注电工程师考试辅导-简单动态电路的时域分析
第7章 动态电路的时域分析

换路使电路从一个稳定状态向另外一个稳定 状态变化。在动态电路中,电路的状态改变 是不能阶跃变化的,需要有一个过渡过程, 这就是所谓的动态过程。
第7章 动态电路的时域分析
换路定律
iL(0+)=
iL(0-)
换路瞬间,电感电流换路前后保持不变。
uC
iC (0 ) iL (0 ) i2 (0 ) i3 (0 )
iL (0 )
4 R2
4 R3
0.2 0.2 0.1 0.1A
第7章 动态电路的时域分析
第7章 动态电路的时域分析
7.2 一阶电路的零输入响应
零输入响应
换路后外输入激励为零,仅由动态元件 初始储能所产生的响应。
所以
L
diL dt
RiL
US
第7章 动态电路的时域分析
第7章 动态电路的时域分析
L
diL dt
RiL
US
其解为齐次微分方程特解iL'与非齐次微分方程通解iL''之和
iL (t)
iL
iL
US R
Rt
Ae L
A为积分常数,由初始值iL(0+)确定,
A US R
iL
US R
初始值 iL (0) iL (0) I S
t ≥ 0电路的微分方程
uL RiL 0
因为
uL
L diL dt
R t
通解:iL (t) Ae L
所以
L diL dt
RiL
动态电路的时域分析

R
L
t
(t0)
- u=
RI0e-
R
L
t
(t0)
iL(0-)=I0
iL +
I0
iL
Lu
R
-
0
t
(t0) iL(0)=I0
u
L
diL dt
+RiL=0
(t0)
-RI0
iL(0)=I0
10-1-1 一阶电路的零输入响应 2、RL电路 例4 图示电路中,iL(0-)=6A,求u。
iL + 1H u
-
8 0.5iL
L1
1
L2
R( L1 L2 ) t
[1 e L1L2 ]1(t)
1 L1
R( L1 L2 ) t
e L1L2 1(t)
例4 求图示电路中的uc(0+)、iL(0+),设uc(0-)=0,iL(0-)=0。
1F
- + + uC -(t)
iL
1 5
- 1
6
H
(t+)
iL
iC (t=0)
1 5
+
uC(0-)=0
问题
RC
duC dt
+
uC
=1(t)
uC(0-)=0
(1)冲激响应与对应阶跃响应的关系
RC
dh dt
+ h =(t)
h(0-)=0
RC
ds dt
+ s =1(t)
s(0-)=0
10-1 一阶电路
10-1-2 一阶电路的零状态响应
3、冲激响应
(1)冲激响应与对应阶跃响应的关系
04 第4章 动态电路时域分析 学习指导及习题解答

第4章动态电路的时域分析学习指导与题解一、基本要求1.明确过渡过程的含义,电路中发生过渡过程的原因及其实。
2.熟练掌握换路定律及电路中电压和电流初始值的计算。
3.能熟练地运用经典分析RC和RL电路接通或断开直流电源时过渡过程中的电压和电流。
明确RC和RL电路放电和充电时的物理过程与过渡过程中电压电流随时间的规律。
4.明确时间常数、零输入与零状态、暂态与稳态、自由分量与强制分量的概念,电路过渡过程中的暂态响应与稳态响应。
5.熟练掌握直流激励RC和RL一阶电路过渡过程分析的三要素法。
能分析含受控源一阶电路的过渡过程。
6.明确叠加定理在电路过渡过程分析中的应用,完全响应中零输入响应与零状态响应的分解方式。
掌握阶跃函数和RC,RL电路阶跃响应的计算。
7.明确RLC电路发生过渡过程的物理过程,掌握RLC串联二阶电路固有频率的计算和固有响应与固有频率的关系,以及振荡与非振荡的概念。
会建立RLC二阶电路描述过渡过程特性的微分方程。
明确初始条件与电路初始状态的关系和微分方程的解法。
会计算RLC 串联二阶电路在断开直流电源时过渡过程中的电压和电流。
