎩,∴1330ac =-⨯=-<,故①正确; ∵对称轴为直线()332212b x a =-=-=⨯-, ∴当x >32时,y 的值随x 值的增大而减小,故②正确; 方程2(1)0ax b x c +-+=即2230x x -++=, 解得1213x x =-=,,∴1-是方程2(1)0ax b x c +-+=的一个根,故③正确; 当1x =-时,()()2113130ax b x c +-+=---+=,当3x =时,()()21931330ax b x c +-+=-+-⨯+=,∵10a =-<, ∴函数有最大值,∴当13x -<<时,()210ax b x c +-+>,故④正确.故答案为:①②③④. 【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,抛物线与x 轴的交点,熟练掌握二次函数图象的性质是解题的关键.14.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x .根据题意,可列出方程___________________. 【答案】100(1+x )2=1.【详解】设平均每次提价的百分率为x ,根据原价为100元,表示出第一次提价后的价钱为100(1+x )元,第二次提价的价钱为100(1+x )2元,根据两次提价后的价钱为1元,列出关于x 的方程100(1+x )2=1. 考点:一元二次方程的应用.15.若一个圆锥的底面圆半径为3cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是______ 【答案】9cm【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解. 【详解】解:设母线长为l ,则120180lπ=2π×3 , 解得:l=9 cm . 故答案为:9 cm . 【点睛】本题考查圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.二次函数y=x 2+bx+c 的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=________ 【答案】-1【解析】根据两已知点的坐标特征得到它们是抛物线的对称点,而这两个点关于直线x=-1对称,由此可得到抛物线的对称轴.【详解】∵点(3,4)和(-5,4)的纵坐标相同, ∴点(3,4)和(-5,4)是抛物线的对称点, 而这两个点关于直线x=-1对称, ∴抛物线的对称轴为直线x=-1. 故答案为-1. 【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0)的顶点坐标是(-2b a ,244ac b a-),对称轴直线x=-2ba. 17.不等式组5327332x x x x -<⎧⎪+⎨>⎪⎩的整数解的和是__________.【答案】3-【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】5327332x x x x -<⎧⎪⎨+>⎪⎩①② 解①得:x<1; 解②得:x>−3;∴原不等式组的解集为−3<x<1; ∴原不等式组的所有整数解为−2、−1、0 ∴整数解的和是:-2-1+0=-3. 故答案为:-3. 【点睛】此题考查解一元一次不等式组,解题关键在于掌握解不等式组.18.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是______ .【答案】13【解析】画树状图得:∵共有6种等可能的结果,转盘所转到的两个数字之积为奇数的有2种情况, ∴转盘所转到的两个数字之积为奇数的概率是:2163=. 故答案是:13. 【点睛】此题考查了列表法或树状图法求概率.注意此题属于放回实验,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(本题包括8个小题)19.如图,P 是平面直角坐标系中第四象限内一点,过点P 作PA ⊥x 轴于点A ,以AP 为斜边在右侧作等腰Rt △APQ ,已知直角顶点Q 的纵坐标为﹣2,连结OQ 交AP 于B ,BQ =2OB .。

浙江省宁波市实验学校2019-2020学年九年级数学上册期末模拟试卷(含解析)

浙江省宁波市实验学校2019-2020学年九年级数学上册期末模拟试卷(含解析)

2019-2020浙江省宁波市实验学校九年级数学上册期末模拟试卷解析版一、选择题(共10题;共20分)1.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A. B. C. D. 2.小华、小强和小彬三位同学随机地站成一排做游戏,小华站在排头的概率是( ) A. 12 B. 13 C. 23 D. 1 3.如图,直线a ∥b ∥c ,点A ,B 在直线a 上,点C ,D 在直线c 上,线段AC ,BD 分别交直线b 于点E ,F ,则下列线段的比与 AE AC 一定相等的是( )A. CE ACB. BF BDC. BF FDD. ABCD4.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,连结CD 与AB 相交于点P ,则tan ∠APD 的值是( )A. 2B. √2C. 12D. √22 5.对于函数y=(x-2)2+5,下列结论错误的是( )A. 图象顶点是(2,5)B. 图象开口向上C. 图象关于直线x=2对称D. 函数最大值为5 6.如图,等腰直角三角形ABC 的直角边AB 的长为 √3 ,将△ABC 绕点A 逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点D ,则图中阴影△ADC′的面积等于( )A. 3√32cm 2B. 3−√32cm 2C. 2√3cm 2D. 6cm 2 7.如图等腰三角形的顶角 ∠A =45°,以AB 为直径的半圆O 与BC ,AC 相较于点D ,E 两点,则弧AE 所对的圆心角的度数为( )A. 40°B. 50°C. 90°D. 100°8.如图,点A 的坐标为(-3,-2),⊙A 的半径为1,P 为坐标轴上一动点,PQ 切⊙A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A. (0,-2)B. (0,-3)C. (-3,0)或(0,-2)D. (-3,0) 9.如图,在矩形ABCD 中,AB=4,AD=a ,点P 在AD 上,且AP=2,点E 是边AB 上的动点,以PE 为边作直角∠EPF ,射线PF 交BC 于点F ,连接EF ,给出下列结论:①tan ∠PFE= 12 ;②a 的最小值为10.则下列说法正确的是( )A. ①②都对B. ①②都错C. ①对②错D. ①错②对 10.已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论:①abc >0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;≥2.④ a+b+cb其中,符合题意结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分,共24分)11.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是________.12.如图,在平面直角坐标系中,△OAB与△OCD是以原点O为位似中心的位似图形,且位似比为1:3,已知点A的坐标为(1,2),则点C的坐标是________.13.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.14.如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的OP与△ABC的一边相切时,AP的长为________.15.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。

