8.3完全平方公式与平方差公式
8.3《平方差公式与完全平方公式》典型例题精析

8.3 完全平方公式与平方差公式1.了解乘法公式的几何背景,掌握公式的结构特征,并能熟练运用公式进行简单的计算.2.感受生活中两个乘法公式存在的意义,养成“观察—归纳—概括”的数学能力,体会数形结合的思想方法,提高学习数学的兴趣和运用知识解决问题的能力,进一步增强符号感和推理能力.1.完全平方公式(1)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.上式用语言叙述为:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(2)完全平方公式的证明:(a±b)2=(a±b)(a±b)=a2±ab±ab+b2(多项式乘多项式)=a2±2ab+b2(合并同类项).(3)完全平方公式的特点:①左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简单概括为“首平方,尾平方,积的2倍夹中央”.②公式中的a,b可以是单项式,也可以是多项式.③对于符合两数和(或差)的平方的乘法,均可用上述公式计算.【例1-1】用完全平方公式计算(1)(x+2y)2;(2)(2a-5)2;(3)(-2s+t)2;(4)(-3x-4y)2;(5)(2x+y-3z)2.分析:第(1)、(2)两题可直接用和、差平方公式计算;第(3)题可先把它变成(t-2s)2,然后再计算,也可以把-2s看成一项,用和平方公式计算;第(4)题可看成-3x与4y差的平方,也可以看成-3x与-4y和的平方;(5)可把2x+y看成一项,用差平方公式计算,然后再用和平方公式计算,也可以把它看成2x与y-3z的和平方,再用差平方公式计算.解:(1)(x +2y )2=x 2+2·x ·2y +(2y )2=x 2+4xy +4y 2;(2)(2a -5)2=(2a )2-2·2a ·5+52=4a 2-20a +25;(3)(-2s +t )2=(t -2s )2=t 2-2·t ·2s +(2s )2=t 2-4ts +4s 2;(4)(-3x -4y )2=(-3x )2-2·(-3x )·4y +(4y )2=9x 2+24xy +16y 2;(5)(2x +y -3z )2=[2x +(y -3z )]2=(2x )2+2·2x ·(y -3z )+(y -3z )2=4x 2+4xy -12xz +y 2-2·y ·3z +(3z )2=4x 2+y 2+9z 2+4xy -12xz -6yz .(1)千万不要与公式(ab )2=a 2b 2混淆,发生类似(a ±b )2=a 2±b 2的错误;(2)切勿把“乘积项”2ab 中的2漏掉;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形,使其具备公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.此外,在运用公式时要灵活,如第(4)题,由于(-3x -4y )2与(3x +4y )2是相等关系,故可以把(-3x -4y )2转化为(3x +4y )2,再进行计算,再如(5)题,也有许多不同的方法.(4)完全平方公式的几何解释.如图是对(a +b )2=a 2+2ab +b 2几何意义的阐释.大正方形的面积可以表示为(a +b )2,也可以表示为S =S Ⅰ+S Ⅱ+S Ⅲ+S Ⅳ,又S Ⅲ,SⅠ,S Ⅳ,S Ⅱ分别等于a 2,ab ,ab ,b 2,所以S =a 2+ab +ab +b 2=a 2+2ab +b 2.从而验证了完全平方公式(a +b )2=a 2+2ab +b 2.如图是对(a-b)2=a2-2ab+b2几何意义的阐释.正方形Ⅰ的面积可以表示为(a-b)2,也可以表示为SⅠ=S大-SⅡ-SⅣ+SⅢ,又S大,SⅡ,SⅢ,SⅣ分别等于a2,ab,b2,ab,所以SⅠ=a2-ab-ab+b2=a2-2ab+b2.从而验证了完全平方公式(a-b)2=a2-2ab+b2.【例1-2】下图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a,b的恒等式:__________________.解析:根据图中的面积写一个恒等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是由四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积减去四个矩形的面积,即(a+b)2-4ab,空白正方形的面积也等于它的边长的平方,即(a-b)2,根据面积相等有(a+b)2-4ab=(a-b)2.