高一数学集合的概念练习题

合集下载

高一数学第一章1.1集合的概念练习题(中)

高一数学第一章1.1集合的概念练习题(中)
成中国国旗的颜色名称的集合;
(2)方程组 的解集.
15.若集合 ,集合 ,则集合 中元素的个数是多少?
16.已知集合 .问是否存在 ,使
(1) 中只有一个元素;
(2) 中至多有一个元素;
(3) 中至少有一个元素.若存在,分别求出来;若不存在,说明理由.
高一数学第一章1.1习题(中)
1.集合 的元素个数为()
A.1B.2C.3D.4
2.给出下列4个关系式: ∈R,0.3∉Q,0∈N*,0∈{0}.其中正确的个数是()
A.1B.2C.3D.4
3.下列对象不能组成集合的是()
A.不超过20的质数B. 的近似值
C.方程 的实数根D.函数 的最小值
4.下列四组对象中能构成集合的是( )
11.已知集合A= ,B= ,则A∩B中元素的个数是_______个
12.已知集合 至多有一个元素,则 的取值范围是__________.
13.用列举法表示下列集合:
(1)不大于10的非负偶数组成的集合;
(2)方程x2=2x的所有实数解组成的集合;
(3)直线y=2x+1与y轴的交点所组成的集合;
(4)由所有正整数构成的集合.
A.3B.2C.1D.4
8.已知集合 ,则下列四个元素中属于M的元素的个数是()
① ;② ;③ ;④
A.4B.3C.2D.1
9.用适当的符号( , , ,, , )填空
(1) _____ ;(2) _____ ;(3) _____
10.被3除余1的所有整数组成的集合用描述法表示为_________.
A.宜春市第一中学高一学习好的学生
B.在数轴上与原点非常近的点
C.很小的实数
D.倒数等于本身的数

高一数学集合的概念试题

高一数学集合的概念试题

高一数学集合的概念试题1.已知集合有且只有一个元素,则a的值的集合(用列举法表示)是 .【答案】{0,1}【解析】集合是方程的解集,此方程只有一个根,则,或,可得.【考点】集合的表示法.2.已知非空集合则实数a的取值范围是_____________.【答案】(2,5)【解析】因为,所以又因为为非空集合,所以因此实数a的取值范围是(2,5)【考点】集合子集包含关系3.设集合,,且,则实数的取值范围是。

【答案】【解析】依题意可得。

【考点】集合的运算。

4.设全集为,集合,.(1)求如图阴影部分表示的集合;(2)已知,若,求实数的取值范围.【答案】(1);(2).【解析】(1)先分别确定集合,,,而从文氏图中,可知阴影部分为集合的外面,却是集合的一部分,故只要求即可;(2),说明的元素都在中或为空集,因为空集是任意集合的子集,分两种情况讨论可求得的值.试题解析:(1), 2分, 4分阴影部分为 7分(2)①,即时,,成立 9分②,即时, 12分得 14分综上所述,的取值范围为.【考点】1.集合的运算;2.集合的包含关系;3.二次不等式;4.对数不等式.5.又则()A.a+b A B.a+b BC.a+b C D.a+b A,B,C中的任一个【答案】B【解析】由集合A中的元素是偶数,集合B中的元素是奇数,a,b分别为两个集合的元素,则a+b为奇数.因为A选项的元素为偶数,不是奇数,所以含A的选项都不合题意,所以A,D选项排除.集合C中的元素可以写成4k+1="(2k)+(2k+1)" k∈z,一个偶数与一个奇数相加,但是这些元素都要有相同的k,否则一些奇数不包含C中,比如3等就没办法表示,集合C仅仅表示被4除余1的奇数.而集合B中是所有的奇数集.所以选B.【考点】集合中元素的特征,本题主要是以集合作为背景考察整数分类的知识.6.满足的集合共有()A.6个B.5个C.8个D.7个【答案】D【解析】因为,所以满足条件的集合有:,共7个,因此选D。

高一数学试题-集合的概念(含答案)

高一数学试题-集合的概念(含答案)