【35套试卷合集】浙江省宁波市名校2019-2020学年数学九上期末模拟试卷含答案

【35套试卷合集】浙江省宁波市名校2019-2020学年数学九上期末模拟试卷含答案

2019-2020学年九上数学期末模拟试卷含答案一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有一个.1.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣3,2)2.如图,点A,B,P是⊙O上的三点,若∠AOB=40°,则∠APB的度数为()A.80°B.140°C.20°D.50°3.已知反比例函数y=,当x>0时,y随x的增大而增大,则m的取值范围是()A.m<2 B.m>2 C.m≤2 D.m≥24.在半径为12cm的圆中,长为4πcm的弧所对的圆心角的度数为()A.10°B.60°C.90°D.120°5.将二次函数y=5x2的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3C.y=5(x+2)2﹣3 D.y=5(x﹣2)2﹣36.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E.如图所示,若测得BE=90m,EC=45m,CD=60m,则这条河的宽AB等于()A.120m B.67.5m C.40m D.30m7.根据研究,人体内血乳酸浓度升高是运动后感觉疲劳的重要原因,运动员未运动时,体内血乳酸浓度水平通常在40mg/L以下;如果血乳酸浓度降到50mg/L以下,运动员就基本消除了疲劳,体育科研工作者根据实验数据,绘制了一副图象,它反映了运动员进行高强度运动后,体内血乳酸浓度随时间变化而变化的函数关系.下列叙述正确的是()A.运动后40min时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度相同B.运动员高强度运动后最高血乳酸浓度大约为350mg/LC.运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松D.采用慢跑活动方式放松时,运动员必须慢跑80min后才能基本消除疲劳8.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③二、填空题(本题共16分,每小题2分)9.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tanB的值是.10.计算:2sin60°﹣tan 45°+4cos30°=.11.若△ABC∽△DEF,且对应边BC与EF的比为2:3,则△ABC与△DEF的面积比等于.12.请写出一个开口向上,并且与y轴交于点(0,2)的抛物线的表达式:.13.如图,在半径为5cm的⊙O中,如果弦AB的长为8cm,OC⊥AB,垂足为C,那么OC的长为cm.14.圆心角为160°的扇形的半径为9cm,则这个扇形的面积是cm2.15.若函数y=ax2+3x+1的图象与x轴有两个交点,则a的取值范围是.16.下面是“作出所在的圆”的尺规作图过程.已知:.求作:所在的圆.作法:如图,(1)在上任取三个点D,C,E;(2)连接DC,EC;(3)分别作DC和EC的垂直平分线,两垂直平分线的交点为点O.(4)以O为圆心,OC长为半径作圆,所以⊙O即为所求作的所在的圆.请回答:该尺规作图的依据是.三、解答题(本题共68分)17.(5分)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n).求反比例函数y=的表达式.18.(5分)已知二次函数y=x2+4x+3.(1)用配方法将y=x2+4x+3化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系xOy中,画出这个二次函数的图象.19.(5分)已知:如图,在△ABC中,D,E分别为AB、AC边上的点,且AD=AE,连接DE.若AC=3,AB=5.求证:△ADE∽△ACB.20.(5分)已知:如图,在△ABC中,AB=AC=8,∠A=120°,求BC的长.21.(5分)已知:如图,⊙O的直径AB的长为5cm,C为⊙O上的一个点,∠ACB的平分线交⊙O于点D,求BD的长.22.(5分)在一次社会大课堂的数学实践活动中,王老师要求同学们测量教室窗户边框上的点C到地面的距离即CD的长,小英测量的步骤及测量的数据如下:(1)在地面上选定点A,B,使点A,B,D在同一条直线上,测量出A、B两点间的距离为9米;(2)在教室窗户边框上的点C点处,分别测得点A,B的俯角∠ECA=35°,∠ECB=45°.请你根据以上数据计算出CD的长.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)23.(5分)已知:如图,ABCD是一块边长为2米的正方形铁板,在边AB上选取一点M,分别以AM和MB为边截取两块相邻的正方形板料.当AM的长为何值时,截取两块相邻的正方形板料的总面积最小?24.(5分)已知:如图,AB是半圆O的直径,D是半圆上的一个动点(点D不与点A,B 重合),∠CAD=∠B(1)求证:AC是半圆O的切线;(2)过点O作BD的平行线,交AC于点E,交AD于点F,且EF=4,AD=6,求BD的长.25.(5分)如图,AB=6cm,∠CAB=25°,P是线段AB上一动点,过点P作PM⊥AB交射线AC于点M,连接MB,过点P作PN⊥MB于点N.设A,P两点间的距离为xcm,P,N两点间的距离为ycm.(当点P与点A或点B重合时,y的值均为0)小海根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小海的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当y=0.5时,与之对应的x值的个数是.26.(7分)已知一次函数y1=x﹣1,二次函数y2=x2﹣mx+4(其中m>4).(1)求二次函数图象的顶点坐标(用含m的代数式表示);(2)利用函数图象解决下列问题:①若m=5,求当y1>0且y2≤0时,自变量x的取值范围;②如果满足y1>0且y2≤0时自变量x的取值范围内有且只有一个整数,直接写出m的取值范围.27.(8分)已知:如图,AB为半圆O的直径,C是半圆O上一点,过点C作AB的平行线交⊙O于点E,连接AC、BC、AE,EB.过点C作CG⊥AB于点G,交EB于点H.(1)求证:∠BCG=∠EBG;(2)若sin∠CAB=,求的值.28.(8分)一般地,我们把半径为1的圆叫做单位圆,在平面直角坐标系xOy中,设单位圆的圆心与坐标原点O重合,则单位圆与x轴的交点分别为(1,0),(﹣1,0),与y轴的交点分别为(0,1),(0,﹣1).在平面直角坐标系xOy中,设锐角a的顶点与坐标原点O重合,a的一边与x轴的正半轴重合,另一边与单位圆交于点P(x1,y1),且点P在第一象限.(1)x1=(用含a的式子表示);y1=(用含a的式子表示);(2)将射线OP绕坐标原点O按逆时针方向旋转90°后与单位圆交于点Q(x2,y2).①判断y1与x2的数量关系,并证明;②y1+y2的取值范围是:.参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有一个.1.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣3,2)【分析】由于抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),由此即可求解.【解答】解:∵抛物线y=(x﹣2)2+3,∴顶点坐标为:(2,3).故选:B.【点评】此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的顶点坐标公式即可解决问题.2.如图,点A,B,P是⊙O上的三点,若∠AOB=40°,则∠APB的度数为()A.80°B.140°C.20°D.50°【分析】直接利用圆周角定理求解.【解答】解:∠APB=∠AOB=×40°=20°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.3.已知反比例函数y=,当x>0时,y随x的增大而增大,则m的取值范围是()A.m<2 B.m>2 C.m≤2 D.m≥2【分析】先根据反比例函数y=,当x>0时y随x的增大而增大判断出1﹣2m的符号,求出m的取值范围即可.【解答】解:∵反比例函数y=,当x>0时y随x的增大而增大,∴m﹣2<0,∴m<2.故选:A.【点评】本题考查的是反比例函数的性质,根据题意判断出1﹣2m的符号是解答此题的关键.4.在半径为12cm的圆中,长为4πcm的弧所对的圆心角的度数为()A.10°B.60°C.90°D.120°【分析】根据弧长的计算公式:l=(弧长为l,圆心角度数为n,圆的半径为r),代入即可求出圆心角的度数.【解答】解:根据弧长的公式l=,得到:4π=,解得n=60°,故选:B.【点评】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.5.将二次函数y=5x2的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3C.y=5(x+2)2﹣3 D.y=5(x﹣2)2﹣3【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将二次函数y=5x2的图象先向右平移2个单位所得函数的解析式为:y=5(x﹣2)2;由“上加下减”的原则可知,将二次函数y=5(x﹣2)2的图象先向下平移3个单位所得函数的解析式为:y=5(x﹣2)2﹣3.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象几何变换的法则是解答此题的关键.6.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E.如图所示,若测得BE=90m,EC=45m,CD=60m,则这条河的宽AB等于()A.120m B.67.5m C.40m D.30m【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴,∵BE=90m,CE=45m,CD=60m,∴,解得:AB=120,故选:A.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.7.根据研究,人体内血乳酸浓度升高是运动后感觉疲劳的重要原因,运动员未运动时,体内血乳酸浓度水平通常在40mg/L以下;如果血乳酸浓度降到50mg/L以下,运动员就基本消除了疲劳,体育科研工作者根据实验数据,绘制了一副图象,它反映了运动员进行高强度运动后,体内血乳酸浓度随时间变化而变化的函数关系.下列叙述正确的是()A.运动后40min时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度相同B.运动员高强度运动后最高血乳酸浓度大约为350mg/LC.运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松D.采用慢跑活动方式放松时,运动员必须慢跑80min后才能基本消除疲劳【分析】根据函数图象横纵坐标表示的意义判断即可.【解答】解:A、运动后40min时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度不同,错误;B、运动员高强度运动后最高血乳酸浓度大约为200mg/L,错误;C、运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松,正确;D、采用慢跑活动方式放松时,运动员必须慢跑40min后才能基本消除疲劳,错误;故选:C.【点评】本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.8.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.二、填空题(本题共16分,每小题2分)9.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tanB的值是.【分析】直接利用正切的定义求解.【解答】解:∵在Rt△ABC中,∠C=90°,∴tanB===.故答案为.【点评】本题考查了锐角三角函数的定义:熟练掌握正弦、余弦和正切的定义.10.计算:2sin60°﹣tan 45°+4cos30°=3﹣1.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=2×﹣1+4×=3﹣1,故答案为:3﹣1.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.11.若△ABC∽△DEF,且对应边BC与EF的比为2:3,则△ABC与△DEF的面积比等于4:9.【分析】根据相似三角形面积的比等于相似比的平方,即可得出△ABC与△DEF的面积比.【解答】解:∵△ABC与△DEF的相似比是2:3,∴△ABC与△DEF的面积比等于22:32=4:9.【点评】熟悉相似三角形的性质:相似三角形的面积比是相似比的平方.12.请写出一个开口向上,并且与y轴交于点(0,2)的抛物线的表达式:y=x2+2.【分析】根据二次函数的性质,所写出的函数解析式a是正数,c=2即可.【解答】解:开口向上,并且与y轴交于点(0,2)的抛物线的表达式为y=x2+2,故答案为:y=x2+2(答案不唯一).【点评】本题主要考查二次函数,解题的关键是熟练掌握二次函数的图象和性质.13.如图,在半径为5cm的⊙O中,如果弦AB的长为8cm,OC⊥AB,垂足为C,那么OC的长为3cm.【分析】连接OA.根据垂径定理求得AC的长,再进一步根据勾股定理即可求得OC的长.【解答】解:连接OA∵OC⊥AB,弦AB长为8cm,∴AC=4(cm).根据勾股定理,得OC==3(cm).故答案为3.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线吗,构造直角三角形解决问题.14.圆心角为160°的扇形的半径为9cm,则这个扇形的面积是36πcm2.【分析】根据扇形的面积公式进行计算即可.【解答】解:这个扇形的面积==36 πcm2.故答案为:36π【点评】此题考查了扇形的面积计算,属于基础题,解答本题的关键是熟练掌握扇形的面积计算公式,难度一般.15.若函数y=ax2+3x+1的图象与x轴有两个交点,则a的取值范围是a<且a≠0.【分析】根据函数与x轴有两个交点得出△>0且a≠0,求出不等式的解集即可.【解答】解:∵函数y=ax2+3x+1的图象与x轴有两个交点,∴方程ax2+3x+1=0有两个实数根,即△=32﹣4a>0且a≠0,解得:a<且a≠0,故答案为:a<且a≠0.【点评】本题考查了二次函数与x轴的交点问题和一元二次方程的根的判别式,能得出关于a'的不等式是解此题的关键.16.下面是“作出所在的圆”的尺规作图过程.已知:.求作:所在的圆.作法:如图,(1)在上任取三个点D,C,E;(2)连接DC,EC;(3)分别作DC和EC的垂直平分线,两垂直平分线的交点为点O.(4)以O为圆心,OC长为半径作圆,所以⊙O即为所求作的所在的圆.请回答:该尺规作图的依据是线段垂直平分线上的点到线段两个端点的距离相等;平面内,到定点的距离等于定长的点在同一个圆上.【分析】由中垂线的性质知OD=OC=OE,继而根据“平面内,到定点的距离等于定长的点在同一个圆上”可得.【解答】解:∵分别作DC和EC的垂直平分线,两垂直平分线的交点为点O.∴OD=OC=OE(线段垂直平分线上的点到线段两个端点的距离相等),∴点A、B、C、D、E在以O为圆心,OC长为半径的圆上(平面内,到定点的距离等于定长的点在同一个圆上),故答案为:线段垂直平分线上的点到线段两个端点的距离相等;平面内,到定点的距离等于定长的点在同一个圆上.【点评】本题主要考查作图﹣尺规作图,解题的关键是熟练掌握中垂线的性质和圆的概念.三、解答题(本题共68分)17.(5分)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n).求反比例函数y=的表达式.【分析】把A的坐标代入y=﹣2x,求出n,得出A的坐标,再把A的坐标代入反比例函数的解析式求出k 即可.【解答】解:∵点A(﹣1,n)在一次函数y=﹣2x的图象上,∴n=(﹣2)×(﹣1)=2,∴点A的坐标为(﹣1,2),∵点A在反比例函数y=的图象上,∴k=(﹣1)×2=﹣2.∴反比例函数的解析式为y=﹣.【点评】本题考查了一次函数与反比例函数的交点问题,待定系数法求反比例函数的解析式,一次函数图象上点的坐标特征.用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.18.(5分)已知二次函数y=x2+4x+3.(1)用配方法将y=x2+4x+3化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系xOy中,画出这个二次函数的图象.【分析】(1)利用配方法易得y=(x+2)2﹣1,则抛物线的顶点坐标为(﹣2,﹣1),对称轴为直线x=﹣2;(2)利用描点法画二次函数图象;【解答】解:(1)y=(x2+4x)+3=(x2+4x+4﹣4)+3=(x=2)2﹣1;(2)如图:【点评】本题考查了二次函数的三种形式:一般式:y=ax2+bx+c(a,b,c是常数,a≠0);顶点式:y=a (x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k);交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(x1,0),(x2,0).也考查了二次函数图象与性质.19.(5分)已知:如图,在△ABC中,D,E分别为AB、AC边上的点,且AD=AE,连接DE.若AC=3,AB=5.求证:△ADE∽△ACB.【分析】根据已知条件得到,由于∠A=∠A,于是得到△ADE∽△ACB;【解答】证明:∵AC=3,AB=5,AD=,∴,∵∠A=∠A,∴△ADE∽△ACB.【点评】本题考查了相似三角形的判定和性质,垂直的定义,熟练掌握相似三角形的判定和性质是解题的关键.20.(5分)已知:如图,在△ABC中,AB=AC=8,∠A=120°,求BC的长.【分析】过点A作AD⊥BC于D.解直角三角形求出BD,利用等腰三角形的性质即可解决问题.【解答】解:过点A作AD⊥BC于D.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BD,在Rt△ABD中,∠ADB=90°,∠B=30°,AB=8,cosB=,∴BD=ABcos30°=8×=4,∴BC=8.【点评】本题考查等腰三角形的性质、解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(5分)已知:如图,⊙O的直径AB的长为5cm,C为⊙O上的一个点,∠ACB的平分线交⊙O于点D,求BD的长.【分析】根据直径所对的圆周角是直角可得∠ACB=∠ADB=90°,再根据角平分线的定义可得∠DAC=∠BCD,然后求出AD=BD,再根据等腰直角三角形的性质其解即可;【解答】解:∵AB为直径,∴∠ADB=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴=.∴AD=BD,在等腰直角三角形ADB中,BD=ABsin45°=5×=,∴BD=.【点评】本题考查了直径所对的圆周角等于直角,等腰直角三角形的判定与性质,关键是根据直径所对的圆周角是直角可得∠ACB=∠ADB=90°.22.(5分)在一次社会大课堂的数学实践活动中,王老师要求同学们测量教室窗户边框上的点C到地面的距离即CD的长,小英测量的步骤及测量的数据如下:(1)在地面上选定点A,B,使点A,B,D在同一条直线上,测量出A、B两点间的距离为9米;(2)在教室窗户边框上的点C点处,分别测得点A,B的俯角∠ECA=35°,∠ECB=45°.请你根据以上数据计算出CD的长.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)【分析】设CD=x,在Rt△CDB中,CD=BD=x,在Rt△CDA中tan∠CAD=,根据图中的线段关系可得AD=AB+BD,进而可得9+x=,再解即可.【解答】解:由题意可知:CD⊥AD于D,∠ECB=∠CBD=45°,∠ECA=∠CAD=35°,AB=9.设CD=x,∵在Rt△CDB中,∠CDB=90°,∠CBD=45°,∴CD=BD=x,∵在Rt△CDA中,∠CDA=90°,∠CAD=35°,∴tan∠CAD=,∴AD=,∵AB=9,AD=AB+BD,∴9+x=,解得x=21,答:CD的长为21米.【点评】此题主要考查了解直角三角形的应用,关键是读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.(5分)已知:如图,ABCD是一块边长为2米的正方形铁板,在边AB上选取一点M,分别以AM和MB为边截取两块相邻的正方形板料.当AM的长为何值时,截取两块相邻的正方形板料的总面积最小?【分析】设AM的长为x米,则MB的长为(2﹣x)米,由题意得出y=x2+(x﹣2)2=2(x﹣1)2+2,利用二次函数的性质求解可得.【解答】解:设AM的长为x米,则MB的长为(2﹣x)米,以AM和MB为边的两个正方形面积之和为y平方米.根据题意,y与x之间的函数表达式为y=x2+(x﹣2)2=2(x﹣1)2+2,因为2>0于是,当x=1时,y有最小值,所以,当AM的长为1米时截取两块相邻的正方形板料的总面积最小.【点评】本题考查了二次函数的最值,二次项系数a决定二次函数图象的开口方向.①当a>0时,二次函数图象向上开口,函数有最小值;②a<0时,抛物线向下开口,函数有最大值.24.(5分)已知:如图,AB是半圆O的直径,D是半圆上的一个动点(点D不与点A,B 重合),∠CAD=∠B(1)求证:AC是半圆O的切线;(2)过点O作BD的平行线,交AC于点E,交AD于点F,且EF=4,AD=6,求BD的长.【分析】(1)经过半径的外端且垂直于这条半径的直线是圆的切线.欲证AC是半圆O的切线,只需证明∠CAB=90°即可;(2)由相似三角形的判定定理AA可以判定△AEF∽△BAD;然后根据相似三角形的对应边成比例,求得BD的长即可.【解答】解:(1)∵AB是半圆直径,∴∠BDA=90°,∴∠B+∠DAB=90°,又∵∠DAC=∠B,∴∠DAC+∠DAB=90°,即∠CAB=90°,∴AC是半圆O的切线.(2)由题意知,OE∥BD,∠D=90°,∴∠D=∠AFO=∠AFE=90°,∴OE⊥AD,∴∠AFE=∠D=∠AFO=90°,AF=AD=3,又∵AD=6∴AF=3.又∵∠B=∠DAE,∴△AEF∽△BAD,∴=,而EF=4,∴,解得BD=.【点评】本题考查了切线的判定、相似三角形的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.(5分)如图,AB=6cm,∠CAB=25°,P是线段AB上一动点,过点P作PM⊥AB交射线AC于点M,连接MB,过点P作PN⊥MB于点N.设A,P两点间的距离为xcm,P,N两点间的距离为ycm.(当点P与点A或点B重合时,y的值均为0)小海根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小海的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当y=0.5时,与之对应的x值的个数是2个.【分析】(1)利用取点,测量的方法,即可解决问题;(2)利用描点法,画出函数图象即可;(3)作出直线y=0.5与图象的交点,交点的个数是2个.【解答】解:(1)通过取点、画图、测量可得x=2.00cm时,y=0.91cm;(2)利用描点法,图象如图所示.(3)由图可知,当y=0.5时,与之对应的x值的个数是2个.故答案为2个.【点评】本题考查了动点问题的函数图象,坐标与图形的关系等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题.26.(7分)已知一次函数y1=x﹣1,二次函数y2=x2﹣mx+4(其中m>4).(1)求二次函数图象的顶点坐标(用含m的代数式表示);(2)利用函数图象解决下列问题:①若m=5,求当y1>0且y2≤0时,自变量x的取值范围;②如果满足y1>0且y2≤0时自变量x的取值范围内有且只有一个整数,直接写出m的取值范围.【分析】(1)利用配方法求二次函数的顶点坐标;(2)①把m=5代入y2,画图象,并求与x轴交点A、B、C三点的坐标,根据图象可得结论;②根据题意结合图象可知x=3,把x=3代入y2=x2﹣mx+4≤0,当x=4时,y2=x2﹣mx+4>0即可求得m的取值;【解答】解:(1)∵y2=x2﹣mx+4=(x﹣)2﹣+4,∴二次函数图象的顶点坐标为:(,﹣ +4)…(2)①当m=5时,y1=x﹣1,y2=x2﹣5x+4.…(4分)如图,当y1=0时,x﹣1=0,x=2,∵A(2,0),当y2=0时,x2﹣5x+4=0,解得:x=1或4,∴B(1,0),C(4,0),因为y1>0,且y2≤0,由图象,得:2<x≤4.…(5分)②当y1>0时,自变量x的取值范围:x>2,∵如果满足y1>0且y2≤0时的自变量x的取值范围内恰有一个整数,∴x=3,当x=3时,y2=32﹣3m+4≤0,解得m≥,当x=4时,y2>0,即16﹣4m+4>0,m<5,∴m的取值范围是:≤m<5.…(7分)【点评】本题考查了待定系数法求二次函数的解析式以及二次函数和一次函数的性质,以及利用函数图象解不等式,体现了数形结合的思想.27.(8分)已知:如图,AB为半圆O的直径,C是半圆O上一点,过点C作AB的平行线交⊙O于点E,连接AC、BC、AE,EB.过点C作CG⊥AB于点G,交EB于点H.(1)求证:∠BCG=∠EBG;(2)若sin∠CAB=,求的值.【分析】(1)根据直径所对的圆周角等于直角和平行线的性质证明即可;(2)在Rt△HGB与Rt△BCG中,利用三角函数的性质,即可求得的值.【解答】证明:(1)∵AB是直径,∴∠ACB=90°,∵CG⊥AB于点G,∴∠ACB=∠CGB=90°.∴∠CAB=∠BCG,∵CE∥AB,∴∠CAB=∠ACE.∴∠BCG=∠ACE又∵∠ACE=∠EBG∴∠BCG=∠EBG,(2)∵sin∠CAB=,∴,由(1)知,∠HBG=∠EBG=∠ACE=∠CAB∴在Rt△HGB中,.由(1)知,∠BCG=∠CAB在Rt△BCG中,.设GH=a,则GB=2a,CG=4a.CH=CG﹣HG=3a,∵EC∥AB,∴∠ECH=∠BGH,∠CEH=∠GBH∴△ECH∽△BGH,∴.【点评】此题考查了与圆的同弧所对的圆周角相等,以及相似三角形的性质与判定和三角函数的性质等.此题综合性较强,属于中档题,解题时要注意数形结合思想的应用.28.(8分)一般地,我们把半径为1的圆叫做单位圆,在平面直角坐标系xOy中,设单位圆的圆心与坐标原点O重合,则单位圆与x轴的交点分别为(1,0),(﹣1,0),与y轴的交点分别为(0,1),(0,﹣1).在平面直角坐标系xOy中,设锐角a的顶点与坐标原点O重合,a的一边与x轴的正半轴重合,另一边与单位圆交于点P(x1,y1),且点P在第一象限.(1)x1=c osα(用含a的式子表示);y1=sinα(用含a的式子表示);(2)将射线OP绕坐标原点O按逆时针方向旋转90°后与单位圆交于点Q(x2,y2).①判断y1与x2的数量关系,并证明;②y1+y2的取值范围是:1<y1+y2≤..【分析】(1)如图作PF⊥x轴于F,QE⊥x轴于E.则OF=OP•cosα,PF=OP•sinα,由此即可解决问题;(2)①过点P作PF⊥x轴于点F,过点Q作QE⊥x轴于点E.只要证明△QOE≌△OPF即可解决问题;②当P在x轴上时,得到y1+y2的最小值为1,由y1+y2=PF+QE=OE+OF=EF,四边形QEFP是直角梯形,PQ=,EF≤PQ,即可推出当EF=PQ=时,得到y1+y2的最大值为;【解答】解:(1)如图作PF⊥x轴于F,QE⊥x轴于E.则OF=OP•cosα,PF=OP•sinα,∴x1=cosα,y1=sinα,故答案为cosα,sinα;(2)①结论:y1=﹣x2.理由:过点P作PF⊥x轴于点F,过点Q作QE⊥x轴于点E.。

