成都市东湖中学七年级数学(上)第四章线段综合测试题(3)

合集下载

七年级数学上册第四章几何图形初步单元综合测试试题(共6页)

七年级数学上册第四章几何图形初步单元综合测试试题(共6页)

几何图形(j ǐh é t ú x íng)初步选择题1.以下说法正确的选项是〔 〕A.直线AB 和直线BA 是两条不同直线;B.射线AB 和射线BA 是两条一样射线;C.线段AB 和线段BA 是两条一样线段;D.直线AB 和直线a 不能是同一条直线。

2、如图,OC 平分, =,那么AOB ∠是〔 〕度。

A.20B.30C.40D.503.假设,,,,那么最大的角是〔 〕 A. B. C. D.4.以下说法中,正确的个数是〔 〕①一条射线就是一个周角.②两点确定一条直线. ③假如线段,那么点B叫做线段的中点。

A.一个 B.2 C.3 D.45.如图,由A 测B 的方向是〔 〕A.南偏东B.北偏西30︒ 图2C.北偏西D.南偏东60︒6.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =CD ;③CD =2CE ;④CD =21DE.其中能表示E 是线段CD 中点的有〔 〕A. 1个B. 2个C. 3个D. 4个7. C 是线段AB 上一点,D 是BC 的中点,假设AB =12cm ,AC =2cm ,那么BD 的长为〔〕A. 3cmB. 4cmC. 5cmD. 6cm8. 10. ∠1、∠2互为补角,且∠1>∠2,那么∠2的余角是〔〕.〔A〕〔∠1+∠2〕〔B〕12∠1 〔C〕12〔∠1-∠2〕〔D〕12∠29.如图是一正方体的平面(píngmiàn)展开图,假设AB=4,那么该正方体A、B两点间的间隔为〔〕A. 1B. 2C. 3D. 410.以下说法中正确的选项是〔〕A.假设∠AOB=2∠AOC,那么OC平分∠AOBB.延长∠AOB的平分线OCC.假设射线OC、OD三等份∠AOB,那么∠AOC=∠DOCD.假设OC平分∠AOB,那么∠AOC=∠BOC二、填空题1._________度___________分__________秒;2.如图3,假设,,且D是AC的中点,那么AC=___________;图33.,那么的余角=______________;4.如图4,图中大于平角的角一共有_______个,其中能用一个大写字母表示的角是___________;图45.如图5,从A到书店B最近的道路是①号道路,其道理用几何知识解释应是_______________________。

成都市东湖中学七年级数学(上)期中综合测试题(6)

成都市东湖中学七年级数学(上)期中综合测试题(6)

成都市东湖中学七年级数学(上)期中综合测试题(6)班级_______姓名________学号________成绩____________A 卷(100分)一、选择题:(每题3分、共30分)1.如果水库的正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作( ) A +3m B 3-m C 13+m D 13-m 2.已知y x n m n m 2652与-是同类项,则( ) A 、1,2==y x B 、1,3==y x C 、1,23==y x D 、0,3==y x 3.计算2008-(2009+︱2008-2009︱)的结果为( ) A 2- B -2001 C 1- D 2000 4.大于-3.1且不大于2.1的整数共有( )A 7个B 6个C 5个D 无数个5.一个负整数a ,其倒数1a与相反数a -相比较,正确的是( ) A 1a a >- B 1a a =- C 1a a<- D 无法确定6.下面各组数中,相等的一组是( )A 22-2与(-2) B 232233与() C 22----与()D 3333--()与 7.两位数的十位数字为x ,个位上的数字为y ,用式子表示这个两位数是( )A xyB x+yC 10x+yD 10y+x8.甲、乙两地相距m 千米,原计划火车每小时行x 千米。

若每小时行50千米,则火车从甲地到乙地所需时间比原来减少( )小时 A50m B m xC ()50m m x -D ()50m m x -9.下列说法中不正确的是( )①1是绝对值最小的数;②0既不是正数,也不是负数;③一个有理数不是整数就是分数;④0的绝对值是0.A 1个B 2个C 3个D 4个 10..若a+b <0, 且ab <0,则( )A. a,b 异号,且 ∣a ︳>∣b ∣B. a,b 异号,且a >bC. a,b 异号,负数的绝对值大,D. a,b 异号,正数的绝对值大。

成都市七年级数学上册第四单元《几何图形初步》经典练习题(课后培优)

成都市七年级数学上册第四单元《几何图形初步》经典练习题(课后培优)

