七上第四章 基本平面图形

合集下载

七年级数学北师大版上学期第四章基本平面图形(单元小结)

七年级数学北师大版上学期第四章基本平面图形(单元小结)

A.AC=BC
B.AC+BC=AB
C.AB=2AC
D.BC=
1 2
AB
4.如图所示,把一副三角板叠放在一起,则∠ACD=___1__5___°.
结论:一副三角板拼成角的度数是15的 倍数
考点专练
5.如图,C是线段AB上的一点,M是线段AC的中点,若AB =8 cm,BC=2 cm,求MC的长。
解: ∵ AB=8 cm,BC=2 cm, ∴AC=AB-BC=8-2=6cm
解:由(1)可知∠MON=1/2∠AOB.
因为∠AOB=α 所以∠MON=α/2
考点专练
(3)如果(1)中∠BOC=β(β为锐角),其他条件不 变,求∠MON的度数;
解:由(1)可∠MON=1/2∠AOB.
因为∠AOB=90° 所以∠MON=45°
考点专练
(4)从(1),(2),(3)的结果中能看出什么规律? 解: 分析(1),(2),(3)的结
名称 比较方法 图形
表示方法 中点或角平分线
线段 测量法、
视察法、 A 叠合法
a B
角 测量法、
A
视察法、
1
叠合法
O
B
线段AB 线段a
在线段上,并且把这条线 段分成两条相等线段的 点叫做这条线段的中点.
∠AOB ∠1 ∠O
从一个角的顶点引出的一 条射线,把这个角分成两 个相等的角,这条射线叫 做这个角的平分线.
又∵ M是线段AC的中点, ∴MC= 1 AC=3cm
2
12.【易错】画图计算: 在直线 l 上有 A,B,C 三点,使得 AB=4 cm,BC=6 cm.如果 点 O 是线段 AC 的中点,那么线段 OB 的长度是多少?
解:①如图:

七年级数学(北师大版)上册复习课件-第四章基本平面图形

七年级数学(北师大版)上册复习课件-第四章基本平面图形
那么这个图中共有___1_0__条线段.
分析:只要有一个端点不相同,就是不同的线段.
解:以A为起点的线段有AC、AD、AE、AB 四条. 以D为起点的线段且与前不重复的有DE、DC、 DB三条. 以E为起点的线段且与前不重复的有EC、EB二条. 以C为起点的线段并且与前不重复的有BC一条.
因此图中共有4+3+2+1=10条线段.
17.如图,用字母A、B、C 表示∠α、∠β. 答案:∠CAB或∠BAC 表示∠α; ∠CBA或∠ABC表示 ∠β.
18.引水渠从M向东流250米到N处, 转向东北方向300米到C 处,再转向 北偏西30°方向,流200米到D处,试
用1 cm表示100米,画出相应的图形.
D
C
M
N
1.一条线段有__两___个端点.
2.用度表示:30°45′=_3_0_._7_5.° 3.时钟4点20分,时针和分针所夹的锐角
的度数是_1_0__°_.
4.图中小于平角的角 的个数有__6___个.
5.下列说法,正确说法的个数是( C )
①直线AB和直线BA是同一条直线;②射线
AB与射线BA是同一条射线;③线段AB和线
14.圆
O
B
绳子扫过的区
域是什么形状?
A
平面上,一条线段绕着它固定的一个端点旋转一周,另一 个端点形成的图形叫做圆(circle).固定的端点O称为圆心 (center of a circle),线段OA称为半径(radius).
圆上A,B两点之间的部分叫做圆弧(arc),
由一条弧和经过这条弧的端点的两条半径所组成的图形叫 做扇形(sector).定点在圆心的角叫做圆心角
12.如图所示,点C是线段AB上一点, AC<CB,M、N分别是AB、CB 的中点, AC=8,NB = 5,求线段MN4的长是_____.