了解它在接通直流电源时电压和电流的计算方法。
二、学习指导电路中过渡过程的分析,是本课程的重要内容。
教学内容可分如下四部分:1.过渡过程的概念;2.换路定律;3.典型电路中的过渡过程,包括RC和RL一阶电路和RLC串联二阶电路过渡过程的分析;4.叠加定理在电路过渡过程分析中的应用。
着重讨论电路过渡过程的概念,换路定律,RC和RL一阶电路过渡过程中暂态响应与稳态响应和时间常数的概念,计算一阶电路过渡过程的三要素法,完全响应是的零输入响应和零状态响应,阶跃响应,以及RLC串联二阶电路过渡过程的分析方法。
现就教学内容中的几个问题分述如下。
(一) 关于过渡过程的概念与换路定律1. 关于过渡过程的概念电路从一种稳定状态转变到另一种稳定状态所经历的过程,称为过渡过程。
电路过渡过程中的电压和电流,是随时间从初始值按一定的规律过渡到最终的稳态值。
动态电路的时域分析

必须注意:只有uC 、 iL受换路定律的约束而保持不变,电路 中其他电压、电流都可能发生跃变。
二、电路初始条件的计算(0+、0-等效电路法)
1、 0-等效电路:由换路前的稳态电路确定uc(0-)或iL(0-);
2、 0+等效电路: 由换路定律确定换路后的初始值:
uc (0 ) uc (0 ) iL (0 ) iL (0 )
复习:P226~P232 P235~P238 作业:P266 8-1, 8-2 预习:P239~P244
问题思考:
1、一阶电路分为哪几种响应?
2、什么叫零状态响应?对应三要素中的那个量为零? 3、什么叫零输入响应?对应三要素中的那个量为零? 4、什么叫全响应?全响应有那几个分量? 5、求解一阶电路的响应有那几个步骤?
0
1 uL dt ; L
0 uL 有限
1 iL (0 ) iL (0 ) uL dt L 0
iL (0 )
换路定律:在换路瞬间,电容上电压,电感上的电流不能跃变。
uc (0 ) uc (0 ) iL (0 ) iL (0 )
对于电容上电压和通过电感上的电流有: 换路后的初始值等于换路前的终了值!
duc US 1 uc ; dt R0C R0C
IS diL 1 iL dt LG0 LG0
两个方程具有相同的形式,因此两方程解的形式也相同,区别 仅仅是因变量和常数不同而已。 2、初始条件: (1)RC电路:uc(0+)=uc(0-)=U0 (2)RL电路:iL(0+)=iL(0-)=I0 3、方程的解(分离变量法) duc 1 1 (U S uc ) (uc U S ) dt R0C R0C
5、简单动态电路的时域

电感电路
K
R iL
储能元件
+ t=0 E _
iL
t
电感为储能元件,它储存的能量为磁场能量, 电感为储能元件,它储存的能量为磁场能量, 其大小为: 其大小为:
1 2 W L = ∫ ui dt = Li 0 2
t
因为能量的存储和释放需要一个过程,所以有电 因为能量的存储和释放需要一个过程,所以有电 感的电路存在过渡过程。 感的电路存在过渡过程。
最终终值 与电源变化 规律相同
t − y ( t ) = y ( ∞ ) 1 − e τ
一阶电路的全响应
一、全响应
当一个非零初始状态的一阶电路受到激励时, 当一个非零初始状态的一阶电路受到激励时, 全响应。 电路的响应称为全响应 电路的响应称为全响应。
二、RC电路 电路
设电容原有电压为U0 设电容原有电压为 1、电路方程 、
设:t=0 时换路
0
− --- 换路前瞬间
0
则:
+
+
--- 换路后瞬间
−
u C (0 ) = u C (0 )
iL (0 ) = iL (0 )
+
−