一、选择题1.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( ) A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上2.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .13.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n4.如图,长度为12cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC :CB=1:2,则线段AC 的长度为( )A .8cmB .6cmC .4cmD .2cm5.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③6.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( ) A .①②B .③④C . ①②④D .①②③④7.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A.1B.2C.3D.48.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B 9.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为()A.7 B.3 C.3或7 D.以上都不对10.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有三条水路、两条陆路,从B地到C地有4条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有( )A.10种B.20种C.21种D.626种11.如图是一个正方体展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,-2,0 B.0,-2,1 C.-2,0,1 D.-2,1,012.若射线OA与射线OB是同一条射线,下列画图正确的是()A.B.C.D.13.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确14.用一个平面去截一个几何体,能截出如图所示的四种平面图形,则这个几何体可能是()A.圆柱B.圆锥C.长方体D.球15.下列图形中,是圆锥的表面展开图的是()A.B.C.D.二、填空题16.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.17.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.18.如图,共有_________条直线,_________条射线,_________条线段.19.已知一个角的补角是它余角的3倍,则这个角的度数为_____.20.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.21.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.22.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.23.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若3AC=,1CP=,则线段PN的长为________.24.把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.25.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.26.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.三、解答题27.如图所示,已知射线OC 将∠AOB 分成1∶3的两部分,射线OD 将∠AOB 分成5∶7的两部分,若∠COD =15°,求∠AOB 的度数.28.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p . 29.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数. 30.如图,O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.。

成都七中人教版初中七年级数学上册第四章《几何图形初步》模拟检测题(包含答案解析)

成都七中人教版初中七年级数学上册第四章《几何图形初步》模拟检测题(包含答案解析)