北师大版七年级数学上册第四章基本平面图形线段、 射线、 直线课件

北师大版七年级数学上册第四章基本平面图形线段、 射线、 直线课件

6. 射线可以用两个大写英文字母表示,并且表示端点的字母必须写在 前面 . 7. 直线可以用 两 个大写英文字母表示,也可以用一个小写英文字母表示,表 示直线的大写英文字母不分顺序.
1. 下列说法中,正确的是( B )
A. 射线比线段短
B. 两点确定一条直线
C. 两点确定一条射线
D. 两点间的连线叫线段
(1)有不在同一直线上的三点A,B,C,每两点连一条线段,则可以连3条线段. (2)有四个点A,B,C,D,且每三点都不在同一直线上,每两点连一条线段,则 可以连6条线段. (3)5×(5-1)÷2=10(场), 故需要举行10场比赛.
3. 如图,点A,B在A. 线段AB和线段BA是同一条线段 B. 直线AB和直线BA是同一条直线 C. 射线AB和射线BA是同一条射线 D. 图中以点A 为端点的射线有两条 4. 手电筒、探照灯所射出的光线可以近似地看做 射线 .
5. 如图,图中线段有 6 条,直线有 3 条, 以点D为端点的射线有 2 条.
6. 往返于M,N两地的客运火车,中途停靠三个站(所有站近似地看做在同一 条直线上,如图所示),假设该车只有硬座.
(1)最多有多少种不同的票价? (2)要准备多少种车票?
(1)数线段时,从左到右,以每个端点为开始向后数,如题中的线段有: 从点M开始数有线段MA,线段MB,线段MC,线段MN共4条;从点A开始数有线段 AB,线段AC,线段AN共3条;从点B开始数有线段BC,线段BN共2条;从点C开 始数有线段CN共1条.图中共有10条线段,所以最多可有10种票价.
图中共有10条线段,分别是线段AB, 线段AC,线段AD,线段AE,线段BE,线段 BD,线段BC,线段CE,线段CD,线段DE.
【基础训练】

第4章基本的平面图形小结-2024-2025学年初中数学七年级上册(北师版)上课课件

第4章基本的平面图形小结-2024-2025学年初中数学七年级上册(北师版)上课课件

线是射线
DA,DC,A.C,CA
重难剖析 3.如图,线段AB=32cm,点C在AB上,且AC∶CB=5∶3, 点D是AC的中点,点O是AB的中点,求DB与OC的长.
分析:从图上可以看出DB=AB-AD,而D是AC的中点,
AD= 12AC, 结合AC∶CB=5∶3,AB=32 cm, 故AC和BC可求,OC=OB-BC=12AB-BC.
重难剖析
5.如图,∠AOB=∠COD=90° ,∠BOC=42° ,
则∠AOD=( C )
A.48°
B.148°
C.138°
D.128°
解析:由图可知∠AOB、∠BOC、∠COD、∠AOD组成一个周角, 所以∠AOD=360°-∠AOB-∠COD-∠BOC=138°. 故选C.
重难剖析
7.从多边形的一个顶点出发的所有对角线把多边形分成4个 三角形,这个多边形的对角线的总条数是( B )
知识回顾
2.角的表示方法
表示方法 用三个大写的字母
表示 用一个顶点的字母
来表示 用一个希腊字母 (数字)表示
注意事项 表示顶点的字母要写在中间
一个字母只表示一个角 在靠近顶点处画上弧线,并写上
希腊字母(数字)
知识回顾
3.平角与周角的概念 一条射线绕它的端点旋转,当终边和始边成一条直 线时,所成的角叫做__平__角____; 终边继续旋转,当它又和始边__重__合____时,所成的 角叫做周角. 平角为180°,周角为360°.
且两条折痕的夹角∠EPF=85°,则∠ B'PC'=
.
能力提升
给什么,得什么 由折叠可得∠BPE=∠B'PE, ∠CPF=∠C'PF.
求什么,想什么 差什么,找什么

北师大版七年级数学上册《第四章基本平面图形4.3角》说课稿

北师大版七年级数学上册《第四章基本平面图形4.3角》说课稿

北师大版七年级数学上册《第四章基本平面图形4.3角》说课稿一. 教材分析北师大版七年级数学上册《第四章基本平面图形4.3角》这一节的内容,主要介绍了角的定义、分类和性质。

通过这一节的学习,使学生能够理解角的概念,掌握角的分类和性质,能够运用角的知识解决一些简单的问题。

在教材的处理上,我将以角的定义和分类为主线,通过对角的性质的探究,使学生能够深入理解角的概念,掌握角的分类和性质。

在教学过程中,我会注重学生的参与,通过观察、思考、讨论等方式,使学生能够主动地参与到学习中来,提高学生的学习兴趣和学习效果。

二. 学情分析面对的是一群刚从小学升入初中的学生,他们对数学的基础知识有一定的掌握,但对于角的概念和性质可能还比较陌生。

因此,我需要通过一些简单的实例和生活中的实际问题,引导学生理解角的概念,掌握角的分类和性质。

同时,学生的学习习惯和学习方法可能还不够成熟,我需要通过引导和示范,使学生能够掌握科学的学习方法和思考方式,提高他们的学习效率和解决问题的能力。

三. 说教学目标1.知识与技能:理解角的概念,掌握角的分类和性质,能够运用角的知识解决一些简单的问题。

2.过程与方法:通过观察、思考、讨论等方式,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的参与意识和团队精神。

