(第18课)空间向量的直角坐标及其运算(2)

合集下载

高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.4 空间向量的直角坐标运算学

高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.4 空间向量的直角坐标运算学

3.1.4 空间向量的直角坐标运算1.了解空间向量坐标的定义.2.掌握空间向量的坐标运算.3.会利用向量的坐标关系,判定两个向量共线或垂直.4.会计算向量的长度及两向量的夹角.1.空间向量的坐标表示(1)单位正交基底.建立空间直角坐标系Oxyz,分别沿x轴,y轴,z轴的正方向引________向量i,j,k,这三个互相________的单位向量构成空间向量的一个基底{i,j,k},这个基底叫做单位正交基底.单位向量i,j,k都叫做________.【做一做1-1】设{e1,e2,e3}是空间向量的一个单位正交基底,则|e1|+|e2|+|e3|=__________.(2)空间向量的坐标表示.在空间直角坐标系中,已知任一向量a,根据空间向量分解定理,存在______实数组(a1,a2,a3),使a=a1i+a2j+a3k,a1i,a2j,a3k分别为向量a在i,j,k方向上的分向量,有序实数组__________叫做向量a在此直角坐标系中的坐标.上式可简记作a=__________.【做一做1-2】向量0的坐标为__________.向量的坐标与点的坐标表示方法不同,如向量a=(x,y,z),点A(x,y,z).2.空间向量的直角坐标运算(1)设a=(a1,a2,a3),b=(b1,b2,b3),则容易得到a+b=____________;a-b=____________;λa=______________;a·b=____________.(2)向量在空间直角坐标系中的坐标的求法:设A(x1,y1,z1),B(x2,y2,z2),则AB=OB-OA=(x2,y2,z2)-(x1,y1,z1)=(x2-x1,y2-y1,z2-z1).【做一做2】设a=(1,2,3),b=(1,1,1),则2a+b=__________.3.空间向量平行和垂直的条件设a=(a1,a2,a3),b=(b1,b2,b3),则(1)a∥b(b≠0)⇔__________⇔__________,当b1,b2,b3都不为0时,a∥b⇔__________;(2)a⊥b⇔__________⇔__________.【做一做3】设a=(1,2,3),b=(1,-1,x),a⊥b,则x=__________.4.两个向量夹角与向量长度的坐标计算公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=____________,|b|=____________,cos〈a,b〉=a·b|a||b|=________________________. 设A(x1,y1,z1),B(x2,y2,z2),则|AB|=____________.【做一做4】向量a =(2,-1,-1),b =(1,-1,0)的夹角余弦值为__________,||a -b =__________.(1)空间向量的坐标是空间向量的一种形式.在坐标形式下的模长公式,夹角公式,向量平行和垂直的条件与在普通基底下相同,仅仅是形式不同;(2)空间向量在坐标形式下同样可以用来求距离(长度),夹角,证明垂直和平行关系等.如何理解空间向量的坐标及其运算?剖析:(1)注意空间向量的坐标与向量终点的坐标的区别与联系.向量的坐标是其终点与起点坐标的差量.只有以原点为起点的向量,向量的坐标才等于向量终点的坐标.(2)空间向量的坐标运算和平面向量基本一致,只是多了一个竖坐标. (3)坐标形式下向量的计算就是指坐标的运算.题型一 空间向量的坐标运算【例1】设向量a =(3,5,-4),b =(2,1,8),计算3a -2b ,(a +b )·(a -b ). 分析:利用空间向量的坐标运算先求3a,2b ,a +b ,a -b ;再进行相关运算. 反思:空间向量的坐标运算首先进行数乘运算然后再进行加减运算,最后进行数量积运算,先算括号内的后算括号外的.题型二 空间向量的平行与垂直问题【例2】设向量a =(1,x,1-x ),b =(1-x 2,-3x ,x +1),求满足下列条件时,实数x 的值.(1)a ∥b ;(2)a ⊥b .分析:解答本题可先由a ∥b ,a ⊥b 分别建立x 的方程,再解方程即可. 反思:要熟练掌握向量平行和垂直的条件,借助此条件可将立体几何中的平行垂直问题转化为向量的坐标运算.在应用坐标形式下的平行条件时,一定注意结论成立的前提条件,在条件不明确时,要分类讨论.在解答本题时易出现由a ∥b ⇔1-x 21=-3x x =x +11-x ⇔⎩⎪⎨⎪⎧1-x 2=-3x +11-x=-3⇔x =2的错误,导致此错误的原因是忘记了这个结论成立的前提条件是1,x,1-x 都不是0.题型三 空间向量的夹角及长度公式的应用【例3】已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5),求以AB ,AC 为邻边的平行四边形面积.分析:已知三点A ,B ,C 的坐标,先求AB ,AC ,|AB |,|AC |,AB ·AC ,再求cos 〈AB ,AC 〉,sin 〈AB ,AC 〉,从而得到结论.