换路瞬间,电容上的电压、 换路瞬间,电容上的电压、电感中的电流不能突 变的原因解释如下: 变的原因解释如下: 自然界物体所具有的能量不能突变, * 自然界物体所具有的能量不能突变,能量的积累或 释放需要一定的时间。 释放需要一定的时间。所以
已知: 已知 R=1k , L=1H , U=20 V、 、 开关闭合前 iL =0 A 设 t = 0 时开关闭合 求:
U = i (0 ) R + u L (0 )
∴
+
动态电路的时域分析

动态电路的时域分析 第一节 换路及其初始条件一、电路的两种工作状态(稳态、动态) 1、稳态电路: (1)定义当电路在直流电源的作用下,各条支路的响应也是直流;当电路在正弦交流电源的作用下,各条支路的响应也是正弦交流,这种类型的电路称为稳态电路。
(2)特征:稳态电路中不存在换路现象,描述稳态电路的方程是代数方程。
2、动态电路: (1)定义当电路中含有储能元件或称动态元件(如电容或电感),电路中的开关在打开或闭合的过程中参数发生变化时,可使电路改变原来的工作状态,转变到另一个工作状态。
电路从一种稳态到达另一种稳态的中间过程称为动态过程或过渡过程。
过渡过程中的电路称为动态电路。
(2)待征:动态电路中存在动态元件且有换路现象,描述动态电路的方程是微分方程。
一阶电路:能够用一阶微分方程描述的电路; 二阶电路:能够用二阶微分方程描述的电路; n 阶电路:能够用n 阶微分方程描述的电路。
(3)存在原因:1)含有动态元件电感或电容 ::di L u L dtdu C i Cdt ⎧=⎪⎪⎨⎪=⎪⎩2)存在换路:电路结构或参数发生变化 二、换路 1、定义:电路中含有储能元件,且电路中开关的突然接通或断开、元件参数的变化、激励形式的改变等引起的电路变化统称为“换路”。
(1)换路是在0t =时刻进行的(2)换路前一瞬间定义为:0t -=;换路后一瞬间定义为:0t +=; (3)换路后达到新的稳态表示为:t =∞。
2、换路定律:在换路时电容电流和电感电压为有限值的条件下,换路前后瞬间电容电压和电感电流不能跃变。
即:(0)(0),(0)(0)c c L L u u i i +-+-==。
注意:00()()C C i t i t +-≠,00()()L L u t u t +-≠,00()()R R i t i t +-≠,00()()R R t u t +-≠ 三、独立初始条件 1、定义:一个动态电路的电容电压(0)C u +和电感电流(0)L i +称为独立初始条件,其余的称为非独立初始条件,非独立初始条件需通过已知的独立初始条件来求得。
动态电路时域分析-精品文档

12 R2 0.6H L
U 220 (2)确定i () i ( ) 18 . 3 A R 12 2 L 0 . 6 (3)确定时间常数 0 . 05 S R 12 2
第8章 动态电路的时域分析
[例] 图中,如在稳定状态下R1被短路,试问短路 后经过多少时间电流才达到15A? R1 i
u ( 0 ) 2 V C u ( ) 4 V C 2 m s 500 t u 4 2 e V C
4
2 t (S) 0
第8章 动态电路的时域分析
[例] 图中,如在稳定状态下R1被短路,试问短路 后经过多少时间电流才达到15A? R1 i
[解] 先应用三要素法求 8 + 电流i t =0 U (1)确定i (0+) – 220V U 220 i ( 0 ) 11 A R R 12 1 2 8
将电路中的独立源置零(电压源短路、电流 源开路),通过化简,最终可化为一个RC回路(或 者RL回路)的电路,是一阶电路,否则不是一阶 电路。
第8章 动态电路的时域分析
二、一阶பைடு நூலகம்路的解法通论(三要素法)
一阶电路的微分方程:例:P199 (a)(b)(c)(d 结论: 任何一个一阶线性电路,其数学模型是可以 整理成一个如下方程:
第8章 动态电路的时域分析
[例] 在下图中,已知U1=3V, U2=6V,R1=1k R2=2k,C= 3F ,t<0时电路已处于稳态。用三要 素法求t ≥ 0 时的 uC(t),并画出变化曲线。 1 S [解] 先确定uC(0+) 2 R1 uC()和时间常数 t = 0 + + + uC C t<0时电路已处于 U1– R2 U2 – – 稳态,意味着电容相 当于开路。 R U 2 1 u ( 0 ) u ( 0 ) 2 V C C R R 1 2 R U 2 2 u ( ) 4 V C R R 1 2
RLC_动态电路的时域分析

RLC_动态电路的时域分析动态电路的时域分析学习指导与题解一基本要求1.明确过渡过程的含义电路中发生过渡过程的原因及其实2.熟练掌握换路定律及电路中电压和电流初始值的计算3.能熟练地运用经典分析RC和RL电路接通或断开直流电源时过渡过程中的电压和电流明确RC和RL电路放电和充电时的物理过程与过渡过程中电压电流随时间的规律4.明确时间常数零输入与零状态暂态与稳态自由分量与强制分量的概念电路过渡过程中的暂态响应与稳态响应5.熟练掌握直流激励RC和RL一阶电路过渡过程分析的三要素法能分析含受控源一阶电路的过渡过程6.明确叠加定理在电路过渡过程分析中的应用完全响应中零输入响应与零状态响应的分解方式掌握阶跃函数和RCRL电路阶跃响应的计算7.明确RLC电路发生过渡过程的物理过程掌握RLC串联二阶电路固有频率的计算和固有响应与固有频率的关系以及振荡与非振荡的概念会建立RLC二阶电路描述过渡过程特性的微分方程明确初始条件与电路初始状态的关系和微分方程的解法会计算RLC串联二阶电路在断开直流电源时过渡过程中的电压和电流了解它在接通直流电源时电压和电流的计算方法二学习指导电路中过渡过程的分析是本课程的重要内容教学内容可分如下四部分1.过渡过程的概念2.换路定律3.典型电路中的过渡过程包括RC和RL一阶电路和RLC串联二阶电路过渡过程的分析4.叠加定理在电路过渡过程分析中的应用着重讨论电路过渡过程的概念换路定律RC和RL一阶电路过渡过程中暂态响应与稳态响应和时间常数的概念计算一阶电路过渡过程的三要素法完全响应是的零输入响应和零状态响应阶跃响应以及RLC串联二阶电路过渡过程的分析方法现就教学内容中的几个问题分述如下一关于过渡过程的概念与换路定律1.关于过渡过程的概念电路从一种稳定状态转变到另一种稳定状态所经历的过程称为过渡过程电路过渡过程中的电压和电流是随时间从初始值按一定的规律过渡到最终的稳态值产生过渡过程的原因是由于含有储能元件电容C电感L以及耦合电感元件的电路发生换路工作状态突然改变时引起的因此换路是产生过渡过程的外因而内因是电路是含有储能元件其实质是由于电路是储能元件能量的释放与储存不能突变的缘故电路是的过渡过程就是换路后电路的能量转换过程所以电路产生过渡过程的充分必要的条件是含有储能元件的电路发生换路如t 0时刻换路之后即t 0时储能元件的能量必须发生神化电路是才能产生能量转换的过程如果电路换路之后储能元件的能量不发生变化意味着换路后立即到达稳态电路就不发生五家渠市过程了2.换路定律若t 0时刻换路t 0_表示换路前最后的瞬间t 0表示换路后最初瞬间电压和电流的初始值就是t 0时的数值用u 0 和表示如果换路时刻电容电流和电感电压都是有限值则换路时刻电容电压和电感电流不能跃变即这就是换路定律关于换路定律应该明确的是1适用于换路定律的电量只有电容电压和电感电流其它电量是不适用换路定律的因为电容电压和电感受电流是电路的状态变量决定电路的储能状态即因此储能不能跃变必然是电容电压和电感受电流不能跃变而电路中的其它电量如电容电流电感电压电阻电压和电流等过都是非状态变量在换路时刻是可以跃变的2换路定律适用电路的条件是换路时刻电路中的电容电流和电感电压均为有限值否则换路定律不能应用这是由电容和电感元件的基本性质所决定的即伏安特性为因t 