集合的概念一、单选题1.下列式子:①5∈Q ;②13∈R ;③-5∉Z ;④-3∉N ,其中正确的个数为()A .1B .2C .3D .42.下列选项中集合P 与Q 表示同一个集合的是()A .P 是由元素1,3,π组成的集合,Q 是由元素π,1,|-3|组成的集合B .P 是由π组成的集合,Q 是由3.1415926组成的集合C .P 是由3,4组成的集合,Q 是由有序实数对(3,4)组成的集合D .P 是满足不等式-1≤x ≤1的自然数组成的集合,Q 是方程x 2=1的解集3.将集合{}620(,)|{x y x y x y +=-=用列举法表示,正确的是()A .{2,4}B .{(2,4)}C .{x =2,y =4}D .(2,4)4.已知集合A ={*x N x ∈≤≤,则必有()A .﹣1∈AB .0∈AC .3∈AD .1∈A5.由a 2,2﹣a ,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值可以是()A .1B .﹣2C .﹣1D .26.由大于5-且小于13的偶数所组成的集合是()A .{}513,x x x -<<∈ZB .{}513x x -<<C .{}513,2,x x x k k -<<=∈ND .{}513,2,x x x k k -<<=∈Z7.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含有()A .2个元素B .3个元素C .4个元素D .5个元素8.若集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ),则下列选项中元素与集合的关系都正确的是()A .2∈A 且2∈B B .(1,2)∈A 且(1,2)∈BC .2∈A 且(3,10)∈BD .(3,10)∈A 且2∈B二、多选题9.下列每组对象,能构成集合的是()A .中国各地最富饶的乡村B .直角坐标系中横、纵坐标相等的点C .2022年参加北京冬奥会的优秀运动员D .北京大学2022年入学的全体学生10.已知集合{}{}2210x mx x n -+==,则m n +的值可能为()A .0B .12C .1D .211.已知集合A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是()A .-2∈AB .-11∉AC .3k 2-1∈AD .-34∉A12.下列说法不正确的是()A .在直角坐标平面内,第一、三象限的点的集合为{(x ,y)|xy >0}B .方程x -2+|y +2|=0的解集为{-2,2}C .集合{(x ,y)|y =1-x}与{x|y =1-x}是相等的D .若A ={x ∈Z |-1≤x ≤1},则-1.1∈A 三、填空题13.用符号“∈”和“∉”填空:(1)12______N ;(2)2______Z ;(3)1-______R ;(4)π______Q +;(5)24______N ;(6)0______∅.14.下列各组对象不能组成集合的是______(用题号填空).①中国古代四大发明③方程210x -=的实数解④周长为20cm 的三角形⑤接近于0的数15.已知集合P 中元素x 满足:x ∈N ,且2<x <a ,又集合P 中恰有三个元素,则整数a =________.16.由a ,ba ,1组成的集合与由a 2,a +b ,0组成的集合是同一个集合,则a 2022+b 2022=________.四、解答题17.设{}0,2,3,5,7A =,{}22,31B a a =++,已知5A ∈,5B ∉,求a 的值.18.用适当的方法表示下列集合.(1)方程2+2+1=0的解集;(2)在自然数集中,小于1000的奇数构成的集合.参考答案1--8BABDC DAC 9.BD 10.BD 11.BC 12.BCD13.(1)∉(2)∈(3)∈(4)∉(5)∈(6)∉.14.②⑤15.616.117.【解析】由5B ∉知,2315a a ++≠,即2340a a +-≠,解得1a ≠且4a ≠-又集合元素具有互异性,知2312a a ++≠,即2310a a +-≠解得32a -≠且32a -+≠综上所述,a 的取值为{a 32a --≠且32a -≠且1a ≠且}4a ≠-18.【解析】(1)因为方程2+2+1=0的解为0或-1,所以解集为{0,-1}.(2)在自然数集中,奇数可表示为x=2n+1,n∈N,故在自然数集中,小于1000的奇数构成的集合为{x|x=2n+1,且n<500,n∈N}.。