答案:(a+b)2-4ab=(a-b)22.平方差公式(1)平方差公式:(a+b)(a-b)=a2-b2.上式用语言叙述为:两个数的和与这两个数的差的积,等于这两个数的平方差.(2)平方差公式的证明:(a+b)(a-b)=a2-ab+ab+b2(多项式乘多项式)=a2-b2(合并同类项).(3)平方差公式的特点:①左边是两个二项式相乘,这两项中有一项完全相同,另一项互为相反数;②右边是乘式中两项的平方差(相同项的平方减去互为相反数项的平方);③公式中的a和b可以是具体的数,也可以是单项式或多项式.利用此公式进行乘法计算时,应仔细辨认题目是否符合公式特点,不符合平方差公式形式的两个二项式相乘,不能用平方差公式.如(a+b)(a-2b)不能用平方差公式计算.【例2-1】计算:(1)(3x+2y)(3x-2y);(2)(-m+n)(-m-n);(3)(-2x-3)(2x-3).分析:(1)本题符合平方差公式的结构特征,其中3x对应“a”,2y对应“b”;(2)题中相同项为-m,互为相反数的项为n与-n,故本题也符合平方差公式的结构特征;(3)利用加法交换律将原式变形为(-3+2x)(-3-2x),然后运用平方差公式计算.解:(1)(3x+2y)(3x-2y)=(3x)2-(2y)2=9x2-4y2.(2)(-m+n)(-m-n)=(-m)2-n2.(3)(-2x-3)(2x-3)=(-3+2x)(-3-2x)=(-3)2-(2x)2=9-4x2.利用公式计算,关键是分清哪一项相当于公式中的a,哪一项相当于公式中的b,通常情况下,为防止出错,利用公式前把相同项放在前面,互为相反数的项放在后面,然后套用公式.(4)平方差公式的几何解释如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式(a+b)(a-b)=a2-b2.【例2-2】下图由边长为a和b的两个正方形组成,通过用不同的方法,计算图中阴影部分的面积,可以验证的一个乘法公式是____________________.分析:要表示阴影部分的面积,可以从两个方面出发:一是观察阴影部分是由边长为a的正方形除去边长为b的正方形得到的,所以它的面积等于a2-b2;二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积之和.这两个梯形的面积都等于12 (b+a)(a-b),所以梯形的面积和是(a+b)(a-b),根据阴影部分的面积不变,得(a+b)(a-b)=a2-b2.因此验证的一个乘法公式是(a+b)(a-b)=a2-b2.答案:(a+b)(a-b)=a2-b23.运用乘法公式简便计算平方差公式、完全平方公式不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式、完全平方公式无关,但若根据数字的结构特点,灵活巧妙地运用平方差公式、完全平方公式,常可以使运算变繁为简,化难为易.解答此类题,关键是分析数的特点,看能否将数改写成两数和的形式及两数差的形式,若改写成两数和的形式乘以两数差的形式,则用平方差公式;若改写成两数和的平方形式或两数差的平方形式,则用完全平方公式.【例3】计算:(1)2 0132-2 014×2 012;(2)1032;(3)1982.分析:(1)2 014=2 013+1,2 012=2 013-1,正好符合平方差公式,可利用平方差公式进行简便运算;(2)可将1032改写为(100+3)2,利用两数和的平方公式进行简便运算;(3)可将1982改写为(200-2)2,利用两数差的平方公式进行简便运算.解:(1)2 0132-2 014×2 012=2 0132-(2 013+1)×(2 013-1)=2 0132-(2 0132-12)=2 0132-2 0132+1=1.(2)1032=(100+3)2=1002+2×100×3+32=10 000+600+9=10 613.(3)1982=(200-2)2=2002-2×200×2+22=40 000-800+4=39 204.4.利用乘法公式化简求值求代数式的值时,一般情况是先化简,再把字母的值代入化简后的式子中求值.在化简的过程中,合理地利用乘法公式能使整式的运算过程变得简单.在代数式化简过程中,用到平方差公式及完全平方公式时,要特别注意应用公式的准确性.【例4】先化简,再求值:5(m +n )(m -n )-2(m +n )2-3(m -n )2,其中m =-2,n =15. 解:5(m +n )(m -n )-2(m +n )2-3(m -n )2=5(m 2-n 2)-2(m 2+2mn +n 2)-3(m 2-2mn +n 2)=5m 2-5n 2-2m 2-4mn -2n 2-3m 2+6mn -3n 2=-10n 2+2mn .