一、选择题1.(0分)[ID :68655]如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB .A .①②B .②③C .③④D .①④2.(0分)[ID :68652]已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( ) A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上3.(0分)[ID :68649]将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D4.(0分)[ID :68626]如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠CODD .∠DOE 的度数不能确定5.(0分)[ID :68620]如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .66.(0分)[ID :68598]如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为( )A.互余B.互补C.相等D.无法确定7.(0分)[ID:68596]如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.48.(0分)[ID:68595]如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°9.(0分)[ID:68593]如图,点A、B、C是直线l上的三个定点,点B是线段AC的三等分点,AB=BC+4m,其中m为大于0的常数,若点D是直线l上的一动点,M、N分别是AD、CD的中点,则MN与BC的数量关系是()A.MN=2BC B.MN=BC C.2MN=3BC D.不确定10.(0分)[ID:68592]若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B11.(0分)[ID:68586]已知线段AB,在AB的延长线上取一点C,使25BC AC=,在AB的反向延长线上取一点D,使34DA AB=,则线段AD是线段CB的____倍A.98B.89C.32D.2312.(0分)[ID:68584]一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种13.(0分)[ID:68581]22°20′×8等于( ).A.178°20′B.178°40′C.176°16′D.178°30′14.(0分)[ID:68575]高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的15.(0分)[ID :68569]线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( ) A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm二、填空题16.(0分)[ID :68701](1)375324'''°=________°;(2)1.45︒=________′.17.(0分)[ID :68720]植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.18.(0分)[ID :68719]某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.19.(0分)[ID :68705]若A ,B ,C 三点在同一直线上,线段AB =21cm ,BC =10cm ,则A ,C 两点之间的距离是________.20.(0分)[ID :68685]用一个平面分别截棱柱、圆锥,都能截出的一个图形是________. 21.(0分)[ID :68674]车轮旋转时,看起来像一个整体的圆面,这说明了_______;直角三角形绕它的直角边旋转一周形成了一个圆锥体,这说明了________.22.(0分)[ID :68669]如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.23.(0分)[ID :68658]把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)24.(0分)[ID :68748]一个圆的周长是62.8m ,半径增加了2m 后,面积增加了____2m .(π取3.14)25.(0分)[ID :68738]如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.26.(0分)[ID :68737]若∠B 的余角为57.12°,则∠B=_____°_____’_____”AB BC CD=,AB的中点M与CD的中点N的27.(0分)[ID:68734]如图,::2:3:4距离是3cm,则BC=______.三、解答题28.(0分)[ID:68857]小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.29.(0分)[ID:68856]读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.30.(0分)[ID:68769]如图,点B和点C为线段AD上两点,点B、C将AD分成2︰3︰4三部分,M是AD的中点,若MC=2,求AD的长.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.C4.A5.A6.C7.C8.C9.C10.C11.A12.B13.B14.B15.C二、填空题16.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制17.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性18.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm则长方形的宽为(14-2x)cm根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm宽为619.11cm或31cm【分析】分类讨论:当点C在线段AB上则有AC=AB﹣BC;当点C在线段AB的延长线上则AC=AB+BC然后把AB=21cmBC=10cm分别代入计算即可【详解】当点C 在线段AB上则20.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故21.线动成面面动成体【解析】【分析】车轮上有线看起来像一个整体的圆面所以是线动成面;直角三角形是一个面形成圆锥体所以是面动成体【详解】车轮旋转时看起来像一个整体的圆面这说明了线动成面;直角三角形绕它的直22.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=23.如果两个角是两个相等角的余角那么这两个角相等真【解析】【分析】根据命题由题设和结论组成把条件两个角是同角的余角写在如果的后面把结论这两个角相等写在那么的后面即可【详解】命题同角的余角相等改写成如果那24.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷3125.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【26.5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键27.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据∠AOB=12∠BOD,OC平分∠AOD,得到∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而得到∠BOC=12∠AOB,∠DOC=3∠BOC从而判断出①②错误,③④正确.【详解】解:因为∠AOB=12∠BOD,所以∠AOB=13∠AOD,因为OC平分∠AOD,所以∠AOC=∠DOC=12∠AOD,所以∠BOC=∠AOC-∠AOB=12∠AOD-13∠AOD=16∠AOD=12∠AOB,故①错误,③正确;因为∠DOC=12∠AOD,∠BOC=16∠AOD,所以∠DOC=3∠BOC 故②错误,④正确.【点睛】本题考查了角的和差倍数关系,根据题意表示∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而根据角的关系即可作出判断.2.A解析:A【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选:A.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.3.C解析:C【解析】根据折叠的性质,结合折叠不变性,可知剪下来的图形是C,有四个直角三角形构成的特殊四边形.故选C.4.A解析:A【分析】本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.【详解】A、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=12(∠BOC+∠AOC)=12∠AOB=60°.故本选项叙述正确;B、∵OD是∠AOC的角平分线,∴∠AOD=12∠AOC.又∵OC是∠AOB内部任意一条射线,∴∠AOC=∠EOC不一定成立.故本选项叙述错误;C、∵OC是∠AOB内部任意一条射线,∴∠BOE=∠AOC不一定成立,∴∠BOE=2∠COD不一定成立.故本选项叙述错误;D、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠DOE=12(∠BOC+∠AOC)=12∠AOB=60°.故本选项叙述错误;故选A.【点睛】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.5.A解析:A 【分析】根据题意可知BC=6,所以AC=18,由于D 是AC 中点,可得AD=9,从BD=AB-AD 就可求出线段BD 的长. 【详解】由题意可知12AB =,且12BC AB =, 所以6BC =,18AC =. 因为点D 是线段AC 的中点, 所以1118922AD AC ==⨯=, 所以1293BD AB AD =-=-=. 故选A . 【点睛】本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.6.C解析:C 【分析】∠1和∠2互余,∠2与∠3互余,则∠1和∠3是同一个角∠2的余角,根据同角的余角相等.