高一数学必修一第一章测试题及答案

高一数学必修一第一章测试题及答案

1.1集合的概念专项练习解析版一、单选题1.若1∈{x ,x 2},则x =( )A .1B .1-C .0或1D .0或1或1- 【答案】B【分析】根据元素与集合关系分类讨论,再验证互异性得结果【详解】根据题意,若1∈{x ,x 2},则必有x =1或x 2=1,进而分类讨论:∈、当x =1时,x 2=1,不符合集合中元素的互异性,舍去,∈、当x 2=1,解可得x =-1或x =1(舍),当x =-1时,x 2=1,符合题意,综合可得,x =-1,故选B .【点睛】本题考查元素与集合关系以及集合中元素互异性,考查基本分析求解能力,属基础题.2.已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 的值为( )A .-2B .2C .4D .2或4 【答案】A【分析】根据元素和集合的关系以及集合元素的互异性确定正确选项.【详解】依题意2A ∈,若2a =,则2=a ,不满足集合元素的互异性,所以2a ≠; 若2=a ,则2a =-或2a =(舍去),此时{}2,2,4A =--,符合题意;若22a -=,则4a =,而4a =,不满足集合元素的互异性,所以4a ≠.综上所述,a 的值为2-.故选:A【点睛】本小题主要考查元素与集合的关系,考查集合元素的互异性,属于基础题.3.下列关系中,正确的有( ) ∈1R 2;5Q ;∈3N ;∈2Q ∈.A .1个B .2个C .3个D .4个【分析】根据元素与集合之间的关系判断可得答案.【详解】12|3|3-=是非负整数,2是有理数.因此,∈∈∈∈正确,故选:D .4.考查下列每组对象,能组成一个集合的是( )∈一中高一年级聪明的学生;∈直角坐标系中横、纵坐标相等的点;∈不小于3的正整数;值.A .∈∈B .∈∈C .∈∈D .∈∈ 【答案】C【分析】利用集合中的元素满足确定性判断可得出结论.【详解】∈“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;∈“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;∈“不小于3的正整数”的标准确定,能构成集合;”的标准不确定,不能构成集合.故选:C.5.下列各组对象不能构成集合的是( )A .参加运动会的学生B 的正整数C .2022年高考数学试卷上的难题D .所有有理数【答案】C【分析】根据集合的基本概念辨析即可.【详解】解:对于A 选项,参加运动会的学生,是确定的,没有重复的,所以能构成集合;对于B 对于C 选项,2022年高考数学试卷上的难题,多难的题才算是难题,有一定的不确定性,不符合集合中元素的确定性,故不能构成集合;对于D 选项,所有有理数,所研究的有理数,是确定的,没有重复的,所以能构成集合;故选:C.6.已知集合{}21,2,22A a a a =---,若1A -∈,则实数a 的值为( ) A .1B .1或12-C .12-D .1-或12-【分析】由题可知21a -=-或2221a a --=-,即求.【详解】∈1A -∈,∈21a -=-或2221a a --=-,∈1a =或12a =-, 经检验得12a =-.故选:C.7.已知集合A ={x |ax 2﹣3x +2=0}只有一个元素,则实数a 的值为( )A .98B .0C .98或0D .1【答案】C 【分析】根据a 是否为0分类讨论.【详解】0a =时,2{|320}{}3A x x =-+==,满足题意; 0a ≠时,980a ∆=-=,98a =,此时294|320}83A x x x ⎧⎧⎫=-+==⎨⎨⎬⎩⎭⎩,满足题意. 所以0a =或98.故选:C二、多选题8.已知{}21|A y y x ==+,(){}21|,B x y y x ==+ ,下列关系正确的是( )A .=A BB .()1,2A ∈C .1B ∉D .2A ∈【答案】CD 【分析】根据集合A 、B 的特征,结合元素与集合的关系进行判断.【详解】∈{}2|1{|1}A y y x y y ==+=是数集;{}2(,)|1B x y y x ==+为点集,∈2A ∈,2B ∉,1B ∉,故A 错误,C 、D 正确;由21y x =+知,=1x 时=2y ,∈(1,2)B ∈,(1,2)A ∉,故B 错误.故选:CD .9.下列选项正确的有( )A .()R Q π∈B .13Q ∈C .0*N ∈D 4Z【答案】ABD【分析】根据常见集合的意义和元素的性质可判断各选项中的属于关系是否成立,从而可得正确的选项.【详解】因为π为无理数,故()R Q π∈,故A 正确. 因为13为有理数,故13Q ∈,故B 正确. 因为*N 为正整数集,但*0N ∉,故C 不正确.2=Z ,故D 成立.故选:ABD.【点睛】考查常见集合的表示,注意正确区分各字母表示的常见集合,不要混淆,本题属于基础题.10.