当m =-2,n =15时,原式=-10n 2+2mn =-10×⎝ ⎛⎭⎪⎫152+2×(-2)×15=-65. 5.乘法公式的运用技巧一些多项式的乘法或计算几个有理数的积时,表面上看起来不能利用乘法公式,实际上经过简单的变形后,就能直接运用乘法公式进行计算了.有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.在运用平方差公式时,注意以下几种常见的变化形式:①位置变化:(b +a )(-b +a )=a 2-b 2.②符号变化:(-a +b )(-a -b )=(-a )2-b 2=a 2-b 2.③系数变化:(0.5a +3b )(0.5a -3b )=(0.5a )2-(3b )2.④指数变化:(a 2+b 2)(a 2-b 2)=(a2)2-(b2)2=a4-b4.⑤增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,(a+b-c)(a-b+c)=a2-(b-c)2.⑥增因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2.⑦连用公式变化:(a-b)(a+b)(a2+b2)(a4+b4)=a8-b8.【例5-1】计算:(1)(a+b+1)(a+b-1);(2)(m-2n+p)2;(3)(2x-3y)2(2x+3y)2.解:(1)(a+b+1)(a+b-1)=[(a+b)+1][(a+b)-1]=(a+b)2-1=a2+2ab+b2-1.(2)(m-2n+p)2=[(m-2n)+p]2=(m-2n)2+2·(m-2n)·p+p2=m2-4mn+4n2+2mp-4np+p2.(3)(2x-3y)2(2x+3y)2=[(2x-3y)(2x+3y)]2=(4x2-9y2)2=(4x2)2-2×4x2×9y2+(9y2)2=16x4-72x2y2+81y4.在运用平方差公式时,应分清两个因式是否是两项之和与差的形式,符合形式才可以用平方差公式,否则不能用;完全平方公式就是求一个二项式的平方,其结果是一个三项式,在计算时不要发生:(a+b)2=a2+b2或(a-b)2=a2-b2这样的错误;当因式中含有三项或三项以上时,要适当的分组,看成是两项,从而应用平方差公式或完全平方公式.【例5-2】计算:(2+1)(22+1)(24+1)(28+1)…(22n+1)的值.分析:为了能便于运用平方差公式,观察到待求式中都是和的形式,没有差的形式,可设法构造出差的因数,于是可乘以(2-1),这样就可巧妙地运用平方差公式了.解:(2+1)(22+1)(24+1)(28+1)…(22n+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22n+1)=(22-1)(22+1)(24+1)(28+1)…(22n+1)=(24-1)(24+1)(28+1)…(22n+1)=…=(22n-1)(22n+1)=24n-1.6.乘法公式的实际应用在解决生活中的实际问题时,经常把其中的一个量或几个量先用字母表示,然后列出相关式子,进而化简,这往往涉及到整式的运算.解题时,灵活运用乘法公式,往往能事半功倍,使问题得到快速解答.【例6】一个正方形的边长增加3 cm,它的面积就增加39 cm2,这个正方形的边长是多少?分析:如果设原正方形的边长为x cm,根据题意和正方形的面积公式可列出方程(x+3)2=x2+39,求解即可.解:设原正方形的边长为x cm,则(x+3)2=x2+39,即x2+6x+9=x2+39,解得x=5(cm).故这个正方形的边长是5 cm.7.完全平方公式的综合运用学习乘法公式应注意掌握公式的特征,认清公式中的“两数”,注意为使用公式创造条件.(1)完全平方公式变形后可得到以下一些新公式:①a 2+b 2=(a +b )2-2ab ;②a 2+b 2=(a -b )2+2ab ;③(a +b )2=(a -b )2+4ab ;④(a -b )2=(a +b )2-4ab ;⑤(a +b )2+(a -b )2=2(a 2+b 2);⑥(a +b )2-(a -b )2=4ab 等.在公式(a ±b )2=a 2±2ab +b 2中,如果把a +b ,ab 和a 2+b 2分别看做一个整体,则知道了其中两个就可以求第三个.(2)注意公式的逆用不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,特别是完全平方公式的逆用——a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.