因而∠1=∠3. 【详解】∵∠1与∠2互余,∠2与∠3互余, ∴∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3, 故选:C . 【点睛】本题考查了余角的定义.解题的关键是掌握余角的定义,以及同角的余角相等这一性质.7.C解析:C 【分析】确定原正方体相对两个面上的数字,即可求出和的最小值. 【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面, 因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6. 故选:C . 【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.8.C解析:C 【分析】首先求得AB 与正东方向的夹角的度数,即可求解. 【详解】根据题意得:∠BAC =(90°﹣70°)+15°+90°=125°, 故选:C . 【点睛】本题考查了方向角,正确理解方向角的定义是关键.9.C解析:C 【分析】可用特殊值法,设坐标轴上的点A 为0,C 为12m ,求出B 的值,得出BC 的长度,设D 为x ,则M 为2x,N 为122m x +,即可求出MN 的长度为6m ,可算出MN 与BC 的关系. 【详解】设坐标轴上的点A 为0,C 为12m , ∵AB =BC+4m , ∴B 为8m , ∴BC =4m , 设D 为x ,则M 为2x,N 为122m x +, ∴MN 为6m , ∴2MN =3BC , 故选:C . 【点睛】本题考查了两点间的距离,解题关键是注意特殊值法的运用及方程思想的运用.10.C解析:C 【分析】根据度分秒之间的换算,先把∠C 的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案. 【详解】解:∵∠C=20.25°=20°15′, ∴∠A >∠C>∠B , 故选:C . 【点睛】此题考查了角的大小比较,先把∠C 的度数化成度、分、秒的形式,再进行比较是本题的关键.11.A解析:A【分析】 根据25BC AC =,AC=AB+BC 可得出BC 与AB 的倍数关系,根据34DA AB =,利用等量代换即可得答案.【详解】∵25BC AC =,AC=AB+BC , ∴BC=25(AB+BC ), ∴AB=32BC , ∵34DA AB =, ∴AD=34×32BC=98BC , ∴线段AD 是线段CB 的98倍, 故选A.【点睛】本题考查了比较线段的长短,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.12.B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD 被B 、C 两点分成AB 、AC 、AD 、BC 、BD 、CD 六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B .【点睛】本题考查的实质是找出已知图形上线段的条数.13.B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 14.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B .【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键. 15.C解析:C【分析】根据题意分两种情况,①C 为线段AB 延长线上的点,②C 为线段AB 上的点,利用中点的性质分别进行求解.【详解】如图1, ①C 为线段AB 延长线上的点,∵,M N 分别是,AC BC 中点,∴CM=12AC=12(AB+BC )=6cm, CN=12BC=1cm, ∴MN=CM-CN=5cm;如图2,②C 为线段AB 上的点,∵,M N 分别是,AC BC 中点,∴CM=12AC=12(AB-BC )=4cm, CN=12BC=1cm, ∴MN=CM+CN=5cm;【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.二、填空题16.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制 解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.17.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性 解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.18.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm,宽为6cm,长为8cm,长方形的体积为:8×6×4=192(cm3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.11cm或31cm【分析】分类讨论:当点C在线段AB上则有AC=AB﹣BC;当点C在线段AB的延长线上则AC=AB+BC然后把AB=21cmBC=10cm分别代入计算即可【详解】当点C在线段AB上则解析:11cm或31cm【分析】分类讨论:当点C在线段AB上,则有AC=AB﹣BC;当点C在线段AB的延长线上,则AC=AB+BC,然后把AB=21cm,BC=10cm分别代入计算即可.【详解】当点C在线段AB上,则AC=AB﹣BC=21cm﹣10cm=11cm;当点C在线段AB的延长线上,则AC=AB+BC=21cm+10cm=31cm;综上所述:A.C两点之间的距离为11cm或31cm.故答案为11cm或31cm.【点睛】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.20.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故解析:三角形【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键.21.线动成面面动成体【解析】【分析】车轮上有线看起来像一个整体的圆面所以是线动成面;直角三角形是一个面形成圆锥体所以是面动成体【详解】车轮旋转时看起来像一个整体的圆面这说明了线动成面;直角三角形绕它的直解析:线动成面面动成体【解析】【分析】车轮上有线,看起来像一个整体的圆面,所以是线动成面;直角三角形是一个面,形成圆锥体,所以是面动成体.【详解】车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体.故答案为线动成面,面动成体.【点睛】此题考查点、线、面、体,解题关键在于掌握其定义.22.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.23.如果两个角是两个相等角的余角那么这两个角相等真【解析】【分析】根据命题由题设和结论组成把条件两个角是同角的余角写在如果的后面把结论这两个角相等写在那么的后面即可【详解】命题同角的余角相等改写成如果那解析:如果两个角是两个相等角的余角,那么这两个角相等. 真【解析】【分析】根据命题由题设和结论组成,把条件“两个角是同角的余角”写在如果的后面,把结论“这两个角相等"写在那么的后面即可【详解】命题“同角的余角相等”改写成“如果..,那么."的形式是“如果两个角是同角的余角,那么这两个角相等”如果两个角是同角的余角,那么这两个角相等是真命题【点睛】此题考查命题与定理,掌握三角形的性质是解题关键24.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.25.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB 转化成∠COD+∠AOB 是解决本题的关键.26.5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键解析:52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.27.5cm 【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm 求出MB=xcmCN=2xcm 得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm ∵M 是解析:5cm【分析】运用方程的思想,设AB=2xcm ,BC=3xcm ,CD=4xcm ,求出MB=xcm ,CN=2xcm ,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm ,BC=3xcm ,CD=4xcm ,∵M 是AB 的中点,N 是CD 的中点,∴MB=xcm ,CN=2xcm ,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm .故答案为:1.5cm .【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x 的方程.三、解答题28.(1)8;(2)见解析;(3)200000立方厘米【分析】1)根据长方体总共有12条棱,有4条棱未剪开,即可得出剪开的棱的条数;(2)根据长方体的展开图的情况可知有4种情况;(3)设底面边长为acm,根据棱长的和是880cm,列出方程可求出底面边长,进而得到长方体纸盒的体积.【详解】解:(1)由图可得,小明共剪了8条棱,故答案为:8.(2)如图,粘贴的位置有四种情况如下:(3)∵长方体纸盒的底面是一个正方形,∴可设底面边长acm,∵长方体纸盒所有棱长的和是880cm,长方体纸盒高为20cm,∴4×20+8a=880,解得a=100,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.【点睛】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.29.(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.30.AD=36.【分析】根据点B、C将AD分成2︰3︰4三部分可得出CD与AD的关系,根据中点的定义可得MD=12AD,利用MC=MD-CD即可求出AD的长度.【详解】∵点B、C将AD分成2︰3︰4三部分,∴CD=49AD,∵M是AD的中点,∴MD=12 AD,∵MC=MD-CD=2,∴12AD-49AD=2,∴AD=36.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。