0时刻电容电流为有限值上式中的积分项为零同理因t 0时刻电感电压为有限值上式中的积分项为零否则如果换路时刻电容电流和电感电压不是的限值电容电压和电感电流可能跃变如图4-1a所示电路时刻开关K闭合则电容电压发生强制跃变必然换路时刻电容电流为非有限值又如图4-1b所示电路时刻进行换路输入电感元件L电感电流发生强制跃变必然换路时刻电感电压为为非有限值由此可见换路时刻电容电流和电感电压为非有限值则电容电压和电感电流可能发生跃变换路定律不能应用图 4-1 电容电压和电感电流的强制跃变3.初始值与电路我们所讨论的RC和RL以及RLC电路都是适用换路定律的这类电路换路后电路的初始值对于电容电压和电感电流而言求出和后便可按换路定律求出和电路时视为电压源视为电流源4.稳太值与稳态电路过渡过程结束后电路中的电压和电流的最终值就是新的稳定状态的数值即稳态值稳态值一般作出过渡过程结束后的稳态电路来求出如直流电源激励的稳态电路称为直流稳态电路这时电路中电容相当于开路这时按相量法计算出稳态值5.电路过渡过程分析的目的与立法电路中过渡过程分析的目的主要是研究过渡过程中电压和电流的变化规律它与动态电路换路后的结构和储能元件的性质数目及初始储能等有关由列出和求解描述电路动态过程的微分方程的解来确定电路过渡过程的分析方法有经典法和变换域分析法经典分析法是在时域以待支路的电压或电流为变量列出电路换路后的微分方程并直接求解满足初始条件微分方程的解答得出时间函数的电压电流本章就是采用这种方法来分析过渡过程问题的这换域分析法是应用拉普拉斯变换方法来求解电路过渡过程中的电压和电流这种方法将在第十三章介绍二关于RC和RL一阶电路过程的分析1.典型RC和RL一阶电路含有一个独立储能元件的电路动态特性是用一阶微分方程来描述称为一阶电路如图4-2ab所示RC和RL串联电路是典型的一阶电路其它的一阶电路可以应用戴维南定理等效化简为典型的一阶电路2.直流RC和RL一阶电路的微分方程如果RC和RL电路的激励源是直流电源称为直流一阶电路为了分析RC和RL 一阶电路过渡过程中电压和电流的变化规律需根据KVLKCL和元件VAR列出时电图 4-2 典型RC和RL一阶电路路的微分方程如图4-2 a 所示电路以为变量时电路的微分方程为这是常系数线性非齐次一阶微分方程齐次微分方程是电路换路后过渡过程中的电容电压随时间变化的规律就是满足初始条件微分方程的解又如图12-2 b 所示RL电路以为变量时电路的微分方程为这是常系数线性非齐次一阶微分方程齐次微分方程是电路换路后过渡过程中的电流随时间变化的规律就是满足初始条件微分方程的解电路的初始条件由初始状态来确定3.过渡过程是的暂态响应与稳态响应1如图12-2a所示RC电路初始状态且时的是以为变量常系数一阶非齐次方程的解包含齐次微分方程的通解和非齐次微分方程的特解故微分方程的全解为根据初始条件确定积分常数K当时则上式为故最后解出过渡过程中的电容电压为上式等号右边第一项按指数规律衰减当时为零故称为暂态响应又称自由分量第二项是与激励电源形式相同而与时间无关的恒定值当时故称为稳态响应又称为强制分量由此可见过渡过程中的电容电压可以解为暂态响应与稳态响应之和在工程上RC电路电容放电过程中的电容电压为电容放电电压是从初始值按指数规律衰减为零就是指数规律衰减的因子RC电路当电容充电过程中的电容电压为电容充电电压是从零按指数规律上升到稳态值就是从零按指数规律增长的因子电路中的电流则根据电容零件的VAR得出即2如图12-2b所示RL电路若初始状态且时的是以为变量的非齐次微分方程满足初始条件的解即式中是暂态响应是稳态响应4.