【例7-1】已知a 2+b 2+4a -2b +5=0,则a +b a -b的值是__________.解析:原等式可化为(a 2+4a +4)+(b 2-2b +1)=0,即(a +2)2+(b -1)2=0,根据非负数的特点知a +2=0且b -1=0,从而可知a =-2且b =1.然后将其代入求a +b a -b的值即可. 答案:13【例7-2】已知a +b =2,ab =1,求a 2+b 2的值.分析:利用完全平方公式有(a +b )2=a 2+2ab +b 2,把2ab 移到等式的左边,可得(a +b )2-2ab =a 2+b 2,然后代入求值即可.解:∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2aB .∵a +b =2,ab =1,∴a 2+b 2=22-2×1=2.涉及两数和或两数差及其乘积的问题,就要联想到完全平方公式.本题也可从条件出发解答,如因为a+b=2,所以(a+b)2=22,即a2+2ab+b2=4.把ab=1代入,得a2+2×1+b2=4,于是可得a2+b2=4-2=2.。
平方差公式和完全平方差公式

平方差公式和完全平方差公式
1、公式不同
完全平方差公式:(a-b)²=a²-2ab+b²。
平方差公式:a²-b²=(a+b)(a-b)。
2、计算具体数据结果不同(若a=2,b=1)
完全平方差公式:(a-b)²=a²-2ab+b²=1。
平方差公式:a²-b²=(a+b)(a-b)=3。
3、表达意思不同
完全平方差公式:两数差的平方,等于它们的平方和减去它们的积的2倍。
平方差公式:指两个数的和与这两个数差的积,等于这两个数的平方差。
完全平方公式口诀:
首平方,尾平方,首尾相乘放中间。
或首平方,尾平方,两数二倍在中央。
也可以是:首平方,尾平方,积的二倍放中央。
(a±b)²=a²±2ab+b²
同号加、异号减,负号添在异号前。
1
即(a+b)²=a²+2ab+b²(a-b)²=a²-2ab+b²
注意:后面一定是加号。
2。
初中数学沪科版七年级下册-8.3-完全平方公式与平方差公式-同步分层作业(含解析)

8.3 完全平方公式与平方差公式简记为:“首平方,尾平方, 积的 2 倍放中间”两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍.这两个公式叫做完全平方公式.公式特征:1. 积为二次三项式;2. 积中的两项为两数的平方;3. 另一项是两数积的 2 倍,且与原式中间的符号相同;4. 公式中的字母 a ,b 可以表示数、单项式和多项式.注意:1. 项数、符号、字母及其指数2. 不能直接应用公式进行计算的式子,可能需要先添括号,变形成符合公式的形式才行。
3. 弄清完全平方公式和平方差公式的区别(公式结构特点及结果)常用结论:a 2 +b 2 = (a + b)2 - 2ab = (a - b)2 + 2ab ,4ab = (a + b)2 - (a - b)2.平方差公式:(a + b)(a − b) = a 2 − b 2两数和与这两数差的积,等于它们的平方差.紧紧抓住“一同一反”这一特征,在应用时,只有两个二项式的积才有可能应用平方差公式;不能直接应用公式的,要经过适当变形才可以应用基础过关练一、单选题1.已知非负实数,,a b c 满足24,0a b a b c +=-+<,则下列结论一定正确的是( )A .()2222a b a ab b +=++B C .()()224a b a b ab -=+-D 二、填空题11.如图,用四个长为a ,宽为b 的长方形大理石板不重叠地拼成一个大正方形拼花图案,正中间留下的空白区域恰好是一个小正方形,当拼成的这个大正方形的边长比中间小正方形的边长多6时,大正方形的面积+=12.已知x y13.化简:(x-14.定义:若三个正整数培优提升练三、解答题19.问题呈现:借助几何图形探究数量关系,是一种重要的解题策略,图1,图2是用边长分别为a,b的两个正方形和边长为a,b的两个长方形拼成的一个大正方形,利用图形可以推导出的乘法公式分别是图1________图2________;(用字母a,b表示)数学思考:利用图形推导的数学公式解决问题(1)已知7a b +=,12ab =,求22a b +的值;(2)已知()()202420222023x x --=,求()()2220242022x x -+-的值.拓展运用:如图3,点C 是线段AB 上一点,以AC ,BC 为边向两边作正方形积分别是1S 和2S .若AB m =,12S S S =+,则直接写出Rt ACF 的面积.(用(1)【知识生成】请用两种不同的方法表示图②中阴影部分的面积(直接用含方法一: ;方法二: ;(2)【得出结论】22(2)()23a b a b a ab b ++=++.