反思:运用空间向量的坐标运算解决立体几何问题的基本思路是: ①建立空间坐标系;②求出相关点的坐标和向量坐标; ③结合公式进行计算;④将计算的向量结果转化为几何结论.1.若A (2,-4,-1),B (-1,5,1),C (3,-4,1),令a =CA ,b =CB ,则a +b 对应的坐标为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2)2.下面各组向量不平行的是( ) A .a =(1,0,0),b =(-3,0,0) B .c =(0,1,0),d =(1,0,1) C .e =(0,1,-1),f =(0,-1,1) D .g =(1,0,0),h =(0,0,0) 3.(2010·广东高考,理10)已知a =(1,1,x ),b =(1,2,1),c =(1,1,1)且(c -a )·2b =-2,则x 的值为( )A .3B .4C .2D .1 4.若A (2,0,1),B (3,4,-2),则|AB |=__________.5.向量a =(2,-3,3),b =(1,0,0),则cos 〈a ,b 〉=__________. 6.已知向量a =(-2,2,0),b =(-2,0,2),求向量n 使n ⊥a 且n ⊥b . 答案:基础知识·梳理1.(1)单位 垂直 坐标向量 【做一做1-1】3(2)唯一 (a 1,a 2,a 3) (a 1,a 2,a 3) 【做一做1-2】(0,0,0)2.(1)(a 1+b 1,a 2+b 2,a 3+b 3) (a 1-b 1,a 2-b 2,a 3-b 3) (λa 1,λa 2,λa 3) a 1b 1+a 2b 2+a 3b 3【做一做2】(3,5,7)3.(1)a =λb a 1=λb 1,a 2=λb 2,a 3=λb 3 a 1b 1=a 2b 2=a 3b 3(2)a ·b =0 a 1b 1+a 2b 2+a 3b 3=0 【做一做3】134.a ·a =a 21+a 22+a 23 b ·b =b 21+b 22+b 23a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23x 2-x 12+y 2-y 12+z 2-z 12【做一做4】322 典型例题·领悟【例1】解:3a -2b =3(3,5,-4)-2(2,1,8)=(9,15,-12)-(4,2,16)=(9-4,15-2,-12-16)=(5,13,-28);a +b =(3,5,-4)+(2,1,8)=(3+2,5+1,-4+8)=(5,6,4);a -b =(3,5,-4)-(2,1,8)=(3-2,5-1,-4-8)=(1,4,-12),(a +b )·(a -b )=(5,6,4)·(1,4,-12)=5×1+6×4+4×(-12)=5+24-48=-19.【例2】解:(1)①当x =0时,a =(1,0,1),b =(1,0,1),a =b ,满足a ∥b . ②当x =1时,a =(1,1,0),b =(0,-3,2),不满足a ∥b , ∴x ≠1.③当x ≠0,x ≠1时,由a ∥b ⇔1-x 21=-3x x =x +11-x ⇔⎩⎪⎨⎪⎧1-x 2=-3,x +11-x=-3⇔x =2.综上所述,当x =0,或x =2时,a ∥b .(2)a ⊥b ⇔a ·b =0,∴(1,x,1-x )·(1-x 2,-3x ,x +1)=0⇔1-x 2-3x 2+1-x 2=0,解得x =±105. ∴当x =±105时,a ⊥b . 【例3】解:∵A (0,2,3),B (-2,1,6),C (1,-1,5), ∴AB =(-2,1,6)-(0,2,3)=(-2,-1,3),AC =(1,-1,5)-(0,2,3)=(1,-3,2).∴|AB |=-2+-2+32=14,|AC |=12+-2+22=14,AB ·AC =(-2,-1,3)·(1,-3,2)=-2+3+6=7.∴cos 〈AB ,AC 〉=A B →·A C →|AB →||AC →|=12,∴sin 〈AB ,AC 〉=32, 以AB ,AC 为邻边的平行四边形的面积S =|AB →||AC →|sin 〈AB ,AC 〉=7 3.随堂练习·巩固1.B a =CA →=(2,-4,-1)-(3,-4,1)=(-1,0,-2),b =CB →=(-1,5,1)-(3,-4,1)=(-4,9,0),故a +b =(-5,9,-2).2.B A 项中b =-3a ,a ∥b ,C 项中f =-e ,f ∥e ,D 项中h =0, ∴h ∥g .3.C ∵(c -a )·2b =(0,0,1-x )·(2,4,2)=-2, ∴2(1-x )=-2,x =2. 4.26 |AB →|=-2+-2+-2-2=26.5.12 cos 〈a ,b 〉=a ·b |a ||b | =2×1+0+022+-2+3212+02+02=12. 6.解:设n =(x ,y ,z ),则n ·a =(x ,y ,z )·(-2,2,0)=-2x +2y =0, n ·b =(x ,y ,z )·(-2,0,2)=-2x +2z =0.解方程组⎩⎪⎨⎪⎧-2x +2y =0,-2x +2z =0,可得y =x ,z =x .于是向量n =(x ,x ,x )=x (1,1,1),x ∈R .。