【七年级数学】人教版七年级数学上第四章几何图形初步单元综合检测试卷(带答案)

【七年级数学】人教版七年级数学上第四章几何图形初步单元综合检测试卷(带答案)

人教版七年级数学上第四章几何图形初步单元综合检测试
卷(带答案)
第四《几何图形初步》单元综合检测试卷
学校___________姓名___________班级___________考号___________
注意事项
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.下列语句错误的是()
A.两点确定一条直线
B.同角的余角相等
c.两点之间线段最短
D.两点之间的距离是指连接这两点的线段
2.如图,四个几何体分别为长方体、圆柱体、球体和三棱桂,这四个几何体中截面不可能是长方形的几何体是()
A.长方体B.圆珠体
c.球体D.三棱柱
3.用一副三角板可以画出的最大锐角的度数是()
A.85°B.75°c.60°D.45°
4.已知∠AB=70°,以端点作射线c,使∠Ac=28°,则∠Bc的度数为()
A.42°B.98°c.42°或98°D.82°
5.如图是一个长方体纸盒的表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为()
A.6B.8c.10D.15。

成都市东湖中学七年级(上)第四章线段、角综合测试题(4)

成都市东湖中学七年级(上)第四章线段、角综合测试题(4)

成都市东湖中学七年级(上)第四章线段、角综合测试题(4)班级_______姓名________学号________成绩____________A 卷(100分)一、选择题:(每题3分、共30分)1. 如图,线段、射线或直线的条数是( )A 五条线段,三条射线B 一条直线,三条线段C 三条线段,三条射线D 三条线段,两条射线和一条直线 2.如果点B 在线段AC 上,点C 在线段BD 上,那么有( )A 点B 在线段CD 上 B 点C 在线段AB 上 C B 、C 点均在线段AD 上 D 以上都不对 3.以下画图语句错误的是( )A . 连结AB ,得到线段AB B. 画点C ,过点C 画直线AB ,得到过点C 的直线AB C. 画直线a ,在a 上画两点G 、H ,过H 任画直线b ,则得到G 点在直线a 外、直线b 上 D. 线段AB 向两端延长,得到直线AB4.如果在一条直线上得到10条不同的线段,那么在这条直线上至少要选用( )个不同的 点. A 20 B 10 C 7 D 55.在已知的线段AB 上取6个点C,D,E,F,G,,H,(不与A 、B 两点重合),图中可以用这些字母比表示的线段共有( )A. 6B.8C.15D. 286.某班在组织学生议一议:测量1张纸大约有多厚.出现了以下四种观点,你认为较合理且可行的.......是( ) A .直接用三角尺测量1张纸的厚度 B . 先用三角尺测量同类型的100张纸的厚度 C .先用三角尺测量同类型的2张纸的厚度 D .先用三角尺测量同类型的1000张纸的厚度7.下列说法:①一根拉的很紧的细线就是直线;②直线的一半是射线;③线段AB 是点A 与点B 的距离;④田径运动中的3000米赛跑,起点与终点的距离是3000米; ⑤在所有连接两点的线中,线段最短. 其中正确的个数是( )A.1B.2C.3D.4 8.下列说法中错误的是( )A .A 、B 两点之间的距离为3cm B .A 、B 两点之间的距离为线段AB 的长度C .线段AB 的中点C 到A 、B 两点的距离相等D .A 、B 两点之间的距离是线段AB 9. 在直线、射线和线段中,可以度量的有( )A.0B.1C.2D.310. 已知线段AB ,延长AB 到C ,使AC =2BC ,反向延长AB 到D ,使AD =21BC ,那么线段AD 是线段AC 的( ) A.31 B.41 C.51 D.72 二、填空题(每题3分、共15分)11.线段有__个端点,射线有__个端点,直线有__个端点. 12.如图,AC=DB ,写出图中另外两条相等的线段__________.13.如图,线段AB______AC +BC,理由是___________________.14.如图,AC=_______+BC,BD -_________=BC.15. 如图,用线段a、b表示线段AD的长,则线段AD=____________第13题图第14题图第15题图三、计算题16.计算:(每题4分共16分)①48°39′+67°31′②180°﹣21°17′×5③18°36′12″+12°28′14″④72°35′÷2+18°33′×4.四、解答题(17--19每题6分、20--22每题7分共39分)17、如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度。

(人教版)初中数学七上 第四章综合测试03附答案

(人教版)初中数学七上 第四章综合测试03附答案