四. 说教学重难点1.重点:理解角的概念,掌握角的分类和性质。

2.难点:对角的概念的深入理解,对角的分类和性质的灵活运用。

五. 说教学方法与手段1.教学方法:采用引导法、讨论法、实例法等,引导学生主动参与学习,提高学生的学习兴趣和学习效果。

2.教学手段:利用多媒体课件、实物模型等,直观地展示角的概念和性质,帮助学生理解和掌握知识。

六. 说教学过程1.导入:通过一些生活中的实际问题,引导学生思考角的概念,激发学生的学习兴趣。

2.新课导入:介绍角的定义和分类,引导学生理解角的概念,掌握角的分类。

北师大版数学七年级上册第四章基本平面图形线段、射线、直线课件

北师大版数学七年级上册第四章基本平面图形线段、射线、直线课件

解:(1)如答图4-1-2,直线AB即为所求;
(2)如答图4-1-2,线段AC,BD即为所求; (3)如答图4-1-2,射线AD,BC即为所求.
典例精析
【例5】开会前工作人员进行会场布置,在主席台上由两人 拉着一条绳子,然后以“准绳”为基准摆放茶杯,这样做 的理由是( B ) A. 两点之间线段最短 B. 两点确定一条直线 C. 两点之间,直线最短 D. 过一点可以作无数条直线 思路点拨:两点确定一直线.
谢谢
典例精析
【例2】射线OA,OB表示同一条射线,下列图形正确的是 ( D)
举一反三
2. 如图4-1-1,则下列表示方法( D )
A. 都错误 C. 只有一个正确
B. 都正确 D. 有两个正确
典例精析
【例3】图4-1-2中共有线段( B )
A.8条
B.9条
C.10条
D.12条
举一反三
3. 如图4-1-3,不同的线段共有_____6___条.
举一反三
5. 下列现象:①用两个钉子就可以把木条固定在墙上;②
从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树
时,只要确定两棵树的位置,就能确定同一行树所在的直线
;④把曲折的公路改直,就能缩短路程. 其中能用“两点确
定一条直线”来解释的现象有(B )
A. ①②
B. ①③
C. ②④ D. ③④
图4-1-3
典例精析
【例4】如图4-1-4,平面上四个点A,B,C,D,根据下列 语句作图:画直线AB;画射线BC;画线段CD;连接AD. (不 写作法)
解:如答图4-1-1.
思路点拨:线段、射线、直线的区分在于线段有两个 端点,射线有一个端点,直线没有端点.

北师大版七年级数学上册第四单元基本平面图形知识点

北师大版七年级数学上册第四单元基本平面图形知识点

111第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

: 联系:射线是直线的一部分。

线段是射线的一部分,也是直线的一部分。

2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

3、直线的性质(1)直线公理:经过两个点有且只有一条直线。

简称两点确定一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。

5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。

二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。

两条射线叫角的边,共同的端点叫角的顶点。

(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。

2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

C222③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C 等。

北师大版七年级数学上册第四章基本平面图形小结与复习课件

北师大版七年级数学上册第四章基本平面图形小结与复习课件
[答案] OE OC
第四章 |过关测试
第四章 |过关测试
第四章 |过关测试
试卷讲练
考查 意图
难易 度
平面图形是七年级数学的重要组成部分,在各类考试中常以 填空题、选择题、计算题出现.本卷主要考查了直线、射线、线 段、角、角的比较、多边形和圆等,重点考查了线和角.