高二数学空间向量及其运算2

高二数学空间向量及其运算2

C
A
【问题3】向量关系的分析与转化
uuu r uuu r uuu r PA + 2PB + 3PC =0,求△ABC与
△AP在△ABC内部,若
3
P B
N
M
C
例6 如图,设D、E、F分别是△ ABC 的 uuu r uuu r 三边 BC 、 CA 、 AB 上的点,且 , DC = 2 B D uuu r uuu r uuu r uuu r , ,试推断向量 CE = 2 EA A F = 2 FB r uuu r uuu r uuu r uuu 与 是否共线. A D + BE + CF BC
1 5730 p 2
t
例1 判断下列命题的真假: uuu r (1)若向量 AB与CD 是共线向量,则点 A ,B , C ,D (2 (3)若向量a∥b,b∥c,则a∥c; (4 (5)若|a|=|b|,则a=b; (6)若e为单位向量,a为非零向量,则 a=|a|e. 都不正确

(2)设点O在△ABC所在平面内,若
uuu r uuu r uuu r uuu r uuu r | OB - OC |= | OB + OC - 2OA |,则△ABC是
等腰三角形;

uuu r uuu r uuu r OA + 2OB + OC =0,则点O是△ABC
的重心;
(3)设点O在△ABC内部,若 假
例2 判断下列命题的真假: (1)在△ABC中,若
uuu r uuu r AB AC uuu r ? uuu r 且| A B | | AC |
uuu r uuu r uuu r AB AC ( uuu r + uuu r ) ?BC | AB | | AC | 0,

高三数学空间向量及其运算2

高三数学空间向量及其运算2

例2
B1 E1 如图,在正方体 ABCD A1B1C1 D1 中,
A1B1 D1F1 4
,求 BE1 与 DF1 所成的角的余弦值。
解:设正方体的棱长为1,如图建
C1
z
D1 A1
F1 E1 B1
立空间直角坐标系 O xyz ,则
3 B(1,1, 0) , E1 1, ,1 , 4
1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1, 0 , 0) ;
(2) a (1, 1,1) , b (1, 0 ,1) ;
2.求下列两点间的距离:
(1) A(1,1, 0) , B (1,1,1) ;
(2) C (3 ,1, 5) , D(0 , 2 , 3) .
C
D
O
B
y
1 D(0 , 0 , 0) , F1 0 , ,1 . 4
A
x
3 1 BE1 1, ,1 (1,1, 0) 0 , ,1 , 4 4
例2
B1 E1 如图,在正方体 ABCD A1B1C1 D1 中,
M
B
3 ∴点 M的坐标是 2 , , 3 . 2
d A, B (1 3)2 (0 3)2 (5 1)2 29 .
(2)到 A 、B 两点距离相等的点 P ( x , y , z ) 的 坐标 x , y , z 满足的条件。 解:点 P ( x , y , z )到 A 、B 的距离相等,则
3.1.5《空间向量运算 的坐标表示》
教学目标
• ⒈掌握空间向量运算的坐标表示方法; • ⒉掌握两个向量数量积的主要用途,会用 它解决立体几何中的一些简单问题. • 教学重点:两个向量的数量积的计算方法 及其应用. • 教学难点:两个向量数量积的几何意义. • 授课类型:新授课. • 课时安排:1课时.