宁波市初三数学九年级上册期末模拟试题(卷)与答案解析

宁波市初三数学九年级上册期末模拟试题(卷)与答案解析

宁波市初三数学九年级上册期末模拟试题(卷)与答案解析一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=02.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .3 3.已知3sin 2α=,则α∠的度数是( ) A .30° B .45° C .60° D .90°4.下列是一元二次方程的是( )A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 5.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( )A .k >-1B .k≥-1C .k <-1D .k≤-1 6.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π 7.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒;②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ;③sin ∠ABS =32; ④点E 的运动速度为每秒2cm .其中正确的是( )A.①②③B.①③④C.①②④D.②③④8.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-29.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α10.如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC 相似的条件是()A.∠AED=∠B B.∠ADE=∠C C.AD DEAB BC=D.AD AEAC AB=11.方程2x x=的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1 12.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144 13.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.3B.234C 1433D223314.如图所示的网格是正方形网格,则sin A的值为()A .12B .22C .35D .4515.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:x … 0 1 3 4… y … 2 4 2 ﹣2 …则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间二、填空题 16.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________.17.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.18.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.19.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.20.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.21.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)22.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)23.在平面直角坐标系中,抛物线2y x 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.24.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.25.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.26.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.27.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.28.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)29.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.30.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题31.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅;(2)若43AB =,8AD =,求DG 的长.32.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况.(2)求点A 落在第三象限的概率.33.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.34.化简并求值: 22+24411m m m m m ++÷+-,其中m 满足m 2-m -2=0. 35.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标;(2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交抛物线于点D ,交线段AB 于点E .设运动时间为(0)t t >秒.①当t 为何值时,线段DE 长度最大,最大值是多少?(如图1)②过点D 作DF AB ⊥,垂足为F ,连结BD ,若BOC 与BDF 相似,求t 的值(如图2)四、压轴题36.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.37.已知,如图Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P为AC的中点,Q从点A运动到B,点Q运动到点B停止,连接PQ,取PQ的中点O,连接OC,OB.(1)若△ABC∽△APQ,求BQ的长;(2)在整个运动过程中,点O的运动路径长_____;(3)以O为圆心,OQ长为半径作⊙O,当⊙O与AB相切时,求△COB的面积.38.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC .(2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.39.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________40.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.3.C解析:C【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:由3sinα=,得α=60°,故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.5.C解析:C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根. 6.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.7.C解析:C【解析】【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确.设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确,2.5BS k =, 1.5SD k =,∴53BS SD =,设3SD x =,5BS x =,在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=, 2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.8.D解析:D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.9.D解析:D【解析】连接OC ,则有∠BOC=2∠A=2α,∵OB=OC ,∴∠OBC=∠OCB ,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.10.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.11.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x=,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.12.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.13.C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =23⨯=∴点H 的横坐标b ,∴a +b =33=; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,解直角三角形即可得到结论.解:设正方形网格中的小正方形的边长为1, 连接格点BC ,AD ,过C 作CE ⊥AB 于E ,∵224225AC BC =+==,BC =22,AD =2232AC CD +=, ∵S △ABC =12AB •CE =12BC •AD , ∴CE =223265525BC AD AB ⨯==, ∴6535525CE A sin CAB C ∠===, 故选:C .【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.15.D解析:D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:132x +=,232x =∵10-,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.二、填空题16.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答. 17.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.18.∠P=∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC=. 【详解】解:这个条件为:∠B=∠P∵∠PAB =∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.19.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.20.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.21.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB=【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或AD AE AB AC=.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵AD AEAB AC=,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或AD AE AB AC=【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 22.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】 试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 23.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.24.140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC 的内切圆的圆心,∴OB 、OC 为∠ABC 和∠ACB 的角平分线,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=40°, ∴∠BOC=180°-40°=140°.故答案为:140°【点睛】 本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.25.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74. 【点睛】 此题考查加权平均数,正确理解各数所占的权重是解题的关键.26.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,,所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 27.【解析】【分析】 【详解】试题分析:把x=2代入y=x ﹣2求出C 的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D 的横坐标是2,根据三角形的面积求出CD 的值,求出MD ,得出D 的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x ﹣2求出C 的纵坐标,得出OM=2,CM=1,根据CD ∥y 轴得出D 的横坐标是2,根据三角形的面积求出CD 的值,求出MD ,得出D 的纵坐标,把D 的坐标代入反比例函数的解析式求出k 即可.解:∵点C 在直线AB 上,即在直线y=12x ﹣2上,C 的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C (2,﹣1), ∴OM=2, ∵CD ∥y 轴,S △OCD =52, ∴12CD×OM=52, ∴CD=52, ∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.28.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.29.或【解析】【分析】分点C在优弧AB上和劣弧AB上两种情况讨论,根据切线的性质得到∠OAC的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.。

浙江省宁波市2019届九上学期期末模拟数学答案

浙江省宁波市2019届九上学期期末模拟数学答案
2018-2019 学年第一学期九年级期末测试数学试题卷 参考答案及评分建议
一、选择题(本题有 12 小题,每小题 4 分,共 48 分) 1 C 2 B 3 B 4 A 5 B 6 B 7 D 8 D 9 B 10 C 11 B 12 D
二、 填空题(本题有 6 小题,每小题 4 分,共 24 分) 13. x 3 14.不公平 15.
6分
20.解:(1)
1 ; 4 (2)画树状图为:
4分
6分 共有 12 种等可能的结果数,其中姐姐抽到 A 佩奇, 弟弟抽到 B 乔治的结果数为 1, 所以姐姐抽到 A 佩奇,弟弟抽到 B 乔治的概率=
1 . 12
8分
九年级数学答案第 1 页(共 6 页)
21.解:(1)在 Rt△ADC 中,∵ ADC 60, , CD 3 (米)
tanADC
AC , DC
∴ AC 3 tan60 3 3 (米) , 在 Rt△BDC 中, ∵ BDC 45,BC CD 3 米, ∴ AB AC (米) ﹣BC (3 3 3) (2)在 Rt△ADC 中, 4分
CD 3 3 , ,∴ AD 6 (米) cos60 0.5 AD 在 Rt△BDC 中, 3 3 CD ∵ cosBDC ∴ BD 3 2 (米) , BD cos 45 2 2
10 分
4分
8分
AP EP , PD PB 又∵ APD DPE BPE DPE, 即 APE DPB ∴ △APE∽△DPB, ∴ AEP DBP, 又∵ DBP PGB 90,PGB EGF,

九年级数学答案第 3 页(共 6 页)
九年级数学答案第 2 页(共 6 页)

2019-2020学年宁波市九年级上期末数学测试卷(含答案)

2019-2020学年宁波市九年级上期末数学测试卷(含答案)