(1)根据图(2)的面积关系可以解释的一个等式为______;(2)已知等式2()()()x p x q x p q x pq ++=+++,请你画出一个相应的几何图形加以解释.故选:C .8.C【分析】根据积的乘方、合并同类项、平方差公式、单项式的除法等知识,熟练掌握运算法则是解题的关键.【详解】解:A .()326-=-b b ,故选项错误,不符合题意;B .3332a a a +=,故选项错误,不符合题意;C .()()22224x y x y x y +-=-,故选项正确,符合题意;D .62422÷=a a a ,故选项错误,不符合题意.故选:C .9.D【分析】此题考查了完全平方式.利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:216x mx ++ 是完全平方式,8m ∴=±.故选:D .10.D【分析】本题主要考查了平方差公式在几何图形中的应用,分别表示出两幅图中阴影部分的面积,再关键两幅图阴影部分面积相等即可得到答案.【详解】解:左边一幅图阴影部分面积为22a b -,右边一幅图阴影部分面积为()()a b a b +-,∵两幅图阴影部分面积相等,∴()()22a b a b a b -=+-,故选:D .11.2【分析】本题考查用图象法验证完全平方公式,准确识图列出()22(4)a b b b a a +--=是解题关键.分别表示出每个长方形石板的面积和图中大、小正方形的面积,然后列出等量关系计算求解.【详解】解:每个长方形石板的面积为ab ,中间小正方形的边长为a b -,面积为2()a b -;大正方形的边长为a b +,面积为2()a b +,所以()22(4)a b b b a a +--=;当()()6460a b a b ab +--=⎧⎨=⎩时,解得53a b =⎧⎨=⎩,∴2a b -=,故答案为:2.12.22x y m n x y m n +=+⎧∴⎨-=-⎩或x y m n x y n m+=+⎧⎨-=-⎩解得x m y n =⎧⎨=⎩或x n y m=⎧⎨=⎩.故都有2006200620062006x y m n +=+.21.(1)2x xy +,6;(2)244 24m m -,.【分析】本题考查了整式乘法混合运算,求代数式的值.(1)分别用乘法公式及单项式乘多项式的法则展开,再合并同类项,最后代值求解即可;(2)用平方差公式展开再合并同类项,由已知得26m m -=,然后整体代入求值即可.【详解】解:(1)2()()()()x y x x y x y x y +-++-+222222x xy y x xy x y =++--+-2x xy =+,当2x =-,1y =-时,原式2(2)(2)(1)6=-+-⨯-=;(2)2(2)(2)(4)m n m n n m +-+-22244m n n m=-+-244m m =-,由260m m --=,得26m m -=,原式24()4624m m =-=⨯=.22.(1)()24m n mn +-;()2m n -(2)()()224m n mn m n +-=-(3)6a b -=或6a b -=-.【分析】本题考查了完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起,要学会观察.(1)观察图形很容易得出运用大正方形的面积减去四个矩形的面积,即()24m n mn +-,图②中的阴影部分正方形的边长等于m n -,即面积为()2m n -;(2)根据(1)中表示的面积是同一个图形的面积,两个式子相等,即可列出等量关系;(3)由(2)中的等量关系即可求解.【详解】(1)解:方法一:()24m n mn +-;方法二:()2m n -,故答案为:()24m n mn +-;()2m n -;(2)解:代数式()2m n +,()2m n -,mn 之间的等量关系为:。
沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计

沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计一. 教材分析《完全平方公式与平方差公式》是沪科版数学七年级下册第八章第三节的内容。
本节内容主要介绍完全平方公式和平方差公式的概念及其应用。
这两个公式是初中学段数学的重要知识点,也是解决代数问题的重要工具。
本节内容承上启下,为后续学习二次函数、一元二次方程等知识打下基础。
二. 学情分析七年级的学生已经掌握了有理数的运算、整式的乘法等基础知识,具备一定的逻辑思维能力和解决问题的能力。