下列各组中M 、P 表示不同..集合的是( ) A .{3,1}M =-,{13}P =-,B .{}{(31)},(1,3)M P ==, C .{}21,R M y y x x ==+∈,{}t t 1P =≥D .{}21,R M y y x x ==-∈,2{(,)|1,R}P x y y x x ==-∈【答案】BD【分析】根据集合相等的概念依次分析各选项即可得答案.【详解】选项A 中,根据集合的无序性可知M P =;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,{}t t 1P =≥=[)1,+∞,故M =P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有y 组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合,故M P ≠.故选:BD .11.下列四个命题:其中不正确的命题为( )A .{}0是空集B .若N a ∈,则N a -∉;C .集合{}2R 210x x x ∈-+=有一个元素 D .集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是有限集. 【答案】ABD【分析】根据空集的定义可判断A ;根据元素与集合的关系可判断B ;解方程求出集合中的元素可判断C ;x 为正整数的倒数时,都有6N x∈可判断D ,进而可得正确选项. 【详解】对于A :{}0含有一个元素0,所以{}0不是空集,故选项A 不正确;对于B :当0a =时,N a ∈,则N a -∈,故选项B 不正确;对于C :{}(){}{}22R 210R 101x x x x x ∈-+==∈-==只有一个元素,故选项C 正确; 对于D :Q 表示有理数,包括整数和分数,比如x 为正整数的倒数时,都有6N x∈,所以集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是无限集,故选项D 不正确;故选:ABD.三、填空题12.已知集合{}1,2,A m =,{}13,B n =,,若A B =,则m n +=_______. 【答案】5【分析】由集合的性质,即元素的无序性和互异性可得3,2m n ==,得5m n +=.【详解】根据集合的元素具有无序性和互异性可得,3,2m n ==,所以5m n +=.故答案为:5.【点睛】(1)集合A B =的充要条件是A B ⊆,且A B ⊇;(2)集合由三个性质:确定性,互异性和无序性.13.若{}221,,2a a ∈-,则=a ______.【答案】2-【分析】结合集合的互异性来求得a .【详解】若2a =,则222a -=,不满足互异性,所以2a ≠.若222,2a a -==-或2a =(舍去),所以2a =-.故答案为:2-四、解答题14.已知集合{}222,1,A a a a =+-,{}20,7,5B a a =--,且5A ∈,求集合B .【答案】{}0,7,1B =【分析】根据题意,结合集合中元素的确定性与互异性,分类讨论即可求解.意;若2a =-,则26a a -=,此时{}2,5,6A =,{}0,7,1B =.而当25a a -=时,集合B 中250a a --=,根据互异性可知,不满足题意.综上,{}0,7,1B =.15.已知集合{}2210,A x ax x a R =++=∈, (1)若A 只有一个元素,试求a 的值,并求出这个元素;(2)若A 是空集,求a 的取值范围;(3)用列举法表示集合A .【答案】(1)见解析(2)1a >(3)见解析【分析】(1)分为0a =和0a ≠两种情形即可;(2)根据方程无解时,440a ∆=-<即可得结果;(3)根据(1)(2)的结果结合求根公式即可得结果.【详解】(1)∈0a =时,12A ⎧⎫=-⎨⎬⎩⎭满足题意; ∈0a ≠时,要使A 只有一个元素,则需:440a ∆=-=,即1a =,此时{}1A =-.综上:0a =时,12A ⎧⎫=-⎨⎬⎩⎭;1a =时,{}1A =-. (2)∈A =∅,0a =显然不合题意,∈440a ∆=-<,即1a >∈1a >时,A =∅.(3)由(2)得,当1a >时,方程2210ax x ++=无解,即A =∅,由(1)得0a =时,方程210x +=的解为12x =-,即12A ⎧⎫=-⎨⎬⎩⎭; 当1a =时,方程2210x x ++=的解为=1x -,即{}1A =-.当1a <时,由求根公式得2210ax x ++=的解为1x =2x =,即A =⎪⎪⎩⎭综上可得:当1a >时,A =∅;当0a =时,12A ⎧⎫=-⎨⎬⎩⎭,当1a =时,{}1A =-;当1a <时,A =⎪⎪⎩⎭. 【点睛】考查了用描述法表示集合,含有参数一元二次方程的解,分类讨论思想的应用,属于中档题。