浙江省宁波市江北区九年级(上)期末测试数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)若,则的值为()A.B.C.D.42.(4分)下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔3.(4分)下图是由3个相同的小正方体组成的几何体,则右边4个平面图形中是其左视图的是()A.B.C.D.4.(4分)已知在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.5.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则的值为()A.B.C.D.26.(4分)二次函数y=﹣(x﹣1)2+3图象的对称轴是()A..直线x=1 B.直线x=﹣1C.直线x=3 D.直线x=﹣37.(4分)圆锥的底面半径为10cm,母线长为15cm,则这个圆锥的侧面积是()A.100πcm2B.150πcm2C.200πcm2 D.250πcm28.(4分)如图,BC为半圆O的直径,A、D为半圆上的两点,若A为半圆弧的中点,则∠ADC=()A.105°B.120°C.135°D.150°9.(4分)已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y110.(4分)已知∠ADB,作图.步骤1:以点D为圆心,适当长为半径画弧,分别交DA、DB于点M、N;再分别以点M、N为圆心,大于MN长为半径画弧交于点E,画射线DE.步骤2:在DB上任取一点O,以点O为圆心,OD长为半径画半圆,分别交DA、DB、DE于点P、Q、C;步骤3:连结PQ、OC.则下列判断:①=;②OC∥DA;③DP=PQ;④OC垂直平分PQ,其中正确的结论有()A.①③④B.①②④C.②③④D.①②③④11.(4分)已知:如图,点D是等腰直角△ABC的重心,其中∠ACB=90°,将线段CD绕点C逆时针旋转90°得到线段CE,连结DE,若△ABC的周长为6,则△DCE的周长为()A.2B.2C.4 D.312.(4分)已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值小于0,则下列结论正确的是()A.x取m﹣1时的函数值小于0B.x取m﹣1时的函数值大于0C.x取m﹣1时的函数值等于0D.x取m﹣1时函数值与0的大小关系不确定二、填空题(每小题4分,共24分)13.(4分)二次函数y=x(x﹣6)的图象与x轴交点的横坐标是.14.(4分)已知⊙O的半径为r,点O到直线1的距离为d,且|d﹣3|+(6﹣2r)2=0,则直线1与⊙O的位置关系是.(填“相切、相交、相离”中的一种)15.(4分)在2×2的正方形网格中,每个小正方形的边长为1.以点O为圆心,2为半径画弧,交图中网格线于点A,B,则扇形AOB的面积是.16.(4分)如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(如∠O)为60°,A,B,C,D都在格点上,且线段AB、CD相交于点P,则tan∠APC的值是.17.(4分)将抛物线y=ax2+bx+c向左平移2个单位,再向下平移5个单位,得到抛物线y=x2+4x﹣1,则a+b+c= .18.(4分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有两个,则x的值是.三、解答题(共8小题,满分78分)19.(6分)计算:3tan30°+(﹣1)2018﹣(π﹣3)020.(8分)如图,广场上空有一个气球A,地面上点B、C在一条直线上,BC=22m.在点B、C分别测得气球A的仰角为30°、63°,求气球A离地面的高度.(精确到个位)(参考值:sin63°≈0.9,cos63°≈0.5,tan63°≈2.0)21.(8分)在一个不透明的袋子里有1个红球,1个黄球和n个白球,它们除颜色外其余都相同.(1)从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该实验,经过大量实验后,发现摸到白球的频率稳定于0.5左右,求n的值;(2)在(1)的条件下,先从这个袋中摸出一个球,记录其颜色,放回,摇均匀后,再从袋中摸出一个球,记录其颜色.请用画树状图或者列表的方法,求出先后两次摸出不同颜色的两个球的概率.22.(10分)如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,OC平分∠ACD,过点C作CE⊥DB,垂足为E,直线AB与直线CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=2,∠F=30°时,求BD的长.23.(10分)根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?24.(10分)如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.25.(12分)如图,矩形ABCD中,AB=3,AD=9,设AE=x.将△ABE沿BE翻折得到△ABE,点A落在矩形ABCD的内部,且∠AA′G=90°,若以点A'、G、C为顶点的三角形是直角三角形,求x的值.26.(14分)【给出定义】若四边形的一条对角线能将四边形分割成两个相似的直角三角形,那么我们将这种四边形叫做“跳跃四边形”,这条对角线叫做“跳跃线”.【理解概念】(1)命题“凡是矩形都是跳跃四边形”是命题(填“真”或“假”).(2)四边形ABCD为“跳跃四边形”,且对角线AC为“跳跃线”,其中AC⊥CB,∠B=30°,AB=4,求四边形ABCD的周长.【实际应用】已知抛物线y=ax2+m(a≠0)与x轴交于B(﹣2,0),C两点,与直线y=2x+b交于A,B两点.(3)直接写出C点坐标,并求出抛物线的解析式.(4)在线段AB上有一个点P,在射线BC上有一个点Q,P,Q两点分别以个单位/秒,5个单位/秒的速度同时从B出发,沿BA,BC方向运动,设运动时间为t,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M,使得四边形BQMP是以PQ为“跳跃线”的“跳跃四边形”,若存在,请直接写出t的值;若不存在,请说明理由.参考答案一、选择题1.A.2.D.3.A.4.A.5.C.6.A.7.B.- 8.C.9.C.10.B.11.A.12.B.二、填空13.0或6.14.相切.15..16..17.1.18.4或x=4或x=2.三、解答题19.【解答】解:原式=3×+1﹣1=.-20.【解答】解:如图,过点A 作AD ⊥l ,设AD=x ,则BD===x ,∴tan63°==2,∴AD=x=8+4, ∴气球A 离地面的高度约为18m . 21.【解答】解:(1)根据题意,得: =,解得n=2;(2)画树状图如下:由树状图知,共有16种等可能结果,其中先后两次摸出不同颜色的两个球的结果数为10,∴先后两次摸出不同颜色的两个球的概率为=.22.∴∠ACO=∠OCD,∵∠A=∠D=∠ACO,∴∠D=∠OCD,∴OC∥DE,∵DE⊥CF,∴OC⊥CF,∴CF为⊙O的切线;(2)连接AD,∵BE∥OC,∴△FEB∽△FCO,∴,解得:r=2,∴AB=4,∵∠ABD=60°,∴BD=2.23.【解答】解:(1)∵函数y2=ax2+bx+c的图象经过(0,0),(1,2),(4,5),∴,解得,∴y2=﹣x2+x.(2)w=(8﹣t)﹣t2+=﹣(t﹣4)2+6,∴t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.24.【解答】解:如图所示:如图所示,格点三角形的面积最大,S=2×8﹣×2×3﹣×1×5﹣×1×8=6.525.【解答】解:①如图①,∠GA'C=90°,∵∠AA'G=90°,∴点A、A'、C在同一直线上,∠BAE=∠ADC=90°,∠ABE=∠DAC,∴△ABE∽△ADC,∴,即解得:x=1;②如图②,∠A'GC=90°,∴∠DGC=∠GAA'=∠ABE,∴△ABE∽△DGC,∵AE=EA'=EG=x,∴,解得:(舍去),综上所述,x=1或1.5.26.【解答】解:【理解概念】:(1)∵矩形的对角线所分的两个三角形全等∴凡是矩形都是跳跃四边形是真命题故答案为真(2)∵AC⊥BC,∠B=30°,AB=4∴AC=2,BC=6当∠CAD=90°时,如图1:∵四边形ABCD为“跳跃四边形”∴△ABC∽△CAD∴=或∴AD=2,CD=4或AD=6,CD=4∴四边形ABCD的周长=AB+BC+CD+AD=2+4+4+6=12+4或四边形ABCD的周长=AB+BC+CD+AD=6+4+6+4=12+8若∠ADC=90°如图2:∵四边形ABCD为“跳跃四边形”∴△ABC∽△CAD∴或∴AD=,CD=3或A D=3,CD=∴四边形ABCD的周长=AB+BC+CD+AD=6+4+3+=9+5或四边形ABCD的周长=AB+BC+CD+AD=6+4+3+=9+5综上所述:四边形ABCD的周长为12+4或12+8或9+5【实际应用】(3)∵抛物线y=ax2+m(a≠0)与x轴交于B(﹣2,0),C两点∴顶点坐标为(0,m),对称轴为y轴,点B,点C关于对称轴对称∴点C(2,0)∵抛物线y=ax2+m与直线y=2x+b交于点A,点B∴∴m=b=4,a=﹣1∴抛物线解析式y=﹣x2+4∵P,Q两点分别以个单位/秒,5个单位/秒的速度∴设运动时间为t∴BP=t,BQ=5t∵点A(0,4),点B(﹣2,0)∴OA=4,OB=2∴AB=2∵且∠ABO=∠PBQ∴△ABO∽△PBQ∴∠AOB=∠BPQ=90°∵四边形BQMP是以PQ为“跳跃线”的“跳跃四边形∴△BPQ∽△PQM∴△PQM是直角三角形①若∠PQM=90°时,且BP与QM是对应边,作PD⊥BC,作ME⊥BC.如图3∵△BPQ∽△PQM∴=1∴BP=QM,PM=BQ∴四边形BPMQ是平行四边形∴BP∥QM∴∠PBD=∠MQE∵BP=MQ,∠PBD=∠MQE,∠PDB=∠MEQ ∴△BPD≌△MQE∴PD=ME,BD=QE∵PD∥AO∴∴=∴BD=t,PD=2t∴QE=t,ME=2t∴OE=BQ+QE﹣BO=6t﹣2∴M(6t﹣2,2t),且点M在抛物线上∴2t=﹣(6t﹣2)2+4∴t=②若∠PQM=90°时,且BP与PQ是对应边,作PD⊥BC,作ME⊥BC.如图4∵△BPD∽△MQE∴即∴QM=4t∵∠BQP+∠PBQ=90°,∠BQP+∠MQE=90°∴∠PBQ=∠MQE且∠BPQ=∠MEQ=90°∴△BPQ∽△MEQ∴∴ME=8t,QE=4t∴OE=BQ+QE﹣BO=9t﹣2∴M(9t﹣2,8t),且点M在抛物线上∴8t=﹣(9t﹣2)2+4∴t=③若∠PMQ=90°,BP与MQ是对应边,过点P作PD⊥BC∵△BPQ∽△MQP∴∠PQB=∠MPQ∴PM∥BC∵MQ⊥PM∴MQ⊥BC,且PD⊥BC∴MQ∥PD∴四边形PDQM是平行四边形且PD⊥BC∴四边形PDQM是矩形∴PD=MQ∵BD=t,PD=2t,BQ=5t∴QM=2t∵OQ=BQ﹣BO=5t﹣2∴M(5t﹣2,2t)且点M在抛物线上∴2t=﹣(5t﹣2)2+4∴t=若若∠PMQ=90°,BP与MP是对应边,过点M作EF∥BC,过点P作PD⊥BC,延长DP交EF于F,过点Q作EQ⊥EF于F.∵△BPQ∽△PMQ∴∠MQP=∠BQP又∵PD⊥BC,PM⊥MQ∴PD=PM=2t∵PD=PM,PQ=PQ∴△PDQ≌△PQM∴MQ=DQ=BQ﹣BD=5t﹣t=4t∵FE∥BC,EQ⊥EF,DFBC∴DF⊥EF,EQ⊥BC∴四边形EFDQ是矩形∴EF=DQ=4t∵∠FMP+∠FPM=90°,∠EMQ+∠FMP=90°∴∠FPM=∠EMQ且∠E=∠MFD=90°∴△FMP∽△MEQ∴∴EQ=2FM在Rt△MEQ中,MQ2=EQ2+ME2∴(4t)2=(2FM)2+(4t﹣FM)2∴FM=t∴EQ=t∴M(t﹣2, t),且点M在抛物线上∴t=﹣(t﹣2)2+4∴t=综上所述:使得四边形BQMP是以PQ为“跳跃线”的“跳跃四边形”的时间t的值为:t=,t=,t=,t=。