但学生对完全平方公式和平方差公式的理解和应用还不够深入,需要通过本节课的学习,让学生熟练掌握这两个公式,并能够运用到实际问题中。
三. 教学目标1.知识与技能:让学生掌握完全平方公式和平方差公式的概念及其应用。
2.过程与方法:通过探究、合作、交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.完全平方公式和平方差公式的记忆和理解。
2.如何将公式运用到实际问题中,解决相关问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究、发现规律。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.运用实例讲解法,让学生通过具体例子,理解并掌握公式的应用。
六. 教学准备1.准备相关的教学PPT,展示完全平方公式和平方差公式的推导过程及应用实例。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾已学的有理数的运算、整式的乘法等知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示完全平方公式和平方差公式的推导过程,让学生直观地感受公式的来源和意义。
同时,给出一些应用实例,让学生初步了解公式的应用。
3.操练(10分钟)学生在小组内讨论,如何运用完全平方公式和平方差公式解决实际问题。
教师巡回指导,解答学生遇到的疑问。
4.巩固(10分钟)教师出示一些练习题,让学生独立完成。
完全平方公式与平方差公式

8.3完全平方公式与平方差公式第一课时(完全平方公式)一、学导目标:1.理解并掌握完全平方公式。
2.会运用完全平方公式解决一些简单的习题。
二、学导重点:会推导完全平方公式,并能利用公式进行简单计算三、学导难点: 掌握完全平方公式的结构特征,理解公式中a 、b 的广泛含义。
四、目标导航:1.计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)= ;(2)(m+2)2= ;(3)(p-1)2=(p-1)(p-1)= ;(4)(m-2)2= .2.尝试归纳=+2)(b a =-2)(b a3.完全平方公式用语言叙述是:4.(1)请你根据小学里学过的知识,用图中的字母表示出左图中白色部分和黑色部分面积的和。
()=+2b a + +(2).请你根据小学里学过的知识,用图中的字母表示出右图中黑色部分的面积。
()=-2b a - +自学教材P65例1 (1)(2x+1)2 (2)( 3a-2b)25.利用乘法公式计算:(1) (3x+1)2 (2)(a-3b)2 (3)(2x+2y )2 (4)(-2x+3y)26. 应用完全平方公式计算:(1)(4m+n )2 (2)(y-12)2 (3)(-a-b )2(4)1022 (5)992五、学导流程:(1)出示目标:1.理解并掌握完全平方公式。
2.会运用完全平方公式解决一些简单的习题。
(2)自学质疑:1、学生把课前没学完的可以再围绕“目标”和“目标导航”自学、对学、小组内展开。
2、教师深入其中查进度、问题汇总、导学。
3、检测“目标导航”有关内容。
(3) 汇报展示:1、各小组再小组长带领下共同展示目标内容2、教师针对展示的结果进行分析、归纳组织学生再学、学会、会学。
(4) 测评提升:1.填空题(1)(-3x+4y )2=_________.(2)(-2a-b )2=_________.(3)x 2-4xy+________=(x-2y )2.(4)a 2+b 2=(a+b )2+_________.(5)41a 2+______+9b 2=(21a+3b )2.(6)(a-2b )2 +(a+2b )2=_________. 2.用乘法公式计算(1)(21x -y )2 (2)(x 2-2y 2)2-(x 2+2y 2)2(3)29×31×(302+1) (4)(4x+41)23、多项式4x 2+1加上一个单项式后能成为一个多项式的完全平方,那么这个单项式是什么?。
完全平方公式与平方差公式教案

§8.3完全平方公式与平方差公式教学目标:1.知识与能力:会推导公式:(a±b)2=a2±2ab+b2 (a+b)(a-b)=a2-b2;了解公式的几何背景,会用公式计算。
2.过程与方法:经历探索完全平方公式与平方差公式的过程,发展学生观察交流归纳猜测验证等能力。
3.情感态度与价值观:进一步体会数形结合的数学思想和方法。
教学重点:乘法公式的应用教学难点:公式的结构特征对公式中字母所表示的广泛含义的理解和正确运用。
教学过程:一、引入:计算:(a+b)2=(a-b) 2=(a+b)(a-b)=(设计说明:乘法公式实际是几个特殊形式的多项式乘法结果,让学生知道公式的来历。