时间常数1在上述RC和RL电路过渡过程中和的暂态响应含有衰减因子和e是指数的分母RC和的量纲是时间单位是秒它们的数值决定于电路中的参数RC和RL均为常数故称为时间常数用表示对于图12-2所示典型一阶电路RC电路RL电路对于非典型一阶电路时间常数中的R戴维南等效电路的等效电阻2时间常数是一阶微分方程的特征方程的负倒数如图12-2a所示电路微分方程的特征方程是故特征根为因此时间常数特征根具有频率的量纲即秒由电路的参数RC确定反映电路的固有性质故称为固有频率3时间常数是决定电压过渡过程中电压和电流变化快慢的物理量其值是过渡过程中暂态响应衰减到初始值368所需的时间值越大衰减就越慢过渡过程就越长反之值越小衰减就越快则过渡过程就越短从理论上讲要经过无限长时间暂态响应才能衰减为零过渡过程才能结束但是在工程一般认为经过35的时间暂态响应已衰减趋于零过渡过程便结束了4还应指出对于同一电路时电路中不同支路的电压和电流暂态响应衰减的时间常数都是相同的换句话说一个电路换路后只有一个时间常数5.直流一阶电路分析计算的三要素法由于直流一附上电路换路后在过渡过程中的电压和电流是从初始值按指数规律衰减到稳态值或者是从初始值按指数规律上升到稳态值而指数规律的变化又决定于时间常数因此过渡过程中的电压和电流是随时间的变化规律由初始值稳态值的时间常数所确定只要计算出初始值稳态值和时间常数则过渡过程中的电压和电流便可直接由如下三要素公式得出即上式中是暂态响应是稳态响应上式所示三要素公式化适用于直流激励有损耗一阶电路时刻换路时电路的过渡过程分析有损耗一阶电路的戴维南等效电阻R是正值特征根S是一个负数暂态响应含负指数随时间作衰减变化三要素法是一阶电路过渡过程分析的实用计算法不必列出和求解电路的微分方程只要直接计算出待求响应变量的初始值稳态值和电路的时间常数即可具有简捷方便的优点因此在工程实际中具有重要意义6.关于正弦激励一阶电路过渡过程的分析计算步骤与直流激励一阶电路分析方法相同如图12-2a所示RC电路时刻换路接入电源是开关K闭合时刻电源电压的相位角经典法分析计算的步骤如下1时以电容电压为变量的微分方程为2解微分方程齐次方程的通解为非齐次微分方程的特解就是稳态响应按时稳态电路用相量法求出即正弦稳态时RC串联电路的电容电压为式中是稳态电容电压有效值是RC 串联电路的阻抗角解出稳态响应为3过渡过程中电容电压为4确定积分常数K若当时刻上式为5最后解出过渡过程中的电容电压为过渡过程中电容电压的暂态响应与开关K闭合的时刻有关由于正弦电源电压接入电路初相角的数值取决于开关闭合的时刻当不财的时刻开关闭合时积分常数K的数值不同如果当时刻开关闭合则积分常数暂态响应为零电路称路后立即到达稳态值没有过渡过程如果当或时刻开关K闭合则积分常数为最大值这时电容两端可能出现过电压对于正弦电源接入RL电路的分析按上述同样的步骤进行可以得出与RC电路类似的结果读者自行总结正弦电源激励动态电路过渡过程的分析是本章学习的一个难点三关于零输入响应零状态响应与完全响应从现货电路理念的观点电路中不仅独立电源是电路的激励而且储能元件的初始储能即初始状态也是一种激励因为从能量观点而言独立电源可以向电路提供电能也可以从电路吸收电能储能元件亦有相似的效果同样可以向电路释放电能也可以从电路中吸收能量储存于电场或磁场中然而应明确独立电源和储能元件是两种不同性质的元件它们的伏安特性是完全不同的因此既然动态电路的独立电源和储能形色仓皇的初始储能都是电路的激励那么旅游活动可以应用叠加定理来分析换路后电路中的电压和电流1.零输入响应输入就是电路外加电源激励零输入就是外加电源激励为零电路反由储能元件的初始状态作用下的响应称为零输入响应如图4-2 a所示RC电路则零输入响应为2.