∥3套精选试卷∥2019年宁波市九年级上学期期末考前模拟数学试题

∥3套精选试卷∥2019年宁波市九年级上学期期末考前模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣23B .13π﹣3C .43π﹣23D .43π﹣3 【答案】C【解析】分析:连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 菱形ABCO ﹣S 扇形AOC 可得答案.详解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=1, 在Rt △COD 中利用勾股定理可知:22213-=,3 ∵sin ∠COD= 3CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=1233, S 扇形AOC =2120243603ππ⨯⨯=, 则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =4233π-故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r,有一定的难度.2.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:1.A.1个B.2个C.3个D.4个【答案】A【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项.【详解】①两边成比例且夹角对应相等的两个三角形相似,故错误;②对角线相等的平行四边形是矩形,故错误;③任意四边形的中点四边形是平行四边形,正确;④两个相似多边形的面积比2:3,则周长比为2:3,故错误,正确的有1个,故选A.【点睛】本题考查命题与定理,解题的关键是掌握相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质.3.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是23cm,则这个正六边形的周长是()A.12 B.63C.36 D.123【答案】D【分析】由正六边形的性质证出△AOB是等边三角形,由等边三角形的性质得出AB=OA,即可得出答案【详解】设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,3cm,∴△AOB是等边三角形,∴3,∴正六边形ABCDEF的周长3故选D【点睛】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB是等边三角形是解题关键. 4.已知两个相似三角形,其中一组对应边上的高分别是2和6,那么这两个三角形的相似比为()A.12B.13C.14D.16【答案】B【分析】根据相似三角形对应高的比等于相似比,即可得出结论. 【详解】解:∵相似三角形对应高的比等于相似比∴ 相似比=1 3故选B【点睛】此题主要考查了相似三角形的性质,相似三角形对应高的比等于相似比,熟记相关性质是解题的关键. 5.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为()A.2或-2 B.2 C.-2 D.0【答案】B【分析】根据一元二次方程的定义可得:|m|=1,且m+1≠0,再解即可.【详解】解:由题意得:|m|=1,且m+1≠0,解得:m=1.故选:B.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”.6.若35a b =,则a b b -的值是( ) A .25 B .25- C .85 D .85- 【答案】B【分析】解法一:将a b b-变形为1-a b ,代入数据即可得出答案. 解法二:设3a k =,5b k =,带入式子约分即可得出答案.【详解】解法一:32=155--=-=-a b a b b b b 解法二:设3a k =,5b k =则352=55--=-a b k k b k 故选B.【点睛】本题考查比例的性质,将比例式变形,或者设比例参数是解题的关键.7.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④【答案】D 【解析】试题解析:∵AE=13AB , ∴BE=2AE ,由翻折的性质得,PE=BE ,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP )=12(180°﹣60°)=60°, ∴∠EFB=90°﹣60°=30°,∴EF=2BE ,故①正确;∵BE=PE ,∴EF=2PE ,∵EF >PF ,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.8.如图,平行四边形ABCD中,M为BC边的中点,DM交AC于点E,则图中阴影部分面积与平行四边形ABCD的面积之比为()A.1:2B.2:5C.5:12D.6:13【答案】C【分析】根据等底等高的三角形面积比和相似三角形的相似比推出阴影部分面积.【详解】设平行四边形的边AD=2a,AD边上的高为3b;过点E作EF⊥AD交AD于F,延长FE交BC于G∴平行四边形的面积是6ab∴FG=3b∵AD∥BC∴△AED∽△CEM∵M是BC边的中点,∴2EF AD EG MC==, ∴EF=2b ,EG=b ∴1122CEM S EG CM ab =⨯= ∵1322CDM ACM S S FG CM ab ==⨯= ∴CDE CDM CEM S S S ab =-=∴阴影部分面积=52ACM CDE S S ab =+= ∴阴影部分面积:平行四边形ABCD 的面积=5:65:122ab ab = 故选:C .【点睛】本题主要考查了相似三角形的性质,相似三角形的对应边上的高线的比等于相似比.9.若23a b =,则32a b a b -+的值是( ) A .75 B .23 C .125 D .0【答案】D 【分析】设23a b k ==,则a=2k ,b=3k ,代入式子化简即可. 【详解】解:设23a b k ==, ∴a=2k ,b=3k ,∴32a b a b-+=322323k k k k ⨯-⨯+=0, 故选D.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.10.在同一时刻,两根长度不等的竿子置于阳光之下,而它们的影长相等,那么这两根竿子的相对位置是( )A .两根都垂直于地面B .两根平行斜插在地上C .两根不平行D .两根平行倒在地上【答案】C【分析】在不同时刻,同一物体的影子方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在变,依此进行分析.【详解】在同一时刻,两根竿子置于阳光下,但看到他们的影长相等,那么这两根竿子的顶部到地面的垂直距离相等,而竿子长度不等,故两根竿子不平行,故答案选择C.【点睛】本题考查投影的相关知识,解决此题的关键是掌握平行投影的特点.11.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,也是中心对称图形,故本选项符合题意;B 、不是轴对称图形,不是中心对称图形,故本选项不合题意;C 、是轴对称图形,不是中心对称图形,故本选项不合题意;D 、是轴对称图形,不是中心对称图形,故本选项不合题意.故答案为A .【点睛】本题考查了中心对称图形和轴对称图形的概念,理解这两个概念是解答本题的关键.12.将抛物线2y x =-向右平移3个单位后,得到的抛物线的解析式是( )A .23()y x =-+B .2(3)y x =--C .23y x =-+D .23=--y x【答案】B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向右平移3个单位长度得点(0,3),然后根据顶点式写出平移后的抛物线解析式.【详解】解:将抛物线2y x =-向右平移3个单位后,得到的抛物线的解析式2(3)y x =--. 故选:B【点睛】本题考查的是抛物线的平移.抛物线的平移可根据平移规律来写,也可以移动顶点坐标,根据平移后的顶点坐标代入顶点式,即可求解.二、填空题(本题包括8个小题)13.若A (-2,a ),B (1,b ),C (2,c )为二次函数()219y x =+-的图象上的三点,则a ,b ,c 的大小关系是__________________.(用“<”连接)【答案】a <b <c【分析】先求出二次函数的对称轴,再根据点到对称轴的距离远近即可解答.【详解】由二次函数的解析式可知,对称轴为直线x=-1,且图象开口向上,∴点离对称轴距离越远函数值越大,∵-1-(-2)=1,1-(-1)=2,2-(-1)=3,∴a <b <c ,故答案为:a <b <c.【点睛】此题主要考查二次函数图象上点的坐标特征,熟练掌握二次函数的顶点式以及图象上点的坐标特征是解答的关键.14.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有________种【答案】1.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】解:由题意:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD 为平行四边形;①③可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;①④可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;∴有1种可能使四边形ABCD 为平行四边形.故答案是1.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.15.点(2,5)在反比例函数k y x =的图象上,那么k =_____. 【答案】1【分析】直接把点(2,5)代入反比例函数k y x=求出k 的值即可. 【详解】∵点(2,5)在反比例函数k y x=的图象上, ∴5=2k , 解得k =1.故答案为:1.【点睛】此题考查求反比例函数的解析式,利用待定系数法求函数的解析式.16.方程x 2=4的解是_____.【答案】2±【分析】直接运用开平方法解答即可.【详解】解:∵x 2=4∴x =2±.故答案为2±.【点睛】本题主要考查了运用开平方法求解一元二次方程,牢记运用开平方法求的平方根而不是算术平方根是解答本题的关键,也是解答本题的易错点.17.一元二次方程x 2=3x 的解是:________.【答案】x 1=0,x 2=1【分析】先移项,然后利用因式分解法求解.【详解】x 2=1xx 2-1x=0,x(x-1)=0,x=0或x-1=0,∴x 1=0,x 2=1.故答案为x 1=0,x 2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解18.分式方程241512(1)x x x +---=1的解为_____ 【答案】x=0.1【解析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.详解:方程两边都乘以2(x 2﹣1)得,8x+2﹣1x ﹣1=2x 2﹣2,解得x 1=1,x 2=0.1,检验:当x=0.1时,x ﹣1=0.1﹣1=﹣0.1≠0,当x=1时,x ﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.三、解答题(本题包括8个小题)19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣1,5)、B(﹣2,0)、C(﹣4,3).(1)请在图中画出△ABC关于y轴对称的图形△A1B1C1:(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴的左侧画出△A2B2C2,并求出△A2B2C2的面积.【答案】(1)详见解析;(2)图详见解析,138.【分析】(1)利用关于y轴的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)把A、B、C点的横纵坐标都乘以12得到A2、B2、C2的坐标,再描点得到△A2B2C2,然后计算△ABC的面积,再把△ABC的面积乘以14得到△A2B2C2的面积.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,△ABC的面积=3×5﹣12×2×3﹣12×1×5﹣12×2×3=132,所以△A2B2C2的面积=14×132=138【点睛】本题考查了作图−轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.20.春节前,某超市从厂家购进某商品,已知该商品每个的成本价为30元,经市场调查发现,该商品每天的销售量y (个)与销售单价x (元) 之间满足一次函数关系,当该商晶每个售价为40元时,每天可卖出300个;当该商晶每个售价为60元时,每天可卖出100个.(1)y 与x 之间的函数关系式为__________________(不要求写出x 的取值范围) ;(2)若超市老板想达到每天不低于220个的销售量,则该商品每个售价定为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)10 700y x =-+;(2)该商品每个售价定为48元时,每天的销售利润最大,最大利润是3960元【分析】(1)设y=kx+b ,再根据每个售价为40元时,每天可卖出300个;当该商晶每个售价为60元时,每天可卖出100个,列方程组,从而确立y 与x 的函数关系为y=−10x+700;(2)设利润为W ,则()() 3010 700W x x =--+,将其化为顶点式,由于对称轴直线不在3048x <≤之间,应说明函数的增减性,根据单调性代入恰当自变量取值,即可求出最大值.【详解】解:(1)设y 与x 之间的函数解析式为y=kx+b ,由题意得,4030060100k b k b +=⎧⎨+=⎩, 解得:10700k b =-⎧⎨=⎩, ∴y 与x 之间的函数解析式为y=−10x+700.故答案为.10 700y x =-+(2)设每天销售利润为W 元,由题意得()()()22 3010 700 10 0002100010 50 4000W x x x x x =--+=-+-=--+由于10700220x -+≥,得48x ≤∴3048x <≤又100-<,.当50x <时, W 随着x 的增大而增大∴当48x =时,W 取最大值,最大值为()2104850 4000 3960x --+=答:该商品每个售价定为48元时,每天的销售利润最大,最大利润是3960元.【点睛】本题考查了一次函数与二次函数的实际应用,同时考查了由二次函数图象的对称性及增减性分析解决实际问题的能力.21.如图,已知AD ∥BE ∥CF ,直线l 1、l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .若23=AB BC ,DE =6,求EF 的长.【答案】1 【分析】根据平行线分线段比例定理得到AB DE BC EF =,即263EF=,解得EF=1. 【详解】解:∵AD ∥BE ∥CF , ∴AB ED BC EF=, ∵AB BC =23,DE =6, ∴263EF =, ∴EF =1.【点睛】本题的考点是平行线分线段成比例.方法是根据已知条件列出相应的比例式,算出答案即可.22.列一元二次方程解应用题某公司今年1月份的纯利润是20万元,由于改进技术,生产成本逐月下降,3月份的纯利润是22.05万元.假设该公司2、3、4月每个月增长的利润率相同.(1)求每个月增长的利润率;(2)请你预测4月份该公司的纯利润是多少?【答案】(1)每个月增长的利润率为5%.(2)4月份该公司的纯利润为23.1525万元.【分析】(1)设出平均增长率,根据题意表示出1月份和3月份的一元二次方程即可解题,(2)根据上一问求出的平均增长率,用3月份利润即可求出4月份的纯利润.【详解】解:(1)设每个月增长的利润率为x ,根据题意得:20×(1+x )2=22.05,解得:x 1=0.05=5%,x 2=﹣2.05(不合题意,舍去).答:每个月增长的利润率为5%.(2)22.05×(1+5%)=23.1525(万元).答:4月份该公司的纯利润为23.1525万元.【点睛】本题考查了一元二次方程的实际应用,属于简单题,理解平均增长率的含义是解题关键.23.如图,在平面直角坐标系中,点A 的坐标为()10,0,点B 在第一象限,BO AO =,点C 是OA 上一点,2OC =,4sin 5AOB ∠=.(1)求证:ABO ACB ∆∆∽;(2)求cos ABO ∠的值.【答案】(1)证明见解析;(2)cos ∠ABO=5 【分析】(1)过点B 作BD OA ⊥点D ,在Rt BOD 中,利用锐角三角函数的知识求出BD 的长,再用勾股定理求出OD 、AB 、BC 的长, 所以AB=BC ,从而得到∠ACB=∠BAO ,然后根据两角分别相等的两个三角形相似解答即可;(2)在Rt ABD △中求出∠BAO 的余弦值,根据∠ABO=∠BAO 可得答案.【详解】(1)在平面直角坐标系中,点A 的坐标为(10,0),10OA ∴=,BO AO =,10BO ∴=,∠OAB=∠ABO ,过点B 作BD OA ⊥点D ,则90BDO BDA ︒∠=∠=,在Rt BOD 中,4sin 5AOB ∠=, 4sin 1085BD BO AOB ∴=⋅∠=⨯=, 22221086OD BO BD ∴=--=,4AD OA OD ∴=-=,在Rt ABD △中,22224845AB AD BD ++=,2OC =,∴CD=6-2=4,∴22228445BD CD +=+=∴AB=BC ,∴∠ACB=∠BAO ,∴∠ACB=∠ABO=∠BAO ,又∵∠BAC=∠OAB ,~ABO ACB ∴(两角分别相等的两个三角形相似); (2)在Rt ABD △中, 5cos 45AD BAO AB ∠===, ∵∠ABO=∠BAO ,5cos cos ABO BAO ∴∠=∠=, 即cos ABO ∠的值为5. 【点睛】 本题考查了坐标与图形的性质,解直角三角形,等腰三角形的判定与性质,勾股定理等知识,正确作出辅助线是解答本题的关键.24.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)用画树状图法或列表法分析这两辆汽车行驶方向所有可能的结果;(2)求一辆车向右转,一辆车向左转的概率;(3)求至少有一辆车直行的概率.【答案】(1)见解析;(2)P (一辆车向右转,一辆车向左转)29=.(3)P (至少有一辆汽车直行)59=. 【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)根据(1)中所画的树状图,即可求出答案;(3)根据(1)中所画的树状图,即可求出答案.【详解】解:(1)如图:可以看出所有可能出现的结果共9种,即:直左,直直,直右,左左,左直,左右,右直,右左,右右.它们出现的可能性相等.(2)一辆车向右转,一辆车向左转的结果有2种,即:左右,右左.∴P (一辆车向右转,一辆车向左转)29=. (3)至少有一辆汽车直行的结果有5种,即:左直,直左,直直,直右,右直.∴P (至少有一辆汽车直行)59=.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 25.小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE ,箱长BC ,拉杆AB 的长度都相等,,B F 在AC 上,C 在DE 上,支杆30:1:3=,=,DF cm CE CD 4530∠︒∠︒=,=DCF CDF ,请根据以上信息,解决下列向题.()1求AC 的长度(结果保留根号); ()2求拉杆端点A 到水平滑杆ED 的距离(结果保留根号).【答案】(1)40403=+AC ;(2)202206cm.【解析】()1过F 作FH DE ⊥于H ,90FHC FHD ∠∠︒==,根据3030FDC DF ∠︒=,=,求出13151532FH DF DH ==,==,再求出CD ,根据:1:3CE CD =,求出DE,即可求出AC; ()2过A 作AG ED ⊥交ED 的延长线于G ,根据45ACG ∠︒=,求出22022062AG AC ==可.【详解】解:()1过F 作FH DE ⊥于H ,90FHC FHD ∴∠∠︒==,3030FDC DF ∠︒=,=, 13151532FH DF DH DF ∴==,==, 45FCH ∠︒=,15CH FH ∴==, 15153CD CH DH ∴=+=+:1:3CE CD =,4202033DE CD ∴+==, AB BC DE ==,40403AC cm ∴=+();()2过A 作AG ED ⊥交ED 的延长线于G ,45ACG ∠︒=,2202206AG AC ∴+==, 答:拉杆端点A 到水平滑杆ED 的距离为()202206cm +.【点睛】本题考查的是三角形的实际应用,熟练掌握三角形的性质是解题的关键.26.如图,F 是ABC ∆中AB 边上的中点,//FM AC 交BC 于点M ,C 是BDF ∆中BD 边上的中点,且AC 与DF 交于点E .(1)求EC AC的值. (2)若,AB m BF CE ==,求AC 的长. (用含m 的代数式表示)【答案】(1)13EC AC =;(2)32m 【分析】(1)通过证明FMD ECD ∆∆,再根据相似三角形对应边成比例即可求出;(2)设AB=m ,由F 是ABC ∆中AB 边上的中点,可得1122FB AB m ==,进而得出12EC m =,根据题意,进而得出332AC EC m == 【详解】解:(1)∵F 为AB 的中点,//FM AC ,∴M 为BC 的中点,12FM AC =,∴,CED MFD ECD FMD ∠=∠∠=∠,∴FMDECD ∆∆, ∴23DC EC DM FM ==, ∴22113323EC FM AC AC ==⨯=, ∴13EC AC =. (2)∵AB m =,∴1122FB AB m ==. ∵FB EC =,∴12EC m =. ∵13EC AC =, ∴332AC EC m ==.【点睛】本题考查了相似三角形的判定及性质和三角形的中位线定理,熟练掌握相关性质结合题目条件论证是解题的关键.27.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A ,C 两点,与x 轴的另一交点为点B . (1)求抛物线解析式.(2)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为213222y x x =--+;(2)抛物线存在点M ,点M 的坐标(32)-,或(0)2,或(2,3)-或(5,18)-【分析】(1)根据自变量与函数值的对应关系,可得A 、C 点坐标,根据函数值相等的两点关于对称轴对称,可得B 点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【详解】解:(1)当x =0时,y =2,即C (0,2),当y =0时,12x+2=0,解得x =﹣4,即A (﹣4,0). 由A 、B 关于对称轴对称,得B (1,0).将A 、B 、C 点坐标代入函数解析式,得164002a b c a b c c ⎧-+=⎪++=⎨⎪=⎩,解得12322a b c ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 抛物线的解析式为y =﹣12x 2﹣32x+2; (2)①当点M 在x 轴上方时,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,如图,设M (m ,﹣12x 2﹣32x+2),N (m ,0). AN =m+4,MN =﹣12m 2﹣32m+2, 由勾股定理,得AC 2225AO OC +=,BC 225OB OC +=∵AC 2+BC 2=AB 2,∴∠ACB =90°,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时点M 与点C 重合,M (0,2).当△ANM ∽△BCA 时,∠MAN =∠ABC ,此时M 与C 关于抛物线的对称轴对称,M (﹣3,2).②当点M 在x 轴下方时,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时直线AM 的解析式为y =﹣12x ﹣2, 由212213222y x y x x ⎧=--⎪⎪⎨⎪=--+⎪⎩,解得40x y ⎧=-⎨=⎩或23x y ⎧=⎨=-⎩, ∴M (2,﹣3),当△ANM ′∽△BCA 时,∠MAN =∠ABC ,此时AM ′∥BC ,∴直线AM ′的解析式为y =﹣2x ﹣8, 由22813222y x y x x ⎧=--⎪⎨=--+⎪⎩,解得40x y ⎧=-⎨=⎩或518x y ⎧=⎨=-⎩, ∴M (5,﹣18)综上所述:抛物线存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,点M 的坐标(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【点睛】本题主要考查了二次函数的综合,准确计算是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若n<8+1<n+1,则整数n为()A.2 B.3 C.4 D.5【答案】B【解析】先估算出8的大小,再估算出8+1的大小,从而得出整数n的值.【详解】∵2<8<3,∴3<8+1<4,∴整数n为3;故选:B.【点睛】本题主要考查算术平方根的估算,理解算术平方根的定义,是解题的关键.2.如图,在Rt ABC中,CD是斜边AB上的高,则图中的相似三角形共有()A.1对B.2对C.3对D.4对【答案】C【分析】根据相似三角形的判定定理及已知即可得到存在的相似三角形.【详解】∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD,△ACD∽△CBD,△ABC∽△CBD所以有三对相似三角形,故选:C.【点睛】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似.3.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.112B.512C.16D.12【答案】A【解析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是黄灯的概率为多少. 【详解】根据题意可知,每分钟内黄灯亮的时间为秒,每分钟内黄灯亮的概率为516012P ==,故抬头看是黄灯的概率为112. 故选A. 【点睛】本题主要考查求随机事件概率的方法,熟悉掌握随机事件A 的概率公式是关键. 4.若|m|=5,|n|=7,m+n <0,则m ﹣n 的值是( ) A .﹣12或﹣2 B .﹣2或12C .12或2D .2或﹣12【答案】C【分析】根据题意,利用绝对值的意义求出m 与n 的值,再代入所求式子计算即可. 【详解】解:∵|m|=5,|n|=7,且m+n <0, ∴m =5,n =﹣7;m =﹣5,n =﹣7, 可得m ﹣n =12或2, 则m ﹣n 的值是12或2. 故选:C. 【点睛】本题考查了绝对值的意义,掌握绝对值的意义求值是关键. 5.下列命题中,为真命题的是( ) A .同位角相等 B .相等的两个角互为对顶角 C .若a 2=b 2,则a =b D .若a >b ,则﹣2a <﹣2b【答案】D【解析】根据同位角、对顶角和等式以及不等式的性质,逐一判断选项,即可. 【详解】A 、两直线平行,同位角相等,原命题是假命题; B 、相等的两个角不一定互为对顶角,原命题是假命题; C 、若a 2=b 2,则a =b 或a =﹣b ,原命题是假命题; D 、若a >b ,则﹣2a <﹣2b ,是真命题; 故选:D . 【点睛】本题主要考查真假命题的判断,熟练掌握常用的公理,定理,推论和重要结论,是解题的关键.6.在平面直角坐标系内,将抛物线221y x =-先向右平移2个单位,再向下平移3个单位,得到一条新的抛物线,这条新抛物线的顶点坐标是( ) A .()2,4-B .()2,4-C .()2,3-D .()2,3-【答案】B【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【详解】抛物线221y x =-的顶点坐标为(0,−1), ∵向右平移2个单位,再向下平移3个单位, ∴平移后的抛物线的顶点坐标为(2,−4). 故选B . 【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.7.如图,在正方形ABCD 中,BPC △是等边三角形,、BP CP 的延长线分别交AD 于点E F 、,连结,BD DP BD 、与CF 相交于点H .给出下列结论,①△ABE ≌△DCF ;②△DPH 是等腰三角形;③233PF AB -=;④ABCD 314PBD S S -=四边形, 其中正确结论的个数是( )A .4B .3C .2D .1【答案】A【分析】①利用等边三角形的性质以及正方形的性质得出∠ABE=∠DCF=30°,再直接利用全等三角形的判定方法得出答案;②利用等边三角形的性质结合正方形的性质得出∠DHP=∠BHC=75°,进而得出答案; ③利用相似三角形的判定与性质结合锐角三角函数关系得出答案;④根据三角形面积计算公式,结合图形得到△BPD 的面积=△BCP 的面积+△CDP 面积-△BCD 的面积,得出答案.【详解】∵△BPC 是等边三角形, ∴BP=PC=BC ,∠PBC=∠PCB=∠BPC=60°, 在正方形ABCD 中,∵AB=BC=CD ,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,在△ABE 与△CDF 中,A ADC ABE DC AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF ,故①正确; ∵PC=BC=DC ,∠PCD=30°, ∴∠CPD=75°,∵∠DBC=45°,∠BCF=60°,∴∠DHP=∠BHC=1804560︒-︒-︒=75°, ∴PD=DH ,∴△DPH 是等腰三角形,故②正确; 设PF=x ,PC=y ,则DC=AB=PC=y , ∵∠FCD=30°, ∴cos30CD y CF x y ︒==+,即()3y x y =+, 整理得:33122y x ⎛⎫-= ⎪ ⎪⎝⎭解得:2333x y -=, 则233PF AB -=,故③正确; 如图,过P 作PM ⊥CD ,PN ⊥BC ,设正方形ABCD 的边长是4, ∵△BPC 为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4, ∴∠PCD=30°,∴360423PN PB sin =︒==130422PM PC sin =︒=⨯=, S △BPD =S 四边形PBCD -S △BCD =S △PBC +S △PDC -S △BCD111222BC PN CD PM BC CD =+- 1114234244222=⨯⨯+⨯⨯-⨯⨯ 4348=+-434=-,∴ABCD31PBDSS -=四边形,故④正确; 故正确的有4个, 故选:A . 【点睛】本题考查了正方形的性质以及全等三角形的判定等知识,解答此题的关键是作出辅助线,利用锐角三角函数的定义表示出出FE 及PC 的长是解题关键.8.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm【答案】B【分析】先过点O 作OD ⊥AB 于点D ,连接OA ,由垂径定理可知AD =12AB ,设OA =r ,则OD =r ﹣2,在Rt △AOD 中,利用勾股定理即可求出r 的值.【详解】解:如图所示:过点O 作OD ⊥AB 于点D ,连接OA , ∵OD ⊥AB , ∴AD =12AB =4cm , 设OA =r ,则OD =r ﹣2,在Rt △AOD 中,OA 2=OD 2+AD 2,即r 2=(r ﹣2)2+42, 解得r =5cm .∴该输水管的半径为5cm ; 故选:B .【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用. 9.函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,则m 的值为( ) A .0 B .0或2C .0或2或﹣2D .2或﹣2【答案】C【分析】根据函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,利用分类讨论的方法可以求得m 的值,本题得以解决.【详解】解:∵函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点, ∴当m =0时,y =2x +1,此时y =0时,x =﹣0.5,该函数与x 轴有一个交点, 当m ≠0时,函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点, 则△=(m +2)2﹣4m (12m +1)=0,解得,m 1=2,m 2=﹣2, 由上可得,m 的值为0或2或﹣2, 故选:C . 【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答. 10.己知点()()()1233,,2,,3,A y B y C y --都在反比例函数4y x=的图象上,则( ) A .123y y y << B .321y y y <<C .312y y y <<D .213y y y <<【答案】D【解析】试题解析:∵点A (1,y 1)、B (1,y 1)、C (-3,y 3)都在反比例函数y=4x的图象上, ∴y 1=-43;y 1=-1;y 3=43, ∵43>-43>-1, ∴y 3>y 1>y 1. 故选D .11.二次函数y=a (x+k )2+k ,无论k 为何实数,其图象的顶点都在( ) A .直线y=x 上 B .直线y=﹣x 上C .x 轴上D .y 轴上【答案】B。