1,2,3,4,5,6,7,8,9,11,12,13, 14,17,18,19,20,23
第四章 |过关测试
(3)单位及换算:把周角平均分成360份,每一份就是1°的 角,1°的1/60就是1′,1′的1/60就是1″,即1°= ____6,01′ ′= ________6.0′
(4)分类:小于平角的角可按大小分成三类:当一个角等于 平角的一半时,这个角叫做__直__角____;大于0°角小于直角的 角叫做___锐__角___;大于直角而小于平角的角叫做___钝__角_____.
[答案] 南偏西54°
第四章 |过关测试
针对第10题训练
1.如图4-3所示,A,B,C是一条公路上的三个村庄,A, B间路程为100 km,A,C间路程为40 km,现在A,B之间建一 个车站P,设P,C之间的路程为x km.
(1)用含x的代数式表示车站到三个村庄的路程之和; (2)若路程之和为102 km,则车站应建在何处? (3)若要使车站到三个村庄的路程总和最小,问车站应建在 何处?最小值是多少?
(2)已知A、B、C三点在一条直线上,如果AB=a,BC=b, 且a<b,求线段AB和BC的中点E、F之间的距离.
第四章 |过关测试
[解析] (1)根据图示,先分别计算一下从三个小区大门步行 到公交停靠点E、F的路程长之和,然后比较一下大小,路程小 的即为所求;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学北师版七年级上第四章基本平面图形单元检测参考完成时间:90分钟实际完成时间:______分钟总分:100分得分:______一、选择题(本题共10小题,每小题3分,共30分)1.平面上有四点,经过其中的两点画直线最多可画出( ).A.三条B.四条C.五条D.六条2.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ).A.①②B.①③C.②④D.③④3.平面上有三点A,B,C,如果AB=8,AC=5,BC=3,那么( ).A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.下列各角中,是钝角的是( ).A.14周角 B.23周角 C.23平角 D.14平角5.如图,O为直线AB上一点,∠COB=26°30′,则∠1=( ).A.153°30′B.163°30′C.173°30′D.183°30′6.在下列说法中,正确的个数是( ).①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差一刻六点时,时针和分针形成的角是直角;⑤钟表上九点整时,时针和分针形成的角是直角.A.1 B.2 C.3 D.47.如图,C是AB的中点,D是BC的中点,下面等式不正确的是( ).A.CD=AC-DB B.CD=AD-BCC.CD=12AB-BD D.CD=13AB8.如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于( ).A.3 cm B.6 cm C.11 cm D.14 cm9.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少....的路线是( ).A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C10.如图,O为直线AB上一点,∠COB=26,则∠1=()A.154B.164C.174D.18411.如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cmB.6cmC.11cmD.14cm12..平面上有四点,经过其中的两点画直线最多可画出()A.三条B.四条C.五条D.六条13.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程。

其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外14.在同一个圆中,四条半径将圆分割成扇形A,B,C,D的面积之比为2:3:3:4,则最大扇形的圆心角为()A.80B.100C.120D.15015.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在'A处,BC为折痕,如果BD为∠'A BE的平分线,则∠CBD=()A.80B.90C.100D.7016.如图所示,云泰酒厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在金斗大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该厂的接送车打算在这个路段上只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( ).A.点A B.点B C.AB之间D.BC之间二、填空题(本题共4小题,每小题4分,共16分)17.如图所示,线段AB比折线AMB__________,理由是:____________________.18.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=10,AC=6,则CD=__________.19.现在是9点20分,此时钟面上的时针与分针的夹角是__________.20.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.21.3.76=______度______分______秒;'"223224=_______度. 22.在直线AB 上取C 、D 两个点,如图所示,则图中共有射线_____条。

23.现在是9点20分,此时钟面上的时针与分针的夹角是_______.三、解答题(本题共4小题,共54分)1.(12分)计算: (1)将24.29°化为度、分、秒; (2)将36°40′30″化为度.2.(7分)请以给定的图形“”(两个圆,两个三角形,两条线段)构思独特而且又有意义的图形,并且写上一句贴切的解说词.17.(8分)已知线段a ,b (如图),画出线段x ,使x =a +2b .3.(8分)已知在平面内,∠AOB =70°,∠BOC =40°,求∠AOC 的度数. 4.(9分)如图,已知AB 和CD 的公共部分BD =13AB =14CD .线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD 的长.5.(10分)某摄制组从A 市到B 市有一天的路程,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一(原计划行驶到C 地),过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 地到这里路程的二分之一就到达目的地了,问A ,B 两市相距多少千米?6.如图,直线AB,CD 相交于O ,∠BOC=80,OE 是∠BOC 的角平分线,OF 是OE 的反向延长线.(1)求∠2,∠3的度数. (2)说明OF 平分∠AOD.7.如图1,已知线段AB=12cm,点C为AB上的一个动点,点D,E分别是AC和BC的中点,(1)若点C恰好是AB中点,求DE的长.(2)若AC=4cm,求DE的长.(3)试说明不论AC取何值(不超过12cm),DE的长不变.(4)知识迁移:如图2,已知∠AOB=120,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试说明∠DOE=60与射线OC的位置无关.8.如图所示,小明把一块含60角的顶点A逆时针旋转到DAE的位置.若已量出∠CAE=100,则∠DAB=_________9、已知∠AOB:∠BOC=3:5,又OD、OE分别是∠AOB和∠BOC的平分线,若∠DOE=20,求∠AOB和∠BOC的度数。