高一数学1.1集合的概念练习

高一数学1.1集合的概念练习

1.1集合的概念练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}212,4,2A a a a =+-,3A -∈,则=a ( )A .1-B .3-或1C .3D .3-2.已知集合{}(,),,2M x y x y N x y *=∈+≤,则M 中元素的个数为( ) A .1 B .2 C .3 D .03.下列能构成集合的是( )A .中央电视台著名节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .数学必修第一册课本中所有的难题4.设集合{}21,25A a a =--+,若4∈A ,则a =( ) A .-1 B .0 C .1 D .35.下列各组集合表示同一集合的是( )A .{}{}(3,2),(2,3)M N ==B .{}{}(,)1,1M x y x y N y x y =+==+=C .{}4,5M =,{}5,4N =D .{}{}1,2,(1,2)M N ==二、多选题6.下列结论不正确的是( )A .1N ∈B QC .*0N ∈D .3Z -∈ 7.已知集合{2M =-,2334x x +-,24}x x +-,若2M ∈,则满足条件的实数x 可能为( )A .2B .2-C .3-D .1三、填空题8.已知集合{}22,2A a a a =++,若3A ∈,求实数a 的值_______9.集合{}2320,M x ax x a =--=∈R 中只有一个元素,则实数a 的值是___________.10.若集合{}220x ax x ++=有且只有一个元素,则实数a 的取值集合为______________.11.已知集合32A x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭∣,用列举法表示集合A ,则A =__________.四、解答题12.已知集合{}2320A x x x =-+=,集合()(){}222150B x x a x a =+++-=. (1)若{}2A B ⋂=,求实数a 的值.(2)若A B A ⋃=,求实数a 的取值范围.(3)若U =R ,A B A =,求实数a 的取值范围.13.已知全集{}4U x x =≤,集合{}23A x x =-<<,{}32B x x =-≤≤,求(1)()U A B(2)()U A B .参考答案:1.D【分析】依题意可得234a a -=+或32a -=-,分别求出a 的值,再代入检验是否满足集合元素的互异性,即可得解.【详解】∈3A -∈,∈234a a -=+或32a -=-.若234a a -=+,解得1a =-或3a =-.当1a =-时,2423a a a +=-=-,不满足集合中元素的互异性,故舍去;当3a =-时,集合{}12,3,5A =--,满足题意,故3a =-成立.若32a -=-,解得1a =-,由上述讨论可知,不满足题意,故舍去.综上所述,3a =-.故选:D .2.A【分析】由列举法表示M 即可求解【详解】集合{}(,),,2{(1,1)}M x y x y N x y *=∈+≤=∣, M 中只有1个元素.故选:A3.C【分析】根据集合的定义可直接确定结果. 【详解】构成集合的元素具有确定性,选项ABD 中没有明确标准,不符合集合定义,选项C 正确.故选:C.4.C【分析】由4∈A ,可得2254a a -+=,解方程即可得到答案.【详解】因为4∈A ,所以2254a a -+=,解得1a =.故选:C5.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A :集合{}(3,2)M =表示含有点()3,2的集合,{}(2,3)N =表示含有点()2,3的集合,显然不是同一集合,故A 错误;对于B :集合M 表示的是直线1x y +=上的点组成的集合,集合N R =为数集,故B 错误;对于C :集合M 、N 均表示含有4,5两个元素组成的集合,故是同一集合,故C 正确; 对于D :集合M 表示的是数集,集合N 为点集,故D 错误;故选:C6.BC【分析】根据N 、Q 、N *、Z 表示的数集,结合元素与集合之间的关系即可做出判断.【详解】由N 表示自然数集,知1N ∈,故A 正确;Q Q ,故B 错;由N *表示正整数集,知*0N ∉,故C 错;由Z 表示整数集,知3Z -∈,故D 正确.故选:BC.7.AC【解析】根据集合元素的互异性2M ∈必有22334x x =+-或224x x =+-,解出后根据元素的互异性进行验证即可.【详解】解:由题意得,22334x x =+-或224x x =+-,若22334x x =+-,即220x x +-=,2x ∴=-或1x =,检验:当2x =-时,242x x +-=-,与元素互异性矛盾,舍去;当1x =时,242x x +-=-,与元素互异性矛盾,舍去.若224x x =+-,即260x x +-=,2x ∴=或3x =-,经验证2x =或3x =-为满足条件的实数x .故选:AC .【点睛】本题主要考查集合中元素的互异性,属于基础题.8.32-## 1.5- 【分析】根据题意,可得23a +=或223+=a a ,然后根据结果进行验证即可.【详解】由题可知:集合{}22,2A a a a =++,3A ∈所以23a +=或223+=a a ,则1a =或32a =-当1a =时,222a a a +=+,不符合集合元素的互异性, 当32a =-时,1,32⎧⎫=⎨⎬⎩⎭A ,符合题意 所以32a =-, 故答案为:32- 9.0或98- 【分析】根据a 的取值分类讨论可得.【详解】0a =时,2{|320}{}3M x x =--==-,满足题意; 0a ≠时,980a ∆=+=,98a =-. 综上,0a =或98-. 故答案为:0或98-. 10.10,8⎧⎫⎨⎬⎩⎭##1,08⎧⎫⎨⎬⎩⎭【分析】分0a =、0a ≠两种情况讨论,结合已知条件可得出关于a 的等式,进而可求得实数a 的取值.【详解】当0a =时,则有{}{}{}220202x ax x x x ++==+==-,合乎题意;当0a ≠时,由题意可得180a ∆=-=,解得18a =. 综上所述,实数a 的取值集合为10,8⎧⎫⎨⎬⎩⎭. 故答案为:10,8⎧⎫⎨⎬⎩⎭. 11.{1,1,3,5}-【分析】根据集合的描述法即可求解. 【详解】32A x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭∣, {1,1,3,5}A ∴=-故答案为:{1,1,3,5}-12.(1)1a =-或3-;(2)(],3-∞-;(3)()()(),33,1313,1-∞-------(()1,113,---++∞.【分析】(1)将2x =代入集合B 中,解方程可求得a 的值,验算可得结果; (2)由A B A ⋃=知B A ⊆,由此得到B 所有可能的结果,由此分类讨论B 每种可能性即可得到结果;(3)由A B A =知A B =∅,分别在B =∅,1B ∈和2B ∈三种情况下确定A B =∅的解,综合可得结果. 【详解】{}()(){}{}23201201,2A x x x x x x =-+==--==(1){}2A B =,()244150a a ∴+++-=,即2430a a ++=,解得:1a =-或3-;当1a =-时,{}{}2402,2B x x =-==-,满足{}2A B ⋂=;当3a =-时,{}{}24402B x x x =-+==,满足{}2A B ⋂=;综上所述:1a =-或3-;(2)A B A =,B A ∴⊆,B ∴可能的结果为∅,{}1,{}2,{}1,2;∈当B =∅时,()()2241450a a ∆=+--<,解得:3a <-;∈当{}1B =时,()()212150a a +++-=,解得:1=-a若1a =-{}{}2101,1B x x =-+==,不满足B A ⊆;若1a =-{}{}2101B x x =+-==--,不满足B A ⊆; ∈当{}2B =时,()()244150a a +++-=,解得:1a =-或3-;若1a =-,则{}{}2402,2B x x =-==-,不满足B A ⊆;若3a =-,则{}{}24402B x x x =-+==,满足B A ⊆;∈当{}1,2B =时,()21221125a a ⎧+=-+⎨⨯=-⎩,方程组无解; 综上所述:实数a 的取值范围为(],3-∞-; (3)A B A =,A B ∴⋂=∅;当B =∅时,由(2)知:3a <-,满足A B =∅;当1B ∈时,由(2)知:1=-±a A B =∅,则1≠-a 当2B ∈时,由(2)知:1a =-或3-;若A B =∅,则1a ≠-且3a ≠-;综上所述:实数a 的取值范围为()()(),33,1313,1-∞-------(()1,113,---++∞. 13.(1){|2x x ≤或}34x ≤≤;(2){|3x x <-或34}x ≤≤.【分析】根据集合交集和补集,并集的定义分别进行计算即可.【详解】(1){|2U A x x =≤-或}34x ≤≤,{()|2U A B x x ⋃=≤或}34x ≤≤,.(2){|33}A B x x =-< (){|3U A B x x =<-或34}x .。