(汇总3份试卷)2019年宁波市海曙某名校九年级上学期数学期末考前冲刺必刷模拟试题

(汇总3份试卷)2019年宁波市海曙某名校九年级上学期数学期末考前冲刺必刷模拟试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知点A是双曲线y=2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为( )A.n=-2m B.n=-2mC.n=-4m D.n=-4m【答案】B【解析】试题分析:首先根据点C的坐标为(m,n),分别求出点A为(2n,n),点B的坐标为(-2n,-n),根据图像知B、C的横坐标相同,可得-2n=m.故选B点睛:此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x轴、y轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.2.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程3000300010x x--=15,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成【答案】C【解析】题中方程表示原计划每天铺设管道(10)x-米,即实际每天比原计划多铺设10米,结果提前15天完成,选C.3.如图,AD是⊙O的直径,以A为圆心,弦AB为半径画弧交⊙O于点C,连结BC交AD于点E,若DE =3,BC=8,则⊙O的半径长为()A.256B.5 C.163D.253【答案】A【分析】由作法得AB AC=,根据圆周角定理得到∠ADB=∠ABE,再根据垂径定理的推论得到AD⊥BC,BE=CE=12BC=4,于是可判断Rt△ABE∽Rt△BDE,然后利用相似比求出AE,从而得到圆的直径和半径.【详解】解:由作法得AC=AB,∴AB AC=,∴∠ADB=∠ABE,∵AB为直径,∴AD⊥BC,∴BE=CE=12BC=4,∠BEA=∠BED=90°,而∠BDE=∠ABE,∴Rt△ABE∽Rt△BDE,∴BE:DE=AE:BE,即4:3=AE:4,∴AE=163,∴AD=AE+DE=163+3=253,∴⊙O的半径长为256.故选:A.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.也考查了圆周角定理.4.如图,一个可以自由转动的转盘被平均分成7个大小相同的扇形,每个扇形上分别写有“中”、“国”、“梦”三个字指针的位置固定,转动转盘停止后,指针指向“中”字所在扇形的概率是( )A .47 B .37 C .17 D .13【答案】B【分析】直接利用概率公式计算求解即可. 【详解】转动转盘停止后,指针指向“中”字所在扇形的概率是37,故选:B .【点睛】本题考查概率的计算,解题的关键是熟练掌握概率的计算公式.5.将抛物线23y x =-的图象向右平移1个单位,再向下平移两个单位后,则所得抛物线解析式为( ) A .23(1)2y x =--- B .23(1)2y x =--+ C .23(1)2y x =-+- D .23(1)2y x =-++【答案】A【分析】根据二次函数图像左加右减,上加下减的平移规律即可确定答案.【详解】解:抛物线y=-3x 2向右平移1个单位的解析式为:y=-3(x-1)2;再向下平移2个单位,得:y=-3(x-1)2-2.故选:A .【点睛】本题主要考查了二次函数图像的平移,掌握“左加右减,上加下减”的平移规律是解答本题的关键.6.下列各坐标表示的点在反比例函数4y x =图象上的是( )A .()1,4-B .()1,4C .()1,4-D .()2,2-【答案】B【解析】根据反比例函数的性质,分别代入A 、B 、C 、D 点,横坐标与纵坐标的积为4即可.【详解】A 、(-1)×4= -4,故错误.B 、1×4= 4,故正确.C 、1×-4= -4,故错误.D 、2×(-2)= -4,故错误.故选B.【点睛】本题考查反比例函数图像上点的坐标特征.7.下列事件中,为必然事件的是( )A .太阳从东方升起B .发射一枚导弹,未击中目标C .购买一张彩票,中奖D .随机翻到书本某页,页码恰好是奇数【答案】A【分析】根据必然事件以及随机事件的定义对各选项进行逐一分析即可.【详解】A 、太阳从东方升起是必然事件,故本选项正确;B 、发射一枚导弹,未击中目标是随机事件,故本选项错误;C 、购买一张彩票,中奖是随机事件,故本选项错误;D 、随机翻到书本某页,页码恰好是奇数是随机事件,故本选项错误.故选:A .【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.8.如图,在Rt △ABC 内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )A .b=a+cB .b=acC .b 2=a 2+c 2D .b=2a=2c【答案】A 【分析】利用解直角三角形知识.在边长为a 和b 两正方形上方的两直角三角形中由正切可得a b c b a c-=-,化简得b =a +c ,故选A. 【详解】请在此输入详解!9.如图,正方形ABCD 中,6AB =,E 为AB 的中点,将ADE ∆沿DE 翻折得到FDE ∆,延长EF 交BC 于G ,FH BC ⊥,垂足为H ,连接BF 、DG .结论:①BF DE ;②DFG ∆≌DCG ∆;③FHB ∆∽EAD ∆;④43GEB ∠=;⑤ 2.6BFG S ∆=.其中的正确的个数是( )A.2 B.3 C.4 D.5 【答案】C【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可.【详解】解:∵正方形ABCD中,AB=6,E为AB的中点∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°∵△ADE沿DE翻折得到△FDE∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°∴BE=EF=3,∠DFG=∠C=90°∴∠EBF=∠EFB∵∠AED+∠FED=∠EBF+∠EFB∴∠DEF=∠EFB∴BF∥ED故结论①正确;∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG∴Rt△DFG≌Rt△DCG∴结论②正确;∵FH⊥BC,∠ABC=90°∴AB∥FH,∠FHB=∠A=90°∵∠EBF=∠BFH=∠AED∴△FHB∽△EAD∴结论③正确;∵Rt△DFG≌Rt△DCG∴FG=CG设FG=CG=x,则BG=6-x,EG=3+x在Rt△BEG中,由勾股定理得:32+(6-x)2=(3+x)2解得:x=2∴BG=4∴tan∠GEB=4=3 BGBE,故结论④正确;∵△FHB∽△EAD,且1=2 AEAD,∴BH=2FH设FH=a,则HG=4-2a在Rt△FHG中,由勾股定理得:a2+(4-2a)2=22解得:a=2(舍去)或a=65,∴S△BFG=16425⨯⨯=2.4故结论⑤错误;故选:C.【点睛】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强.10.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣3【答案】D【详解】因为y=x2-4x-4=(x-2)2-8,以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D.11.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有()A.1个B.3个C.4个D.5个【答案】C【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a <0, ∵22b a-=-, ∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 1﹣4ac >0,方程ax 1+bx =0的两个根为x 1=0,x 1=﹣4,∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b+c >0,∴③正确,故正确的有②③④⑤.故选:C .【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求1a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用12有意义,则x 的取值范围为( ) A .x≤0B .x≥-1C .x≥0D .x≤-1 【答案】B【分析】根据二次根式有意义有条件进行求解即可.【详解】要使2有意义,则被开方数1x +要为非负数, 即10x +≥,∴1x ≥-,故选B.【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.二、填空题(本题包括8个小题)13.某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,已知小明的身高为1.5米,则树高为_________米.【答案】1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,对应比值相等进而得出答案.【详解】解:根据相同时刻的物高与影长成比例.设树的高度为xm , 则161.5x=,解得:9x =. 故答案为:1.【点睛】此题考查相似三角形的应用,解题关键在于掌握其性质定义.14.将一元二次方程22(1)1(1)2x x x +-=+-写成一般形式_____.【答案】2330x x ++=【分析】先去括号,然后移项,最后变形为一般式.【详解】22(1)1(1)2x x x +-=+- ()222x +2x+11x +x 2-=-222x +4x+21x +x 2-=-222x +4x+21x x+2=0---2x +3x+3=0故答案为:2x +3x+3=0.【点睛】本题考查完全平方公式、去括号和移项,需要注意,移项是需要变号的.15.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________. 【答案】34【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34.故其概率为:34. 【点睛】 本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.16.一元二次方程x 2﹣4=0的解是._________【答案】x=±1【解析】移项得x 1=4,∴x=±1.故答案是:x=±1.17.如图,某舰艇上午9时在A 处测得灯塔C 在其南偏东75°方向上,且该舰艇以每小时10海里的速度沿南偏东15°方向航行,11小时到达B 处,在B 处测得灯塔C 在北偏东75°方向上,则B 处到灯塔C 的距离为________海里.【答案】3【分析】根据题意得出90ABC ∠=︒,60BAC ∠=︒,据此即可求解.【详解】根据题意:21020AB =⨯=(海里),如图,根据题意:15EBA BAD ∠∠==︒,75EBC CAD ∠∠==︒,∴157590ABC EBA EBC ∠∠∠=+=︒+︒=︒,751560BAC CAD BAD ∠∠∠=-=︒-︒=︒,∴tan 60320BC BC AB ︒=== ∴203BC =答:B 处到灯塔C 的距离为3故答案为:3【点睛】本题考查了解直角三角形的应用-方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.18.如图,⊙O 与抛物线212y x =交于A B 、两点,且2AB =,则⊙O 的半径等于_______.【答案】5 【分析】连接OA ,AB 与y 轴交于点C ,根据AB =2,可得出点A ,B 的横坐标分别为−1,1.再代入抛物线212y x =即可得出点A ,B 的坐标,再根据勾股定理得出⊙O 的半径. 【详解】连接OA ,设AB 与y 轴交于点C ,∵AB =2,∴点A ,B 的横坐标分别为−1,1.∵⊙O 与抛物线212y x =交于A ,B 两点, ∴点A ,B 的坐标分别为(−1,12),(1,12), 在Rt △OAC 中,由勾股定理得OA 22OC AC +114+5, ∴⊙O 5. 5. 【点睛】 本题考查了垂径定理、勾股定理以及二次函数图象上点的特征,求得点A 的纵坐标是解题的关键.三、解答题(本题包括8个小题)19.如图,已知直线y=-2x+3与抛物线y=x 2相交于A,B 两点,O 为坐标原点.(1)求点A 和B 的坐标;(2)连结OA,OB,求△OAB 的面积.【答案】(1)A(1,1) ,B(-3,9);(2)6.【分析】(1)将直线与抛物线联立解方程组,即可求出交点坐标;(2)过点A 与点B 分别作AA 1、BB 1垂直于x 轴,由图形可得△OAB 的面积可用梯形AA 1B 1B 的面积减去△OBB 1的面积,再减去△OAA 1得到.【详解】(1)∵直线y=-2x+3与抛物线y=x 2相交,∴将直线与抛物线联立得223y x y x =-+⎧⎨=⎩,解得11x y =⎧⎨=⎩或39x y =-⎧⎨=⎩, ∴A (1,1),B (-3,9);(2)过点A 与点B 分别作AA 1、BB 1垂直于x 轴,如下图所示,由A 、B 的坐标可知AA 1=1,BB 1=9,OB 1=3,OA 1=1,A 1B 1=4,梯形AA 1B 1B 的面积=()()1111111942022+⋅=⨯+⨯=AA BB A B , △OBB 1的面积=11113913.522⋅=⨯⨯=OB BB , △OAA 1的面积=1111110.522⋅=⨯⨯=OA AA , ∴△OAB 的面积=2013.50.56--=.故答案为6.【点睛】本题考查了求一次函数与二次函数的交点和坐标系中三角形的面积计算,求函数图像交点,就是将两个函数联立解方程组,坐标系中不规则图形的面积通常采用割补法计算.20.如图,二次函数的图象交x 轴于点()()1,0,4,0A B -,交y 轴于点()0,4,C P -是直线BC 下方抛物线上一动点.(1)求这个二次函数的表达式;(2)连接,PB PC ,是否存在点P ,使PBC ∆面积最大,若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)234y x x =--;(2)存在点P ,使PBC ∆面积最大,点P 的坐标为()2, 6-. 【分析】(1)由A 、B 、C 三点的坐标,利用待定系数法可求得抛物线解析式;(2)过P 作PE ⊥x 轴,交x 轴于点E ,交直线BC 于点F ,用P 点坐标可表示出PF 的长,则可表示出△PBC 的面积,利用二次函数的性质可求得△PBC 面积的最大值及P 点的坐标.【详解】(1)∵二次函数的图象交y 轴于点()0,4C -,∴设二次函数表达式为24y ax bx =+-, 把A 、B 二点坐标代入可得4016440a b a b --=⎧⎨+-=⎩, 解这个方程组,得13a b =⎧⎨=-⎩, ∴抛物线解析式为:234y x x =--;(2))∵点P 在抛物线上,∴设点P 的坐标为()2,34t t t --过P 作PE x ⊥轴于E ,交直线BC 于F设直线BC 的函数表达式y mx n =+,将B (4,0),C (0,-4)代入得404m n n +=⎧⎨=-⎩, 解这个方程组,得14m n =⎧⎨=-⎩, ∴直线BC 解析式为4y x =-,∴点F 的坐标为(),4t t -,()()224344PF t t t t t ∴=----=-+, ()2114422PBC S PF OB t t ∆∴==-+⨯ ()2228t =--+,∵20a =->,∴当2t =时,PBC S ∆最大,此时223423246y t t =--=-⨯-=-,所以存在点P ,使PBC ∆面积最大,点P 的坐标为()2, 6-.【点睛】 本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中用P 点坐标表示出△PBC 的面积是解题的关键.21.如图,己知AB 是O 的直径,PB 切O 于点B ,过点B 作BC PO ⊥于点D ,交O 于点C ,连接AC 、PC .(1)求证:PC 是O 的切线:(2)若60BPC ∠=,3PB =,求阴影部分面积.【答案】(1)证明见解析;(2)3324S π=-阴影 【分析】(1)连结OC ,由半径相等得到∠OBC=∠OCB ,由垂径定理可知PO 是BC 的垂直平分线,得到PB=PC ,因此∠PBC=∠PCB ,从而可以得到∠PCO=90°,即可得证;(2)阴影部分的面积即为扇形OAC 的面积减去△OAC 的面积,通过60BPC ∠=︒,3PB =,利用扇形面积公式和三角形计算公式计算即可.【详解】(1)证明:连结OC ,如图∵OB OC =∴12∠=∠又∵AB 为圆O 的直径,PB 切圆O 于点B∴AB PB ⊥,1390PBO ∠=∠+∠=︒又∵BC PO ⊥∴BD CD =∴PO 是BC 的垂直平分线∴PB PC =,34∠=∠,132490∠+∠=∠+∠=︒即OC PC ⊥∴PC 是圆O 的切线(2)由(1)知PB 、PC 为圆O 的切线∴PB PC =∵60BPC ∠=︒,3PB =∴3BC =,130∠=︒又∵AB 为圆O 的直径∴90ACB ∠=︒∴60AOC ∠=︒,3AC OC ==∴2601(3)3602OAC S ππ=•=扇形,2333(3)44OAC S ∆=•=∴3324S π=-阴影 【点睛】本题考查了切线的判定和扇形面积公式的应用,理解弓形面积为扇形面积与三角形面积之差是解题的关键.22.如图,12310...A A A A 是半径为1的O 的内接正十边形,2A P 平分21OA A ∠(1)求证:21211A A A P OA =⋅;(2)求证:12512A A = 【答案】(1)详见解析;(2)详见解析【分析】(1)根据题意得出角相等得出△A 1A 2P ∽△A 1OA 2,再根据相似三角形的性质即可得出答案; (2)设A 1A 2=x ,得出OP =PA 2=A 1A 2=x ,A 1 P =1-x ,再代入21211A A A P OA =⋅中即可求出答案.【详解】证明:(1)∵A 1A 2A 3…A 10是半径为1的⊙O 的内接正十边形,A 2P 平分∠OA 2A 1∴∠A 1OA 2=36°,∠A 1=∠OA 2A 1=72°,∠A 1A 2P =∠O =36°∴∠A 1 P A 2=72°,OP =PA 2,∴△A 1A 2P ∽△A 1OA 2,121112A A A P OA A A = ∴A 1A 22=A 1P•O A 1(2)设A 1A 2=x ,则OP =PA 2=A 1A 2=x ,∴A 1 P =1-x ,由(1)得A 1A 22=A 1P•O A 1∴21x x =-,∴210x x +-=,解得,()2114115x=2-±-±--=(负值舍去) ∴512x =-, 即1251A A =- 【点睛】本题考查了正十边形的性质及相似三角形的判定及性质定理,能够根据正十边形的性质得出角的度数是解题的关键.23.