)二、新授:1.总结:上述三个公式可以直接用于计算。
其中1和2 称为完全平方公式,3称为平方差公式。
2.思考:你能用语言表述这两个公式吗?(设计说明:由学生自己总结乘法公式的特点,并用自己的语言叙述出来,让学生记忆深刻。
)3.展示多媒体课件,思考图形中阴影部分的面积(设计说明:利用图形的变换直观的说明乘法公式的几何意义,加深对乘法公式的理解,并体会了数形结合的数学思想方法。
)4.应用举例:例1:利用乘法公式计算:(1)(2x+y)2(2)(3a-2b) 2(设计说明:此例题强化完全平方公式的应用,利用课件用“↓”符号比较直观的指出公式中字母a、b分别表示什么。
)※字母a、b可以是数字,也可以是整式。
5.课堂练习:计算:(1)(3x+1)2 (2)(a-3b) 2 (3)(2x+y/2) 2 (4)(-2x+3y) 26. 例2:利用乘法公式计算:(1) (1-3m)(1+3m) (2)1999×2001(3)(x+3)(x-3)(x2+9)(设计说明:此题应用平方差公式简化计算,目的主要是进一步巩固平方差公式,体会符号运算对解决问题的作用。
)7. 课堂练习:计算:(1)(2a+5b)(2a-5b) (2)(1/2x-3)(1/2x+3)(3)(y-2x)(-2x-y) (4)(xy+1)(xy-1)※第三题需要变形后才能用平方差公式三、练习:P66 EX3 EX4四、小结:这节课你学到了什么?乘法公式的特征是什么?1.字母a、b可以表示数,也可以表示单项式多项式。
沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计

沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计一. 教材分析《完全平方公式与平方差公式》是沪科版数学七年级下册第八章第三节的内容。
本节内容主要介绍完全平方公式和平方差公式的概念及其应用。
这两个公式是初等代数中的重要公式,对于学生后续学习代数运算和解决实际问题具有重要意义。
教材通过具体的例子引导学生探究和发现这两个公式,并加以巩固和应用。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的运算、整式的乘法等基础知识。
但部分学生对于抽象的公式的理解和应用仍有困难,需要通过具体的例子和实际操作来加深理解。
同时,学生对于探究式学习方法已经有了一定的了解和经验,可以通过自主学习、合作学习等方式来掌握本节内容。
三. 教学目标1.知识与技能:使学生理解和掌握完全平方公式和平方差公式的概念及其应用。
2.过程与方法:培养学生通过探究、发现、总结数学规律的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.重点:完全平方公式和平方差公式的理解和应用。
2.难点:完全平方公式和平方差公式的推导过程及应用。
五. 教学方法1.采用探究式学习方法,引导学生通过自主学习、合作学习发现和总结完全平方公式和平方差公式。
2.通过具体例子和实际应用,帮助学生理解和掌握公式的运用。
3.采用讲解、示范、练习等多种教学手段,为学生提供丰富的学习资源和支持。
六. 教学准备1.准备相关例题和练习题,以便进行课堂练习和巩固。
2.准备多媒体教学设备,以便进行讲解和展示。
七. 教学过程1.导入(5分钟)通过回顾之前学过的有理数运算、整式乘法等知识,引导学生进入本节课的学习。
2.呈现(15分钟)展示完全平方公式和平方差公式的定义和表达式,引导学生理解公式的含义。
3.操练(20分钟)让学生通过自主学习、合作学习等方式,探究完全平方公式和平方差公式的推导过程。
在探究过程中,引导学生发现公式的特点和规律。
8.3完全平方公式与平方差公式(2)

8.3完全平方公式与平方差公式(1)完全平方公式1.能根据多项式的乘法推导出完全平方公式;(重点)2.理解并掌握完全平方公式,并能进行计算.(重点、难点)一、情境导入计算:(1)(x+1)2; (2)(x-1)2;(3)(a+b)2; (4)(a-b)2.由上述计算,你发现了什么结论?二、合作探究探究点:完全平方公式完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△2探究点:完全平方公式的集合意义.师生共同探究【类型一】直接运用完全平方公式进行计算利用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a +b )2.解析:直接运用完全平方公式进行计算即可.