高一数学课时同步练习第一章第1节集合的概念

高一数学课时同步练习第一章第1节集合的概念

精品基础教育教学资料,仅供参考,需要可下载使用!第一章 集合与常用逻辑用语第1节 集合的概念一、基础巩固1.(2020·全国高一)下列各组对象中能构成集合的是( )A 的实数的全体B .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品【答案】C【解析】选项A 、B 、D 中集合的元素均不满足确定性, 只有C 中的元素是确定的,满足集合的定义,2.(2020·宁夏回族自治区贺兰县景博中学高一月考)集合{|32}x x ∈-<N 用列举法表示是 A .{1,2,3,4} B .{1,2,3,4,5} C .{0,1,2,3,4,5} D .{0,1,2,3,4}【答案】D【解析】由题意5x <,又x ∈N ,∴集合为{0,1,2,3,4}.3.(2019·六盘水市第七中学高一月考)已知集合{(,)|2,,}A x y x y x y N =+≤∈,则A 中元素的个数为( ) A .1 B .5 C .6 D .无数个【答案】C【解析】由题得{(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}A =, 所以A 中元素的个数为6.4.(2020·全国高一)有下列四个命题: ①{0}是空集;②若a N ∈,则a N -∉;③集合2{|210}A x R x x =∈-+=有两个元素; ④集合6B x NN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集.其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】①{0}中有一个元素0,不是空集,不正确; ②中当0a =时不成立,不正确;③中2210x x -+=有两个相等的实数根,因此集合只有一个元素,不正确; ④中集合6{|}{1,2,3,6}B x N N x=∈∈=是有限集,正确, 5.(2020·四川省高一月考(理))不等式(5)(3)0x x -+<的解集是( )A .{53}xx -<<∣ B .{35}xx -<<∣ C .{|5x x <-或3}x > D .{|3x x <-或5}x >【答案】B【解析】因为(5)(3)035x x x -+<⇒-<<,所以不等式(5)(3)0x x -+<的解集是{35}xx -<<∣. 6.(2020·嫩江市高级中学高一月考)下列各组中的M 、P 表示同一集合的是( ) ①{}(){}3,1,3,1M P =-=-;②(){}(){}3,1,1,3M P ==;③{}{}221,1M y y x P t t x ==-==-;④{}(){}221,,1M y y x P x y y x ==-==-A .①B .②C .③D .④【答案】C【解析】对于①,两个集合研究的对象不相同,故不是同一个集合.对于②,两个集合中元素对应的坐标不相同,故不是同一个集合.对于③,两个集合表示同一集合.对于④,集合M 研究对象是函数值,集合P 研究对象是点的坐标,故不是同一个集合.由此可知本小题选C.7.(2017·广东省高一期中)若{}22111a a ∈++,,,则a =( ) A .2 B .1或-1 C .1 D .-1【答案】D【解析】当212a +=时,1a =±,当1a =时,集合为{}1,2,2不满足互异性,舍去,当1a =-时,集合为{}1,2,0,满足;当12a +=时,1a =,不满足互异性,舍去.8.(2020·全国高一)已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为 A .1或-1 B .1或3 C .-1或3 D .1,-1或3【答案】B【解析】因为5∈{1,m +2,m 2+4},所以m +2=5或m 2+4=5,即m =3或m =±1.当m =3时,M ={1,5,13};当m =1时,M ={1,3,5};当m =-1时,不满足互异性.所以m 的值为3或1. 9.(2020·全国高一)设不等式2280x x --<的解集为M ,下列正确的是( ) A .1,4M M -∉∉ B .1,4M M -∈∉ C .1,4M M -∉∈ D .1,4M M -∈∈ 【答案】B【解析】解不等式:2280x x --<,可得:24x -<<, 所以{}=|-2<4M x x <,显然1,4M M -∈∉,故选:B. 10.(2020·全国高一)直线2y x =与3y x 的交点组成的集合是( )A .{}3,6B .36,C .3,6x y ==D .{}(3,6)【答案】D【解析】联立23y x y x =⎧⎨=+⎩,可得3x =,6y =,写成点集为{}(3,6).11.(2020·全国高一)已知集合{}1,0,1A =-,(),|,,xB x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为( ) A .3 B .4C .6D .9【答案】B【解析】因为x A ∈,yA ,xy∈N ,所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1.12.(2020·全国高一)已知集合{}1,2,3A =,集合{},,B z z x y x A y A ==-∈∈,则集合B 中元素的个数为( ) A .4 B .5C .6D .7【答案】B 【解析】{}1,2,3A =,{},,B z z x y x A y A ==-∈∈,1,2,3x ∴=,1,2,3y =当1x =时,0,1,2x y -=-- 当2x =时,1,0,1x y -=- 当3x =时,2,1,0x y -=即2,1,0,1,2x y -=--,即{}2,1,0,1,2B =--共有5个元素13.(2020·上海高一课时练习)集合{(,)|0,,}x y xy x R y R ∈∈是指( ) A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点【答案】D【解析】因为0xy ≤,故00x y ≤⎧⎨≥⎩或0x y ≥⎧⎨≤⎩,故集合{(,)|0,,}x y xy x R y R ∈∈是指第二、四象限中的点,以及在,x y 轴上的点,即不在第一、第三象限内的所有点. 14.(2020·上海高一课时练习)已知非零实数a ,b ,c ,则代数式||||||a b cb ac ++表示的所有的值的集合是( ) A .{3} B .{3}-C .{3,3}-D .{3,3,1,1}--【答案】D【解析】当,,a b c 都为正数时,1||||||a b a b c c ===;当,,a b c 都为负数时,1||||||a b c a b c ===-. 因此,若,,a b c 都为正数,则3||||||a b c a b c ++=; 若,,a b c 两正一负,则1||||||a b a b c c ++=; 若,,a b c 一正两负,则1||||||a b c a b c ++=-; 若,,a b c 都为负数,则3||||||a b c a b c ++=-. 所以代数式||||||a b c b a c ++表示的所有的值的集合是{3,1,1,3}--. 15.(多选题)(2020·全国高一课时练习)实数1是下面哪一个集合中的元素( ) A .整数集Z B .{||||x x x =C .