零状态响应电路在非零状态下由外加电源激励下产生的响应称为零状态响应如图4-2a 所示RC电路初始状态则零状态响应为3.完全响应电路在非零状态下由外加电源激励和初始储能共同作用下产生的响应称为完全响应如图4-2a所示RC电路且则按叠加定理完全响应是零输入响应与零状态响应之和即应该指出从概念上应明确如下几点1零输入响应和零状态响应都不能与产生它的原因成正比即零输入响应与储能元件的初始状态成正比而零状态响应则与外加电源电压成正比但是完全响应则既不与储能元件的初始状态成正比也不与外加电源激励成正比 2零输入响应不同于暂态响应零状态响应不同于稳态响应一般而言完全响应是的零输入响应包含在暂态响应当之中零状态响应是自由分量和强制分量之和而稳态响应则仅是强制分量与外激励电源的形式相同3完全响应分解为零输入响应与零状态响应之和总是存在的而分解为暂态响应与稳态响应之和则不总是存在的因为在某些情况下暂态响应可能为零 4完全响应的两种分解方式是从不同的角度描述电路中发生的过渡过程从过渡的观点暂态响应与稳态响应的分解方式是把换路后工作过程的层次描述的直观明确而从叠加的观点零输入响应与零状态响应的分解方式是鬼魂激励与响应的因果关系表现得十分清楚从电路理论的观点电路零输入响应和零状态响应分析具有更普遍的意义5在工程上如电容的放电过程中的电容电压运行电机停机时激励磁绕组灭磁过程中的绕组电流都是零输入响应分析又如零状态电容的充电过程和投入电机运行的磁绕组接入电源的升磁过程都是零状态响应分析因此零输入响应分析和零状态响应分析在实际工程中具有直接的实用意义图 4-3 阶跃电源电压RC电路系统四关于阶跃函数与阶跃响应1.单位阶跃函数的定义单位阶跃函数的定义为单位延时阶跃函数的定义为2.单位阶跃函数的作用1用来表示时刻开关K闭合直流电源接入动态电路如图9-2a所示RC电路可用图12-3所示的由阶跃电压电源激励的RC电路表示代替了时刻K闭合将直流电源电压接入RC电路的作用2在时刻换路后过渡过程中的电压和电流表达式表示了的作用如图4-2aRC电路时的电容电压可以表示为或3用阶跃函数表示矩形脉冲信号如图4-4a的矩形脉冲电压可以用图4-4bc的阶跃函数和延时阶跃函数之和来表示即图 4-4 用阶跃函数表示矩形脉冲电压波形图3.单位阶跃响应的定义单位阶跃响应的定义为零状态电路在单位阶跃函数电源激励下的响应并用表示RC电路的单位阶跃响应为单位延阶跃时响应为对于如图4-3所示的RC电路的阶跃响应是如果电路的激励是延时阶跃函数时则RC电路的延时阶跃响应电容电压为 4.关于阶跃函数激励非零状态电路的响应应用叠加定理这时电路的完全响应是零状态响应即阶跃响应和零输入响应之和如图4-3所示电路且这时电路的阶跃响应为零输入响应为故电路的完全响应电容电压为五关于RLC二阶电路的分析方法由两个独立储能元件组成的电路其过渡过程的特征性用二阶微分方程描述故称为二阶电路RLC串联电路是典型的二阶电路通过对它的分析来明确二阶电路过渡过程的基本概念和分析方法着重讨论RLC串联电路的放电过程即电路的固有响应也就是零输入响应也介绍RLC串联电路的充电过程即零状态响应和完全响应1.电路的微分方程与初始条件如图4-5所示RLC串联二阶电路时以电容电压为变量描述动态过程特性的微分方程是图 4-5 RLC串联二阶电路过渡过程中电容电压随时间变化的规律就是微分方程的解方程的求解需有如下两个初始条件只要知道电路的两个初始状态和按上式便可得出初始条件和于是RLC串联电路的放电过程的就是满足上述初始条件齐次微分方程的解充电过程的就是满足初始条件非齐次微分方程的解2.