空间向量的直角坐标及其运算

空间向量的直角坐标及其运算
证:(1)∵ AP AB 1,2,12,1,4 0, AP AD 1,2,14,2,0 0 ,
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD

H

C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。

高等数学向量及其运算PPT课件.ppt

高等数学向量及其运算PPT课件.ppt
例如, a、r、v、F 或a 、r 、v 、F .
2
• 自由向量 与起点无关的向量, 称为自由向量, 简称向量.
• 向量的相等 如果向量a和b的大小相
等, 且方向相同, 则说向量a 和b是相等的, 记为a=b.
相等的向量经过平移后可以完全重合.
3
•向量的模 向量的大小叫做向量的模.
向量 a、a 、AB 的模分别记为|a|、|a| 、|AB| .
23
例3 已知两点A(x1, y1, z1)和B(x2, y2, z2)以及实数-1,
在直线 AB 上求一点 M, 使 AM =MB .
解 由于
解 由于 AM =OM-OA , MB=OB-OM ,
=OM-OA , MB=OB-OM ,
因此 OM-OA=(OB-OM) ,
从而
OM =
1
(OA+ OB)
当两个平行向量的起点放在同一点时, 它 们的终点和公共的起点在一条直线上. 因此, 两向量平行又称两向量共线.
设有k(k3)个向量, 当把它们的起点放在同 一点时, 如果k个终点和公共起点在一个平面上, 就称这k个向量共面.
6
二、向量的线性运算
1.向量的加法
设有两个向量a与b, 平移向量, 使b的起点与a
当=0时, |a|=0, 即a为零向量. 当=1时, 有1a=a; 当=-1时, 有(-1)a =-a.
10
•向量与数的乘积的运算规律
(1)结合律 (a)=(a)=()a; (2)分配律 (+)a=a+a;
(a+b)=a+b.
•向量的单位化
设a0, 则向量 a 是与a同方向的单位向量,
记为ea.
|a|

高二数学空间向量及其运算2

高二数学空间向量及其运算2
空间向量及其运算
高二备课组
一、复习 1、平面向量的概念 2、平面向量的加减和数乘运算
1.空间向量的概念 在空间,我们把具有大小和方向的量叫做向量
注意:⑴空间的平移就是一个向量。平移实际就是点 到点的一次变换,因此我们说空间任意两个向 量是共面的
⑵向量一般用有向线段表示。同向等长的有向线段 表示同一或相等的向量。
⑶空间的两个向量可用同一平面内的两条有向线段 来表示
2.空间向量的运算 结论:空间向量的加法、减法、数乘向量的定义与平面
向量的运算一样
OB OA AB =a+b,
AB OB OA (指向被减向量)
OP λa ( R)
运算律:⑴加法交换律:a b b a
⑵加法结合律:(a b) c a (b c)
求证: ⑴四点E、F、G、H共面;
⑵平面EG∥平面AC。
O
D
C
A
B
H
G
E
F
小结:1、空间向量的概念 2、空间向量的运算
3 、共线向量(平行向量)的概念及空 间向量共线的充要条件
4、共面向量的概念及向量共面的充要 条件
作业
1.如图是正方体,P、Q、R、S分别是所在棱的中点,求证: 这四个点共面。
重.2心.如。图求设证AA:G是△1 (BACBD 所AC在 A平D面) 外的一点,G是△BCD的 3
⑷ 1 (AB AD AA' ). 3
3.共线向量(平行向量) (1)概念:如果表示空间向量的有向线段所在的直线
互相平行或重合,则这些向量叫做共线向 量或平行向量 a平行于b,记作a∥b
(2)共线向量定理:
对空间任意两个向量a、b(b≠0),a∥b的充要