解:(1)(5-a )2=25-10a +a 2;(2)(-3m -4n )2=9m 2+24mn +16n 2;(3)(-3a +b )2=9a 2-6ab +b 2.方法总结:完全平方公式:(a ±b )2=a 2±2ab +b 2.可巧记为“首平方,末平方,首末两倍中间放”.自我检测:利用乘法公式计算(1) (3x+1)2 (2) (a-3b)2 (3) (-2x+2y )2 (4) (-3m-4n)2 变式训练【类型二】 构造完全平方式如果36x 2+(m +1)xy +25y 2是一个完全平方式,求m 的值.解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m 的值. 解:∵36x 2+(m +1)xy +25y 2=(6x )2+(m +1)xy +(5y )2,∴(m +1)xy =±2·6x ·5y ,∴m +1=±60,∴m =59或-61.方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.变式训练:【类型三】 运用完全平方公式进行简便计算利用完全平方公式计算:(1)992; (2)1022.解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;(2)1022=(100+2)2=1002+2×100×2+4=10404.方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.三、课堂小结通过这节课的学习你有哪些收获?四、作业课本69页练习板书设计1.完全平方公式两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.2.完全平方公式的运用本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a-b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
1.通过本节课的学习我有哪些收获? 2.通过本节课的学习我有哪些疑惑? 3.通过本节课的学习我有哪些感受? 作业:第71页 第2题
2.根据公式计算.
(1)(x+y)(x-y); (2)(a+5)(5-a); (3)(xy+z) (xy-z);
(4)(c-a) (a+c);
(5)(x-3) (-3-x).
例2 计算
(1) 102×98
(2) (y+2) (y -2) - (y -1) (y+5)
3.利用平方差公式计算:
(1)199×201
例1 运用平方差公式计算: (1) (3x+2 )( 3x-2 ) ; (2) (b+2a)(2a-b); (3) (-x+2y)(-x-2y).
活动4 练习
1.下面各式的计算对不对? 如果不对,应当 怎样改正?
(1)(x+2)(x-2)=x2-2; (2)(-3a-2)(3a-2)=9a2-4.
(a+b)(a- b)= a2- ab+ab- b2= a2- b2 .
平方差公式:
(a+b)(a- b)=
2- a
2. b
即两数和与这两数差的积等于这 两个数的平方差. (- m+n) (- m - n) = m2 - n2.
请从这个正方形纸板 上,剪下一个边长为b的 小正方形,如图1,拼成 如图2的长方形,你能根 据图中的面积说明平方差 公式吗?
平方差公式
活动1 知识复习
多项式与多项式相乘的法则:多项式与多项 式相乘,先用一个多项式的每一项乘另一个多项 式的每一项,再把所得的积相加.
(a+b)(m+n)=am+an+bm+bn.
活动2 计算下列各题,你能发现什么规律?
(1) (x+1)(x-1);
(2) (a+2)(a-2);
(3) (3-x)(3+x) ; (4) (2x+1)(2x-1).
2-b2. (a+b)(a-b)=aБайду номын сангаас
图1
图2
下列多项式乘法中, 能用平方差公式计算的是((2)(5)(6) ): (1)(x+1)(1+x); (2)(a+b)(b-a) ; (3)(-a+b)(a-b); (4)(x2-y)(x+y2); (5)(-a-b)(a-b); 2-d2)(d2+c2). (6)(c
(2)(-2x2-y)(-2x2+y)
(3)51×49 (4)(3x+4)(3x-4)-(2x+3)(3x-2)
1、[x+(y+1)] [x-(y+1)] 2、(a+b+c) (a+b-c) 3、(a+b+c) (a-b-c)
4、(x+3) (x-3)
2+9) (x 4+81) (x
逆向思维训练: n+m )( n-m)=n2-m2 1、( 2-9y2 2、 (2x+3y ) ( 2x-3y) =4x 3、( 5+a )( 5-a )=25-a²