第四章综合测试一、选择题(30分) 1.下列说法正确的是( )A .线段AB 和线段BA 表示的是同一条线段 B .射线AB 和射线BA 表示的是同一条射线C .直线AB 和直线BA 表示的是两条直线D .若点M 在直线AB 上,则点M 也在射线AB 上2.已知55A ∠=︒ ,则它的余角是( ) A .25︒B .35︒C .45︒D .55︒3.如图所示的是一个几何体的表面展开图,则该几何体是( ) A .正方体B .长方体C .三棱柱D .四棱锥4.如图是正方体的表面展开图,则与“前”字相对的字是( ) A .认B .真C .复D .习5.建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是( )A .两点之间,线段最短B .两点确定一条直线C .垂线段最短D .过一点有且只有一条直线和已知直线平行6.将一副三角尺如图放置,使含30︒角的三角尺的直角边和含45︒角的三角尺一条直角边在同一条直线上,则1∠的度数为( ) A .75︒B .65︒C .45︒D .30︒7.已知线段AB ,在线段AB 的延长线上取一点C ,使2AC BC =,在线段AB 的反向延长线上取一点D ,使2DA AB =,那么线段AC 是线段DB 的( ) A .23B .32C .12D .138.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若10 cm AB =, 4 cm BC =,则AD 的长为( ) A .2 cmB .3 cmC .4 cmD .6 cm9.如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则BOM ∠等于( ) A .38︒B .104︒C .142︒D .144︒10.如图,将一副三角尺按不同的位置摆放,下列方式中α∠与β∠互余的是( )A .图①B .图②C .图③D .图④二、填空题(24分)11.把3324'36"︒转化为用度表示的形式为_________.12.如图,过直线AB 上一点O 作射线OC ,2918'BOC ∠=︒,则AOC ∠的度数为_________.13.如图所示,图中共有_________条线段.14.如图,将一副三角尺叠放在一起,使直角的顶点重合于点O ,则绕点O 任意转动其中一个三角尺,与AOD ∠始终相等的角是_________.15.如图是分别从三个不同方向看一个长方体得到的平面图形(单位:cm ),根据图中数据计算这个长方体的体积是_________3cm .16.点M 在线段EF 上,有以下四个等式:①EM FM =;②2EF FM =;③EM FM EF +=;④12EM EF =.其中能表示M 是线段BF 的中点的是_________.(只填序号)17.如图,将练习本某页一角斜折过去,使角的顶点A 落在'A 处,BC 为折痕,已知'68A BD ∠=︒,则12ACB DBE ∠-∠=_________度.18.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若1CD =,则AB =_________.三、解答题(8+7+7+7+7+10=46分)19.如图所示,在一条笔直公路a 的两侧,分别有A ,B 两个村庄,现要在公路a 上建一个汽车站C ,使汽车站到A ,B 两村的距离之和最小,问汽车站C 的位置应如何确定?20.一个五棱柱如图所示,它的底面各边长都是4 cm ,侧棱长是6 cm ,回答下列问题(1)这个五棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个五棱柱一共有多少条棱?它们的长度分别是多少?21.如图,已知A ,O ,B 三点在同一直线上,射线OC 为不同于射线OA ,OB 的一条射线,已知OD 平分AOC ∠,90DOE ∠=︒,试说明:OE 平分BOC ∠.22.如图,直线AB ,CD 相交于点O ,OE 平分AOD ∠,90FOC ∠=︒,140∠=︒,求2∠,3∠的度数.23.如图,已知点C 是线段AB 的中点,点D 是线段AC 的中点,点E 是线段BC 的中点.(1)若线段9DE cm =,求线段AB 的长.(2)在(1)中,延长AB 到点O ,使2BO AB =.求线段AO 的长.24.如图所示,先找到长方形纸的宽DC 的中点E ,将C ∠过E 点折起任意一个角,折痕是EF ,再将D ∠过E 点折起,使DE 和'EC 重合,折痕是GE ,解答下列问题. (1)探究'FEC ∠和'GEC ∠是否互为余角,并说明理由.(2)在上述折纸图形中,请写出三对互为余角、三对互为补角的角.第四章综合测试答案1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】B6.【答案】A7.【答案】A8.【答案】B9.【答案】C 10.【答案】A 11.【答案】33.41︒ 12.【答案】15042'︒ 13.【答案】10 14.【答案】BOC ∠ 15.【答案】24 16.【答案】①②④ 17.【答案】34 18.【答案】419.【答案】解:如图,连接AB 与直线a 交于点C ,这个点C 的位置就是符合条件的汽车站的位置.20.【答案】解:(1)这个五棱柱一共有7个面,其中5个长方形,2个五边形,5个侧面即5个长方形的形状、面积完全相同,2个底面即2个五边形的形状、面积完全相同。