{|11}x x ∈-<<ND .1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R E.1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 【答案】ABD【解析】1是整数,因此实数1是整数集Z 中的元素,故A 选项正确;由||x x =得0x =或1x =,因此实数1是集合{|||}x x x =中的元素,故B 选项正确;1不满足11x -<<,因此实数1不是集合{|11}x x ∈-<<N 中的元素,故C 选项不正确;当1x =时,101x x -=+,因此实数1是集合1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R 中的元素,故D 选项正确;当1x =时,11x x +-无意义,因此实数1不是集合1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 中的元素,故E 选项不正确. 16.(多选题)(2019·全国高一课时练习)(多选)已知,,x y z 为非零实数,代数式||||||xyz xyz x y z xyz的值所组成的集合是M ,则下列判断正确的是() A .0M ∉B .2M ∈C .4M D .4M【答案】CD【解析】根据题意,分4种情况讨论;①、,,x y z 全部为负数时,则xyz 也为负数,则=4||||||xyzxy z x y z xyz②、,,x y z 中有一个为负数时,则xyz 为负数,则0||||||xyz x y z x y z xyz③、,,x y z 中有两个为负数时,则xyz 为正数,则0||||||xyz xy z x y z xyz④、,,x y z 全部为正数时,则xyz 也正数,则4||||||xyz x y z x y z xyz则{}4,0,4M =-;分析选项可得CD 符合.17.(2020·上海高一课时练习)集合中元素的三大特征是________.【解析】一定范围内,确定的、不同的对象组成的全体,称为一个集合,组成集合的这些对象就是集合的元素,它具有确定性、互异性、无序性. 故答案为:确定性、互异性、无序性.18.(2020·全国高一)方程的解集为{}2|2320x R x x ∈--=,用列举法表示为____________. 【答案】1{,2}2-.【解析】解方程22320x x --=得12x =-或2x =,19.(2020·上海高一课时练习)若集合{}2|320A x ax x =-+=中至多有一个元素,则实数a 的取值范围是________. 【答案】0a =或98a ≥【解析】因为集合{}2|320A x ax x =-+=中至多有一个元素 所以方程2320ax x -+=至多有一个根, 当0a =时解得23x =,满足题意当0a ≠时,980a ∆=-≤,解得98a ≥ 综上:0a =或98a ≥20.(2020·全国高一)甲、乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有2道题的选项不同,如果甲最终的得分为54分,那么乙的所有可能的得分值组成的集合为________. 【答案】{48,51,54,57,60}【解析】因为20道选择题每题3分,甲最终的得分为54分,所以甲答错了2道题,又因为甲和乙有两道题的选项不同,则他们最少有16道题的答案相同,设剩下的4道题正确答案为AAAA ,甲的答案为BBAA ,因为甲和乙有两道题的选项不同,所以乙可能的答案为BBCC ,BCBA ,CCAA ,CAAA ,AAAA 等,所以乙的所有可能的得分值组成的集合为{48,51,54,57,60},故答案为{48,51,54,57,60}.二、拓展提升1.(2020·全国高一)用列举法表示下列集合: (1){}2|9A x x ==; (2){|12}B x N x =∈≤≤; (3){}2|320C x x x =-+=. 【答案】(1){3,3}-(2){1,2}(3){1,2}【解析】(1)由29x =得3x =±,因此{}2|9{3,3}A x x ===-. (2)由x ∈N ,且12x ≤≤,得1,2x =,因此{|12}{1,2}B x N x =∈≤≤=. (3)由2320x x -+=得1,2x =.因此{}2|320{1,2}C x x x =-+==.2.(2020·安徽省怀宁县第二中学高一期中)已知不等式2520ax x +->的解集是M . (1)若2M ∈,求a 的取值范围; (2)若1|22M x x ⎧⎫=<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集. 【答案】(1)2a >-;(2)1|32x x ⎧⎫-<<⎨⎬⎩⎭.【解析】(1)∵2M ∈,∴225220a ⨯+⨯->,∴2a >- (2)∵1|22M x x ⎧⎫=<<⎨⎬⎩⎭,∴1,22是方程2520ax x +-=的两个根, ∴由韦达定理得1522{1222aa+=-⋅=-解得2a =-∴不等式22510ax x a -+->即为:22530x x --+>其解集为1|32x x ⎧⎫-<<⎨⎬⎩⎭. 3.(2020·全国高一)已知集合A ={x |ax 2+2x +1=0,a ∈R }, (1)若A 只有一个元素,试求a 的值,并求出这个元素; (2)若A 是空集,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.【解析】(1)若A 中只有一个元素,则方程ax 2+2x +1=0有且只有一个实根, 当a =0时,方程为一元一次方程,满足条件,此时x =-12, 当a ≠0,此时△=4-4a =0,解得:a =1,此时x =-1, (2)若A 是空集, 则方程ax 2+2x +1=0无解, 此时△=4-4a <0,解得:a >1. (3)若A 中至多只有一个元素, 则A 为空集,或有且只有一个元素,由(1),(2)得满足条件的a 的取值范围是:a =0或a ≥1. 4.(2020·全国高一课时练习)数集M 满足条件:若a M ∈,则1(1,0)1aM a a a+∈≠±≠-. (1)若3M ∈,求集合M 中一定存在的元素; (2)集合M 内的元素能否只有一个?请说明理由; (3)请写出集合M 中的元素个数的所有可能值,并说明理由. 【解析】(1)由3M ∈,令3a =,则由题意关系式可得:13213M +=-∈-,121123M -=-∈+,11131213M⎛⎫+- ⎪⎝⎭=∈⎛⎫-- ⎪⎝⎭,而1123112+=-,所以集合M 中一定存在的元素有:113,2,,32--. (2)不,理由如下:假设M 中只有一个元素a ,则由11aa a+=-,化简得21a =-,无解,所以M 中不可能只有一个元素. (3)M 中的元素个数为4n ,N n +∈,理由如下: 由已知条件a M ∈,则1(1,0)1aM a a a+∈≠±≠-,以此类推可得集合M 中可能出现4个元素分别为:a ,11a a +-,1a -,11a a -+,由(2)得11a a a+≠-,若1a a =-,化简得21a =-,无解,故1a a≠-; 若11a a a -=+,化简得21a =-,无解,故11a a a -≠+; 若111a a a =--+,化简得21a =-,无解,故111a a a ≠--+; 若1111a a a a +-=-+,化简得21a =-,无解,故1111a a a a +-≠-+; 若111a a a --=+,化简得21a =-,无解,故111a a a --≠+;综上可得:11111a a a a a a -≠+-≠≠-+,所以集合M 一定存在的元素有11,,11,1a a a a a a -+--+,当a 取不同的值时,集合M 中将出现不同组别的4个元素,所以可得出集合M 中元素的个数为4n ,N n +∈.。