课件1:1.1.3 空间向量的坐标与空间直角坐标系

课件1:1.1.3 空间向量的坐标与空间直角坐标系

核心素养 1.通过空间向量的直角坐标运算的学习,提升数学运算、 逻辑推理素养. 2.通过对空间直角坐标系的学习,提升数学抽象素养.
【新知初探】
1.空间中向量的坐标 一般地,如果空间向量的基底{e1,e2,e3}中,e1,e2,e3 都是单 位向量,而且这三个向量 两两垂直 ,就称这组基底为单位正交 基 底,在单位正交基底下向量的分解称为向量的单位正交分解,而 且,如果 p=xe1+ye2+ze3,则称有序实数组 (x,y,z) 为 向量 p 的坐标,记作__p_=__(x_,__y_,__z_)_.其中 x,y,z 都称为 p 的 坐标分量.
(2)已知空间四点 A,B,C,D 的坐标分别是(-1,2,1),(1,3,4), (0,-1,4),(2,-1,-2).若 p=A→B,q=C→D.求①p+2q; ②3p-q;③(p-q)·(p+q). [解] 由于 A(-1,2,1),B(1,3,4),C(0,-1,4),D(2,-1,-2), 所以 p=A→B=(2,1,3),q=C→D=(2,0,-6). ①p+2q=(2,1,3)+2(2,0,-6)=(2,1,3)+(4,0,-12)=(6,1,-9); ②3p-q=3(2,1,3)-(2,0,-6)=(6,3,9)-(2,0,-6)=(4,3,15); ③(p-q)·(p+q)=p2-q2=|p|2-|q|2=(22+12+32)-(22+02+62)=-26.
(4)空间直角坐标系的画法:在平面内画空间直角坐标系 Oxyz 时,一般把 x 轴、y 轴画成水平放置,x 轴正方向与 y 轴正方向夹角为 135°(或45°) , z 轴与 y 轴(或 x 轴)垂直. (5)空间中一点的坐标:空间一点 M 的坐标可用有序实数组(x,y,z)来表 示,有序实数组(x,y,z)叫做点 M 在此空间直角坐标系中的坐标,其中 x 叫做点 M 的横坐标(或坐标),y 叫做点 M 的 纵坐标(或坐标) ,z 叫 做点 M 的 竖坐标(或坐标) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:9.6空间向量的直角坐标及其运算 (二)
教学目的:
1.掌握空间向量的模长公式、夹角公式、两点间的距离公式,会用这些公式解决有关问题;
2.会根据向量的坐标判断两个向量共线或垂直 教学重点:夹角公式、距离公式
教学难点:模长公式、夹角公式、两点间的距离公式及其运用 授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入: 1 空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k
表示;
(2)在空间选定一点O 和一个单位正交基底{,,}i j k
,以点O 为原点,分别以,,i j k
的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k
都叫坐标
向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,
zO x 平面;
2.空间直角坐标系中的坐标:
在空间直角坐标系O xyz -中,对空间任一点A ,
存在唯一的有序实数组(,,)x y z ,使O
A x i y j z k =++

有序实数组(,,)x y z 叫作向量A 在空间直角坐标系
O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.
3.空间向量的直角坐标运算律:
(1)若123(,,)a a a a = ,123(,,)b b b b =

则112233(,,)a b a b a b a b +=+++ ,112233(,,)a b a b a b a b -=---
, 123(,,)()a a a a R λλλλλ=∈ ,112233a b a b a b a b ⋅=++
, 112233//,,()a b a b a b a b R λλλλ⇔===∈
, 1122330a b a b a b a b ⊥⇔++=

(2)若111(
,,)A x
y z ,222(,,)B x y z , 则212121(,,)AB
x x y y z
z =---

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标二、讲解新课:
1 模长公式: 若123(,,)a a a a
= ,123(,,)b b b b =

则||a ==
||b =
=

2
.夹角公式:cos ||||
a b
a b a b
⋅⋅==⋅
3.两点间的距离公式: 若111(,,)A x y z ,222(,,)B x y z ,
则||AB =
=