成都市人教版初中七年级数学上册第四章《几何图形初步》模拟测试题(含答案解析)

成都市人教版初中七年级数学上册第四章《几何图形初步》模拟测试题(含答案解析)

一、选择题1.(0分)[ID :68657]如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.(0分)[ID :68651]如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .13.(0分)[ID :68643]点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( ) A .3B .2C .3 或 5D .2 或 64.(0分)[ID :68638]如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12AB D .AD=12(CD+AB ) 5.(0分)[ID :68636]平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上 B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定6.(0分)[ID :68631]已知∠α与∠β互补,且∠α>∠β,则∠β的余角可以表示为( ) A .12α∠ B .12β∠ C .()12αβ∠-∠ D .()1+2αβ∠∠ 7.(0分)[ID :68630]如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处8.(0分)[ID :68605]已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π9.(0分)[ID :68586]已知线段AB ,在AB 的延长线上取一点C ,使25BC AC =,在AB 的反向延长线上取一点D ,使34DA AB =,则线段AD 是线段CB 的____倍 A .98B .89 C .32D .2310.(0分)[ID :68583]已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 11.(0分)[ID :68580]在钟表上,1点30分时,时针与分针所成的角是( ).A .150°B .165°C .135°D .120°12.(0分)[ID :68575]高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是( ) A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的13.(0分)[ID :68572]下列图形中,不可以作为一个正方体的展开图的是( ) A .B .C .D .14.(0分)[ID :68566]两个锐角的和是( ) A .锐角 B .直角C .钝角D .锐角或直角或钝角15.(0分)[ID :68563]用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有( ) A .7个面B .15条棱C .7个顶点D .10个顶点二、填空题16.(0分)[ID :68713]请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.17.(0分)[ID:68712]长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.18.(0分)[ID:68711]如图,能用O,A,B,C中的两个字母表示的不同射线有____条.19.(0分)[ID:68719]某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.20.(0分)[ID:68710]看图填空.(1)AC=AD-_______=AB+_______,(2)BC+CD=_______=_______-AB,(3)AD=AC+___.21.(0分)[ID:68751]如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.3=,1AC cm=,线段PN=__cm.CP cm22.(0分)[ID:68745]如图所示,O是直线AB上一点,OD平分∠BOC, ∠COE=90°,若∠AOC=40°,则∠DOE=_________.23.(0分)[ID :68740]在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______.24.(0分)[ID :68739]如图,上午6:30时,时针和分针所夹锐角的度数是_____.25.(0分)[ID :68730]若A ,B ,C 在同一条直线上,线段10cm AB =,2cm BC =,则A ,C 两点间的距离是________.26.(0分)[ID :68728]如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.27.(0分)[ID :68727]有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.三、解答题28.(0分)[ID :68800](1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数.(2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数.29.(0分)[ID :68780]蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?30.(0分)[ID :68763]如图所示,长度为12cm 的线段AB 的中点为点M ,点C 将线段MBMC CB ,求线段AC的长度.分成:1:2【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.D4.D5.A6.C7.A8.C9.A10.D11.C12.B13.C14.D15.A二、填空题16.圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断依据圆锥的概念可以对(4)进行判断【详解】(1)该立体图形的上下两17.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)18.7【分析】找射线可以先找到一个端点然后以这个端点发散本题可以分别以ABCO为端点找到不同的射线【详解】以点O为端点并且能用两个字母表示的射线是OAOBOC以点A 为端点并且能用两个字母表示的射线是AC19.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm则长方形的宽为(14-2x)cm根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm宽为620.CDBCBDADCD【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC(2)BC+CD=BD=AD-AB(3)AD=AC+CD故答案为:CD;BC;BD;AD21.【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN 的长进而得出PN的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用22.20【解析】【分析】求出∠BOC=140°根据OD平分∠BOC得出∠COD=∠BOC求出∠COD=70°根据∠DOE=∠COE-∠COD求出即可【详解】∵O是直线AB上一点∴∠AOC+∠BOC=1823.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是24.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动25.或【分析】根据题意可分为两种情况:当点在点之间时;当点在点之间时;分别求出答案即可【详解】解:当点在点之间时;当点在点之间时故答案为:或【点睛】本题考查了线段之间的数量关系解题的关键是掌握线段之间的26.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键27.【分析】先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比由于方木底面正方形与圆木底面圆面积相等故两比值之比即为结果【详解】正方形内作最大的圆:设圆的半径为r圆的面积与三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.C解析:C【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=12AC=7cm;∵M是AB的中点,∴AM=12AB=5cm,∴DM=AD﹣AM=2cm.故选:C.【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.3.D解析:D【解析】试题此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB外,如答图1,AC=4+2=6;第二种情况:在AB内,如答图2,AC=4﹣2=2.故选D.4.D解析:D【解析】解:A、由点C是线段AB的中点,则AB=2AC,正确,不符合题意;B、AC+CD+DB=AB,正确,不符合题意;C、由点C是线段AB的中点,则AC=12AB,CD=AD-AC=AD-12AB,正确,不符合题意;D、AD=AC+CD=12AB+CD,不正确,符合题意.故选D.5.A 解析:A本题没有给出图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系,再根据正确画出的图形解题. 【详解】 如图:从图中我们可以发现AC BC AB +=, 所以点C 在线段AB 上. 故选A . 【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.6.C解析:C 【分析】首先根据∠α与∠β互补可得∠α+∠β=180°,再表示出∠β的余角90°-(180°-∠α),然后再把等式变形即可. 【详解】∵∠α与∠β互补, ∴∠α+∠β=180°, ∵∠α>∠β, ∴∠β=180°-∠α,∴∠β的余角为:90°-(180°-∠α)=∠α-90°=∠α-12(∠α+∠β)=12∠α−12∠β=12(∠α-∠β), 故选C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的定义.7.A解析:A 【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短. 故选A .8.C解析:C 【分析】根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积. 【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2, ∴形成的几何体的体积等于:3πr 2h . 故选:C . 【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.9.A解析:A 【分析】 根据25BC AC =,AC=AB+BC 可得出BC 与AB 的倍数关系,根据34DA AB =,利用等量代换即可得答案. 【详解】 ∵25BC AC =,AC=AB+BC , ∴BC=25(AB+BC ), ∴AB=32BC , ∵34DA AB =, ∴AD=34×32BC=98BC , ∴线段AD 是线段CB 的98倍, 故选A. 【点睛】本题考查了比较线段的长短,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.10.D解析:D 【分析】由点C 在直线AB 上,分别讨论点C 在线段AB 上和在线段AB 的延长线上两种情况,根据线段的和差关系求出AC 的长即可. 【详解】∵点C 在直线AB 上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.11.C解析:C【分析】根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.【详解】钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.故选C.【点睛】此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.12.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B.【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.13.C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.14.D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.【详解】解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.15.A解析:A【解析】【分析】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.【详解】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.故选:A.【点睛】此题考查截一个几何体,解题关键在于掌握立体图形.二、填空题16.圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断依据圆锥的概念可以对(4)进行判断【详解】(1)该立体图形的上下两解析:圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断,依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断,依据圆锥的概念可以对(4)进行判断.(1)该立体图形的上下两个底面是大小相同且平行的两个圆,所以是圆柱;(2)该立体图形的上下两个底面是相同且平行的两个三角形,三个侧面都是长方形,所以是三棱柱;(3)该立体图形的共有四个面,每个面都是三角形,所以是三棱锥;(4)该几何体只有一个底面,是圆,并且有一个顶点,所以是圆锥.答案:(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.【点睛】此题考查柱体与锥体的认识,掌握立体图的概念是解题的关键.17.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体体面平曲【解析】【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.18.7【分析】找射线可以先找到一个端点然后以这个端点发散本题可以分别以ABCO为端点找到不同的射线【详解】以点O为端点并且能用两个字母表示的射线是OAOBOC以点A为端点并且能用两个字母表示的射线是AC解析:7【分析】找射线可以先找到一个端点,然后以这个端点发散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市东湖中学七年级数学(上)第四章线段综合测试题(3)
班级_______姓名________学号________成绩____________
1.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。