第四章 基本平面图形检测题2一、选择题(每小题3分,共30分)1.如图,下列不正确的几何语句是( )A.直线AB 与直线BA 是同一条直线B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线 第1题图D.线段AB 与线段BA 是同一条线段2.如图,从A 地到B 地最短的路线是( ) A.A -C -G -E -B B.A -C -E -B C.A -D -G -E -BD.A -F -E -B3.已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间的距离是( ) A.3 cm B.4 cmC.5 cmD.不能计算4.(2013·武汉中考)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有( ) A.21个交点 B.18个交点 C.15个交点 D.10个交点 5.已知α、β都是钝角,甲、乙、丙、丁四人计算61(α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( ) A.甲B.乙C.丙D.丁6.如图,B 是线段AD 的中点,C 是BD 上一点,则下列结论中错误的是( )A.BC =AB -CDB.BC =21AD -CD C.BC =21(AD +CD ) D.BC =AC -BD第6题图7.如图,观察图形,下列说法正确的个数是( )①直线BA 和直线AB 是同一条直线;②射线AC 和射线AD 是同一条射线; ③AB +BD >AD ;④三条直线两两相交时,一定有三个交点. A.1 B.2 C.3 D.48. (2013·福州中考改编)如图,OA⊥OB,若∠1=34°,则∠2的度数是( ) A.20° B.40° C.56° D.60°第8题图 9.如图,阴影部分扇形的圆心角是( ) A.15°B.23°C.30°D.45°10.如图,甲顺着大半圆从A 地到B 地,乙顺着两个小半圆从A 地到B 地,设甲、乙走过的路程分别为a 、b ,则( ) A.a =bB.a <bC.a >bD.不能确定第10题图二、填空题(每小题3分,共24分)11.已知线段AB =10 cm ,BC =5 cm ,A 、B 、C 三点在同一条直线上,则AC =_ _. 12.如图,OM 平分∠AOB ,ON 平分∠COD .若∠MON =42°,∠BOC =5°,则∠AOD = __________.第12题图13.如图,线段AB=BC=CD=DE=1 cm,那么图中所有线段的长度之和等于________cm.14.一条直线上立有10根距离相等的标杆,一名学生匀速地从第1根标杆向第10根标杆行走,当他走到第6根标杆时用了6.5 s,则当他走到第10根标杆时所用时间是_________.15.(1)15°30′5″=_______″;(2)7 200″=_______´=________°;(3)0.75°=_______′=________″;(4)30.26°=_______°_______´______〞.16.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=___________.17.上午九点时分针与时针互相垂直,再经过分钟后分针与时针第一次成一条直线.18. 如图,点O是直线AD上一点,射线OC、OE分别是∠AOB、∠BOD的平分线,若∠AOC=25°,则∠COD=_________,∠BOE=__________.三、解答题(共46分)19.(7分)按要求作图:如图,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.20.(6分)如图,C是线段AB的中点,D是线段BC的中点,已知图中所有线段的长度之和为39,求线段BC的长.第20题图21.(6分)已知线段,试探讨下列问题:(1)是否存在一点,使它到两点的距离之和等于?(2)是否存在一点,使它到两点的距离之和等于?若存在,它的位置唯一吗?(3)当点到两点的距离之和等于时,点一定在直线外吗?举例说明.22.(6分)如图,在直线上任取1个点,2个点,3个点,4个点,(1)填写下表:(2)在直线上取n个点,可以得到几条线段,几条射线?23.(7分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=97°,∠1=40°,求∠2和∠3的度数.v24.(7分)已知:如图,∠AOB是直角,∠AOC=30°,ON是∠AOC的平分线,OM是∠BOC 的平分线.求∠MON的大小.25.(7分)如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):(1)填写下表:(2)原正方形能否被分割成2 012个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.。

相关文档
最新文档