如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB =20米,顶点M 距水面6米(即MO =6米),小孔水面宽度BC =6米,顶点N 距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.【答案】(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.【分析】(1)设大孔所在的抛物线的解析式为26y ax =+,求得大孔所在的抛物线的解析式为23650y x =-+,当2x =时,得到2326 5.76550y =-⨯+=>,于是得到结论; (2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为2 4.5z mx =+,求得小孔所在的抛物线的解析式为21 4.52z x =-+,当 1.5x =时,得到 3.375 3.5z =<,于是得到结论. 【详解】解:(1)设大孔所在的抛物线的解析式为26y ax =+,由题意得,0()10,A -,2(10)60a ∴-+=,350a ∴=-, ∴大孔所在的抛物线的解析式为23650y x =-+, 当2x =时,2326 5.76550y =-⨯+=>, ∴该巡逻船能安全通过大孔;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为2 4.5z mx =+,由题意得,(3,0)C ,23 4.50m ∴⨯+=,12m ∴=-, ∴小孔所在的抛物线的解析式为21 4.52z x =-+,当 1.5x =时, 3.375 3.5z =<, ∴小船不能安全通过小孔.【点睛】本题考查了二次函数的应用以及二次函数图象上点的坐标特征,结合函数图象及二次函数图象上点的坐标特征找出关于a 的一元一次方程是解题的关键.24.如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.当150ABC ∠=︒,165BCD ∠=︒时,如图2,连杆端点D 离桌面l 的高度是多少?【答案】(1021035)cm ++【分析】作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .判断四边形PCHG 是矩形, 求出DP ,CH ,再加上AB 即可求出DF .【详解】解:如图,作DF l ⊥于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG 是矩形,1509060CBH ∠=︒-︒=︒,90CHB ∠=︒,30BCH ∴∠=︒,165BCD ∠=︒,∴45DCP ∠=︒,sin 603()CH BC cm ∴=︒=,sin 452()DP CD cm =︒=,235)()DF DP PG GF DP CH AB cm ∴=++=++=.∴连杆端点D 离桌面l 的高度是235)cm .【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 25.解一元二次方程:24x 4x 1=-.【答案】1212x x == 【解析】用直配方法解方程即可.【详解】解:原方程可化为:24410x x -+=,∴()2210x -=,解得:121 2x x==.26.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC 的度数.【答案】(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【详解】(1)∵DE∥BC,∴DB EC AB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=2在△PEA中,PE2=(222=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.27.某司机驾驶汽车从甲地去乙地,他以80/km h的平均速度用6h到达目的地. (1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系?(2)如果该司机返回到甲地的时间不超过5h,那么返程时的平均速度不能小于多少?【答案】(1)480vt=;(2)96/km h.【分析】(1)利用路程=平均速度×时间,进而得出汽车的速度v与时间t的函数关系;(2)结合该司机必须在5个小时之内回到甲地,列出不等式进而得出速度最小值.【详解】(1)由题意得,两地路程为806480⨯=km,∴汽车的速度v与时间t的函数关系为480vt =;(2)由480vt=,得480tv=,又由题意知:5t≤,∴4805 v≤,∵0 v>,∴4805v≤,v .∴96答:返程时的平均速度不能小于1.【点睛】本题主要考查了反比例函数的应用,根据路程=平均速度×时间得出函数关系是解题关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB是⊙O的直径,AC,BC分别与⊙O交于点D,E,则下列说法一定正确的是()A.连接BD,可知BD是△ABC的中线B.连接AE,可知AE是△ABC的高线C.连接DE,可知DE CEAB BC=D.连接DE,可知S△CDE:S△ABC=DE:AB【答案】B【分析】根据圆周角定理,相似三角形的判定和性质一一判断即可.【详解】解:A、连接BD.∵AB是直径,∴∠ADB=90°,∴BD是△ABC的高,故本选项不符合题意.B、连接AE.∵AB是直径,∴∠AEB=90°,∴BE是△ABC的高,故本选项符合题意.C、连接DE.可证△CDE∽△CBA,可得DE ECAB AC=,故本选项不符合题意.D、∵△CDE∽△CBA,可得S△CDE:S△ABC=DE2:AB2,故本选项不符合题意,故选:B.【点睛】本题考查了圆周角定理、相似三角形的判定以及性质,辅助线的作图是解本题的关键2.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.1 B.﹣1 C.14D.14-【答案】B【分析】根据关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根可知△=0,求出a的取值即可.【详解】解:∵关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,∴△=22+4a=0,解得a=﹣1.故选B .【点睛】本题考查一元二次方程根的判别式,熟记公式正确计算是本题的解题关键.3.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④2c <3b ;⑤a+b >m (am+b )(m≠1的实数).其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A 【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;当x =﹣1时图象在x 轴上得到y =a ﹣b+c =0,即a+c =b ;对称轴为直线x =1,可得x =2时图象在x 轴上方,则y =4a+2b+c >0;利用对称轴x =﹣2b a=1得到a =﹣12b ,而a ﹣b+c <0,则﹣12b ﹣b+c <0,所以2c <3b ;开口向下,当x =1,y 有最大值a+b+c ,得到a+b+c >am 2+bm+c ,即a+b >m (am+b )(m≠1).【详解】解:开口向下,a <0;对称轴在y 轴的右侧,a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方,c >0,则abc <0,所以①不正确;当x =﹣1时图象在x 轴上,则y =a ﹣b+c =0,即a+c =b ,所以②不正确;对称轴为直线x =1,则x =2时图象在x 轴上方,则y =4a+2b+c >0,所以③正确;x =﹣2b a=1,则a =﹣12b ,而a ﹣b+c =0,则﹣12b ﹣b+c =0,2c =3b ,所以④不正确; 开口向下,当x =1,y 有最大值a+b+c ;当x =m (m≠1)时,y =am 2+bm+c ,则a+b+c >am 2+bm+c ,即a+b >m (am+b )(m≠1),所以⑤正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a ≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x轴有两个交点.4.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2) B.(2,4),(3,1) C.(2,2),(3,1) D.(3,1),(2,2) 【答案】C【解析】直接利用位似图形的性质得出对应点坐标乘以12得出即可.【详解】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选C.【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.5.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150°B.140°C.130°D.120°【答案】B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.6.从拼音“nanhai”中随机抽取一个字母,抽中a的概率为( )A.12B.13C.15D.16【答案】B【解析】nanhai共有6个拼音字母,a有2个,根据概率公式可得答案.【详解】∵nanhai共有6个拼音字母,a有2个,∴抽中a的概率为21=63,故选:B.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,且点B的坐标为(6,4),如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)【答案】D【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标.【详解】解:∵矩形OA′B′C′的面积等于矩形OABC面积的14,∴两矩形面积的相似比为:1:2,∵B的坐标是(6,4),∴点B′的坐标是:(3,2)或(-3,-2).故选:D.【点睛】此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键.8.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第30个“上”字需用多少枚棋子()A.122 B.120 C.118 D.116【答案】A【分析】可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化.找到其规律即可解答.【详解】第1个“上”字中的棋子个数是6;第2个“上”字中的棋子个数是10;第3个“上”字中的棋子个数是14;进一步发现规律:第n个“上”字中的棋子个数是(4n+2).所以第30个“上”字需要4×30+2=122枚棋子.故选:A.【点睛】此题考查规律型:图形的变化,解题关键是通过归纳与总结,得到其中的规律.9.如图,⊙O的圆周角∠A =40°,则∠OBC的度数为()A.80°B.50°C.40°D.30°【答案】B【分析】然后根据圆周角定理即可得到∠OBC的度数,由OB=OC,得到∠OBC=∠OCB,根据三角形内角和定理计算出∠OBC.【详解】∵∠A=40°.∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=50°,故选:B.【点睛】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.10.如图,平行四边形ABCD的对角线AC与BD相交于点O,设OA a=,下列式子中正确的=,OB b是()A.DC a b=-;=+B.DC a bC.DC a b=--.=-+D.DC a b【答案】C【分析】由平行四边形性质,得DC AB+=,代入计算即可得到答=,由三角形法则,得到OA AB OB案.【详解】解:∵四边形ABCD是平行四边形,∴DC AB=,∵OA a=,=,OB b在△OAB中,有OA AB OB+=,∴AB OB OA b a a b=-=-=-+,∴DC a b=-+;故选择:C.【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.11.已知,如图,E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点)的坐标()A.(-2,1)B.(2,-1)C.(2,-1)或(-2,-1)D.(-2,1)或(2,-1)【答案】D【分析】由E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,根据位似图形的性质,即可求得点E的对应点的坐标.【详解】解:∵E(-4,2),以O为位似中心,按比例尺1:2把△EFO缩小,∴点E的对应点的坐标为:(-2,1)或(2,-1).故选D.【点睛】本题考查位似变换;坐标与图形性质,利用数形结合思想解题是关键.12.把二次函数y=2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( ) A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+【答案】A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.二、填空题(本题包括8个小题)13.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____.【答案】(6,4).【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴13=,CQ=AC-AQ=9,∴15=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波市重点名校2019届九(上)期末数学考试模拟试题4
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题
1.表中所列 ,x y 的7对值是二次函数2
y ax bx c =++ 图象上的点所对应的坐标,其中
1234567x x x x x x x <<<<<<
根据表中提供的信息,有以下4 个判断: ① 0a <;② 714m <<;③ 当262
x x x +=时,y 的值是 k ;④ ()2
4b a c k ≥-其中判断正确的是 ( ) A .①②③
B .①②④
C .①③④
D .②③④
2.如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,
1
2
AD AB =,△CEF 的面积为S 1,△AEB 的面积为S 2,则1
2
S S 的值等于( )
A .
116
B .
15
C .
14
D .
125
3.若P(x ,3)与点Q(4,y)关于原点对称,则xy 的值是( ) A .12
B .﹣12
C .64
D .﹣64
4.观察如图图形,是中心对称图形的是( )
A .
B .
C .
D .
5.如图是某几何体的三视图,那么该几何体是( )
A .球
B .正方体
C .圆锥
D .圆柱
6.由
2
3
x y =不能推出的比例式是( ) A .
23
x y = B .
5
3
x y y += C .
1
3
x y y -= D .
22
(3)33
x y y +=≠-+ 7.在距离大足城区的1.5公里的北山之上,有一处密如峰房的石窟造像点,今被称为北山石窟.北山石窟造像在两宋时期达到鼎盛,逐渐都成了以北山佛湾为中心,环绕营盘坡、佛耳岩,观音坡、多宝塔等多处造像点的大型石窟群.多宝塔,也称为“白塔”“北塔”,于岩石之上,为八角形阁式砖塔,外观可辨十二级,其内有八层楼阁,可沿着塔心内的梯道逐级而上,元且期间,小华和妈妈到大足北山游玩,小华站在坡度为l =1:2的山坡上的B 点观看风景,恰好看到对面的多宝培,测得眼睛A 看到塔顶
C 的仰角为30°,接着小华又向下走了E ,这时看到塔顶C 的仰角为45°,若
AB =1.5米,则多宝塔的高度CD 约为( )(精确到0.1
A .51.0米
B .52.5米
C .27.3米
D .28.8米
8.已知直线y =n 与二次函数y =
12
(x ﹣2)2
﹣1的图象交于点B ,点C ,二次函数图象的顶点为A ,当△ABC 是等腰直角三角形时,则n 的值为( )
A .1
B
C .2
D .9.一元二次方程x 2﹣x ﹣2=0的解是( ) A .x 1=﹣1,x 2=﹣2 B .x 1=1,x 2=﹣2 C .x 1=1,x 2=2 D .x 1=﹣1,x 2=2
10.在平面直角坐标系中,将二次函数y=2(x-2017)(x-2019)-2018的图象平移后,所得函数的图象与x 轴的两个交点之间的距离为2个单位,则平移方式为( ) A .向上平移2018个单位 B .向下平移2018个单位 C .向上平移1009个单位
D .向下平移1009个单位
11.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是()
A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)
12.下列图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
二、填空题
13.某设计运动员在相同的条件下的射击成绩记录如下:
根据频率的稳定性,估计这名运动员射击一次“射中9环以上”的概率是_____.
14.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②b2-4ac<0;③3a+c<0;
④m为任意实数,则m(am-b)+b≤a;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=-2,其中正确的有
______(只填序号).
15.若抛物线y=x2+2ax+3的对称轴是直线x=1,则a的值是_____.
16.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间
..的中位数是()小时.
A.9
B.10
C.11
D.12
17.在课外实践活动中,甲、乙、丙、丁四个小组用投掷啤酒瓶盖的方法估计落地时瓶盖“ 正面朝上”的概率,其试验次数分别为10次、50次、100次、500次,其中试验相对科学的是_____组.
18.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则抛物线与x轴的另一个交点的坐标是______。