2. 已知线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,
M 是线段AC 的中点,求线段AM 的长.
3. 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度。

4.如图,已知线段AB 和CD 的公共部分BD=31
AB=4
1CD,线段AB 、CD 的中点E 、F 之间距
离是10cm ,求AB ,CD 的长
5、如图,点C在线段AB上,AC = 8厘米,CB = 6厘米,点M、N分别是AC、BC的中点。

A B
C
M N
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC + CB = a厘米,其它条件不变,你能猜想MN的长度吗?并说明理由。

(3)若C在线段AB的延长线上,且满足AC BC = b厘米,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由。

6、如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度。

7、如图AD=1
2
BD,E是BC的中点,BE=2cmAC=10cm,求线段DE的长.
图9
A
D
C
B
E
8、已知: B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD的中点,CD=6㎝,
求线段MC的长。

9.如图,点C、D在线段AB 上.AC=6 cm,CD=4 cm,AB=12 cm,则图中所有线段的和是________cm.
10.线段AB=12.6 cm,点C 在BA 的延长线上,AC=3.6 cm,M 是BC 中点,则AM 的长是________cm.
11.如图,线段AB被点C、D分成了3︰4︰5三部分,且AC的中点M和DB的中点N之间的距离是40 cm,求AB的长.
填空
如图,把线段AB延长到点C,使BC=2AB,再延长BA到点D,使AD=3AB,则
①DC=_____AB=_____BC ②DB=_____CD=_____BC
填空
如图,点M为线段AC的中点,点N为线段BC的中点
①若AC=2cm,BC=3cm,求MN ②若AB=6cm,求MN
③若AM=1cm,BC=3cm,求AB ④若AB=5cm,MC=1cm,求NB
M N
A B
C
根据下列语句画图并计算
(1)作线段AB,在线段AB的延长线上取点C,使BC=2AB,M是线段BC的中点,若AB=30cm,求线段BM的长
(2)作线段AB,在线段AB的延长线上取点C,使BC=2AB,M是线段AC的中点,若AB=30cm,求线段BM的长
如图,已知AB= 40,点C是线段AB的中点,点D为线段CB上的一点,点E为线段DB的中点,EB=6,求线段CD的长。

C D E
A B
如图,AE=
21EB ,点F 是线段BC 的中点,BF=5
1
AC=1.5,求线段EF 的长。

A
B
C E
F
点O 是线段AB=28cm 的中点,而点P 将线段AB 分为两部分AP:PB=24
:315
,求线段OP 的
长。

(1)如图,分别在线段AB 和BA 的延长线上取BD=AE=1.5cm ,又EF=5cm ,DG=4cm ,GF=1cm ,若GF 的中点为点M ,求线段AM 和BM 的长度。

(2)若线段a 、b 、c ,满足:a:b:c=3:4:5,且a+b+c=60,求线段2c -3a -5
1
b 的长。

B F
M
G
如图,在四边形ABCD 中作出一点O ,使点O 到A 、B 、C 、D 四点的连线之和最小。

【模拟试题】 一. 选择题:
1. 已知点C 是线段AB 的中点,现有三个表达式:
① AC=BC ② AB=2AC=2BC ③ AC=CB=2
1
AB 其中正确的个数是( )
A. 0
B. 1
C.2
D. 3
2. 如图,C 、B 在线段AD 上,且AB=CD ,则AC 与BD 的大小关系是( )
A C
B D
A. AC>BD
B. AC=BD
C. AC<BD
D. 不能确定 3. 点A 、B 是平面上两点,AB=10cm ,点P 为平面上一点,若PA+PB=20cm ,则P 点( ) A. 只能在直线AB 外 B. 只能在直线AB 上 C. 不能在直线AB 上 D. 不能在线段AB 上
4. 已知线段AB=
5.4,AB 的中点C ,AB 的三等分点为D ,则C 、D 两点间距离为( ) A. 1.2 B. 0.9 C.1.4 D. 0.7 二. 填空题:
1. 如图,AB+AC______BC (选填“>”或“<”),理由是
A
B
C
2. 已知线段AB ,延长AB 到C ,使BC=AB ,在线段AB 的反向延长线上截取AD=AC ,则有DB:AB=_________,CD:BD=___________。

3. 如图,已知AB:AC=1:3,AC:AD=1:4,且AB+AC+AD=40,则AB=_____,BC=______,CD=_______。

A B D
C
4. 两条相等的线段AB 、CD 有三分之一部分重合,M 、N 分别为AB 、CD 的中点,若MN=12cm ,则AB 的长为_________。

三. 解答题:
1. 已知B 、C 是线段AD 上的两点,若AD=18cm ,BC=5cm ,且M 、N 分别为AB 、CD 的中点,(1)求AB+CD 的长度;(2)求M 、N 的距离。

2. 如图,在已知直线MN的两侧各有一点A和B,在MN上找出一点C,使C点到A、B 的距离之和最短,画出图形,并说明为什么最短?。

相关文档
最新文档