电路的固有频率与固有响应电路的固有频率是二阶微分方程的特征方程的根即它是由电路本身RLC元件参数所确定量纲是秒反映电路本身的固有性质电路的固有响应就是零输入响应是上述二阶齐次微分方程的解根据RLC元件参数的不同数值固有频率和固有响应有如下四种形式1当时固有频率是两个不等的负实数即这时固有响应是过阻尼放电过程其数学表达式为2当时固有频率是一对负实部的共轭复数即这时固有频率响应是欠阻尼振荡放电过程其数学表达式为3当时固有频率是两个相等的负实数即这时固有响应是临界阻尼非振荡放电过程其数学表达式为4当时固有频率是一对共轭虚数即这时固有响应是无阻尼的电振荡过程其数学表达式为已知电路中的两个初始状态便可得出两个初始条件和上述式中的积分常数和便可确定放电过程中的响应电容电压便可解出应该指出二阶电路微分方程的初始条件和积分常数和的确定是二阶电路的分析计算中的难点由以上分析可知二阶电路分析的基本步骤是根据微分方程的特征方程计算出电路的固有频率根据固有频率写出固有响应的表达式根据电路的初始条件确定求解方程计算积分常数和的初始条件和并根据初始条件和固有响应表达式确定积分常数和便解出了放电过程中的响应变量电容电压还应指出二阶电路的固有频率是复频率即式中是正实数它决定响应的衰减特征称为衰减常数是决定电路响应衰减振荡的特性称为阻尼角频率是电路固有的振荡角频率称为谐振角频率上述计算固有频率的关系式是针对RLC串联电路得出的对于一般二阶电路而言微分方程为的特征方程为则电路的固有频率是3.RLC串联二阶电路充电过程的分析方法当外加直流激励电压源电压时RLC串联电路的充电过程若电路初始储能为零就是零状态响应分析若非零初始状态则是完全响应分析二者是常系数二阶非齐次微分方程的解只是初始条件不同而已它包括齐次微分方程的通解和非齐次微分方程的特解齐次微分方程的形式与上述固有响应的表达式相同而非齐次微分方程的特解与激励形式相同由于微分方程中系数为1故特解为因此RLC串联电路充电过程电容电压根据RLC元件参数的不同有如下四种形式即1当时固有频率是则2当时固有频率是则3当时固有频率是则4当时固有频率则最后根据初始条件和确定积分常数和便解出响应变量4.关于振荡与非振荡的概念电路过渡过程的实质就是能量的转换过程这种能量转换的过程由电路的两个初始状态和电路结构及元件参数来确定在无电源RLC串联电路的放电过程中电容和电感在初始时刻可能存在数值不同的电场能量和磁场能量或者它们之一有储能另一无储能在过渡过程中电阻元件R总是消耗能量的电容元件和电感元件是要释放出原有储能提供给电阻元件转换为热能的在这过程中可能是电容与电感同是释放出能量提供电阻元件消耗形成非振荡的放电过程也可能出现电场能量与磁场能量的交换形成振荡放电过程这将决定于电路元件的参数如果RLC 串联电路的电阻元件R是数值较小即时电阻元件消耗功率较小按能量守恒原理在放电开始一段时间内某一储能元件如电容元件释放出的电场能量一部分为电阻R所消耗另一部分为电感元件所吸收储存在磁场中使磁场能量增加到某一最大值而电容中的电场能量逐渐减少至零值继之另一段时间内电感元件释放出磁场能量一部分为电阻R所消耗另一部分为电容进行反充电不断增加电场能量达到某一最大值而电感元件中的磁场能量减少至零值而后重复上述过程往复循环进行电容与电感元件之间的能量交换形成电磁振荡由于电阻元件不断的消耗功率使电容与电感之间能量交换的规模不断减少直至储能全部为电阻所消耗过渡过程便结束形成欠阻尼放电过程要维持等幅振荡就要不断补充电磁振荡过程中的能量消耗这就是电子振荡器的基本原理如果RLC串联电路电阻R的数值较大即时由于电阻元件消耗功率较大根据能量守恒原理这时电容和电感元件均不断同时释放储能提供给电阻R消耗直至全部储能为电阻元件所消耗过渡过程便结束形成非振荡性的阻尼放电过程这应指出如果二阶电路的两个独立储能元件的性质相同的元件时在放电过程中不存在电场能量与磁场能量的交换不可能出现电磁振荡过渡过程只能是非。