或,A B d =.
三、讲解范例:
例1 已知(3,3,1)A ,(1,0,5)B ,
求:(1)线段A B 的中点坐标和长度;
(2)到,A B 两点的距离相等的点(,,)P x y z 的坐标,,x y z 满足的条件
解:(1)设M 是线段A B 的中点,则13()(2,,3)22
O M O A O B =+= .
∴A B 的中点坐标是3(2,
,3)2
,,A B d =
=
(2)∵ 点(,,)P x y z 到,A B 两点的距离相等,
则=,
化简得:46870x y z +-+=,
所以,到,A B 两点的距离相等的点(,,)P x y z 的坐标,,x y z 满足的条件是
46870x y z +-+=.
点评:到,A B 两点的距离相等的点(,,)P x y z 构成的集合就是线段AB 的中垂面,若将点P 的坐标,,x y z 满足的条件46870x y z +-+=的系数构成一个向量
(4,68)a =-
,发现与(2,3,4)AB =-- 共线例2.如图正方体1111ABCD A B C D -中,11111114
B E D F A B ==,求1B E 与1
D F 所成角的余弦
解:不妨设正方体棱长为1,建立空间直角坐标系O xyz -, 则(1,1,0)B ,13(1,
,1)4
E ,(0,0,0)D , 11(0,
,1)4F ,
∴11(0,,1)4B E =- ,11
(0,,1)4
D F = ,
∴114
BE D F ==

11111500()114416
B E D F ⋅=⨯+-⨯+⨯= .
1115
15cos ,174
4
BE D F =
=
. 例3.已知三角形的顶点是(1,1,1)A -,(2,1,1)B -,(1,1,2)C ---,试求这个三角
形的面积
分析:可用公式1||||sin 2
S A B A C A =
⋅⋅
来求面积 解:∵(1,2,2)AB =- ,(2,0,3)A C =--

∴||3AB ==
,||AC =
=
(1,2,2)(2,0,3)264AB AC ⋅=-⋅--=-+=

∴cos cos ,39||||AB AC A AB AC AB AC ⋅=<>===


∴13sin sin ,39
A A
B A
C ⨯=<>=
=

所以,1||||sin 2
2
ABC
S AB AC A ∆=⋅⋅=

点评:三角形的内角可看成由该角的顶点出发的两边所在向量的夹角 四、课堂练习:
1 若(3cos ,3sin ,1)A θθ,(2cos ,2sin ,1)B θθ,求||AB
的取值范围;
2.已知(,2,0)a x = ,2
(3,2,)b x x =-
,且a 与b 的夹角为钝角,求x 的取
值范围;
3.若(cos ,sin ,2sin )P ααα,(2cos ,2sin ,1)Q ββ,求||PQ
的最大值和最
小值
4.求证:如果两条直线同垂直于一个平面,则这两条直线平行. 已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足.
求证:OA //BD .
证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O -xyz ,i ,j ,k
为沿x 轴,y 轴,z 轴的坐标向量,且设BD =),,(z y x . ∵BD ⊥α,
∴BD ⊥i
,BD ⊥j ,
∴BD ·i
=),,(z y x ·(1,0,0)=x =0,
BD ·j
=),,(z y x ·(0,1,0)=y =0,
∴BD =(0,0,z ).
∴BD =z k .即BD //k

由已知O 、B 为两个不同的点,∴OA //BD .
说明:⑴请注意此例建立空间直角坐标系的方法,这是今后解题时常用的方法; ⑵如果表示一个向量的有向线段所在直线垂直于平面α,则表示该向量所有的有向线段所在直线都垂直于α.
如果表示向量a
的有向线段所在直线垂直于平面α,则称这个向量垂直于
平面α,记作a
⊥α.
如果a ⊥α,那么向量a
叫做平面α的法向量. 五、小结 :
1.空间向量的模长公式、两点间的距离公式的形式与平面向量中相关内容一致,因此可类比记忆;
2.在计算异面直线所成角时,仍然用向量数量积的知识,建立空间直角坐标系后能方便的求出向量的坐标,则通常考虑用坐标运算来求角 3.对于一些较特殊的几何体或平面图形中有关夹角,距离,垂直,平行的问题,都可以通过建立坐标系将其转化为向量间的夹角,模,垂直,平行的问题,从而利用向量的坐标运算求解,并可以使解法简单化.值得注意的是——坐标系的选取要合理、适当. 六、课后作业:
七、板书设计(略)
八、课后记:。

相关文档
最新文档