三、解答题
19.某公园的人工湖边上有一座山,山顶上有一直竖的建筑物CD,高为10米.某校数学兴趣小组的同学为了测量山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35 ,
沿水平方向前进20米到达B 点,测得建筑物顶部C 点的仰角为45︒,求山的高度DE .(结果精确到1米,参考数据:7sin 3512︒≈
,5cos356︒≈,7tan 3510
︒≈)
20.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付. (1)张华用“微信”支付的概率是______.
(2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”、“银行卡”、“现金”分别用字母“A”“B”“C”“D”代替)
21.如图,A(8,6)是反比例函数y =m
x
(x >0)在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,且AB =OA(B 在A 右侧),直线OB 交反比例函数y =m
x
的图象于点M
(1)求反比例函数y =m
x
的表达式; (2)求点M 的坐标;
(3)设直线AM 关系式为y =nx+b ,观察图象,请直接写出不等式nx+b ﹣
m
x
≤0的解集.
22.如图,点D 、E 分别在ABC 的边AB 、AC 上,若40A ∠=,65B ∠=,75AED ∠=.
()1求证:ADE ∽ABC ;
()2已知,AD :2BD =:3,3AE =,求AC 的长.
23.平顶山市某中学开展弘扬传统文化活动,鼓励学生到阅览室借书阅读,并进行统计.校阅览室在2015年图书借阅总量为7500本,2017年图书借阅总量为10800本.
()1求该学校的图书借阅总量从2015年到2017年连续两年的平均增长率.
()2已知2017年该校学生借阅图书人数有1350人,预计2018年达到1440人.若2017年至2018年图书
借阅总量增长率与2015年到2017年两年的平均增长率相同,那么2018年的人均借阅量比2017年增长
a%,求a 的值.
24.如图,为测量瀑布AB 的高度,测量人员在瀑布对面山上的D 点处测得瀑布顶端A 点的仰角是30,测得瀑布底端B 点的俯角是10,AB 与水平面垂直.又在瀑布下的水平面测得27.0CG m =,
17.6(GF m =注:C 、G 、F 三点在同一直线上,CF AB ⊥于点)F ,斜坡20.0CD m =,坡角
40.ECD ∠=( 1.73≈,400.64sin ≈,400.77cos ≈,400.84tan ≈,100.17sin ︒≈,100.98cos ︒≈,100.18tan ︒≈)
()1求测量点D 距瀑布AB 的距离(精确到0.1)m ; ()2求瀑布AB 的高度(精确到0.1)m
25.如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE . (1)求证:△BDE ≌△BCE ;
(2)试判断四边形ABED 的形状,并说明理由.
26.化简分式:222
233
4424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭
,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.
【参考答案】***
一、选择题 1.B 2.A 3.A 4.B 5.D 6.C 7.B 8.A 9.D 10.A。

相关文档
最新文档