高中数学必修一人教A版1.1 集合的概念练习(含解析)(99)

高中数学必修一人教A版1.1 集合的概念练习(含解析)(99)

1.1 集合的概念一、单选题1.设集合2{|2}M x R x =∈,1a =,则下列关系正确的是( )A .a MB .a M ∉C .{}a M ∈D .{}a M2.以下六个命题中:0{0}∈;{0}⊇∅;0.3Q ∉;0N ∈;{,}{,}a b b a ⊆;{}220,xx x Z -=∈∣是空集.正确的个数是( )A .4B .3C .5D .2 3.已知集合{(2)(2)0}M x x x x =+-=∣,则M =( ) A .{0,2}-B .{0,2}C .{0,2,2}-D .{2,2}- 4.下列集合表示正确的是A .2,4}B .2,4,4}C .1,3,3}D .漂亮女生} 5.已知集合{}1,2A =,{}1,1,1B a =-+且A B ⊆,则a =A .1B .0C .1-D .2 6.设集合A =(x ,y )|x 2+y 2=1},B =(x ,y )|x+y =1},则A∩B 中元素的个数是( )A .0B .1C .2D .37.方程组31x y x y +=⎧⎨-=-⎩的解集不能表示为. A .()3,1x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=-⎩⎪⎪⎩⎭ B .()1,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭ C .{}1,2 D .(){},1,2x y x y ==8.下列对象能确定为一个集合的是( )A .第一象限内的所有点B .某班所有成绩较好的学生C .高一数学课本中的所有难题D .所有接近1的数9.给出下列关系,其中正确的个数为( )①0N ∈Q ⊄;③{}0=∅;④(),R =-∞+∞A .1B .0C .2D .3二、填空题1.已知集合{}2,1,0,1A =--,集合{},B y y x x A ==∈,则B =_______________.2.由||||(,)a b a b R a b +∈所确定的实数集合是________.3.给出下列关系:①12R ∈Q ;③3N *∈;④0Z ∈.其中正确的序号是______.4.若a∈1,a 2﹣2a+2},则实数a 的值为___________.5.已知集合A=1,2,a 2-2a},若3∈A,则实数a=______.三、解答题1.(1)已知{}221,251,1A a a a a =-+++,2A -∈,求实数a 的值; (2)已知集合{}2340A x R ax x =∈--=,若A 中有两个元素,求实数a 的取值范围.2.集合{|12}A x x =-≤≤,{|}B x x a =<.(1)若A B A =,求实数a 的取值范围;(2)若A B =∅,求实数a 的取值范围.3.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈-.若2a =,求出A 中其他所有元素.参考答案一、单选题1.D解析:先求解集合M ,即可确定a 与M 的关系.详解:解:22x ,22x,{|22}M x R x ∴=∈, 又1a =,a M ∴∈,{}a M .故选:D.2.C解析:根据元素与集合间的关系、集合与集合间的关系可判定排除得到答案.详解:根据元素与集合间的关系可判定0{0}∈、0N ∈正确,0.3Q ∉不正确,根据集合与集合之间的关系可判定{0}⊇∅、{,}{,}a b b a ⊆、{}220,x x x Z -=∈∣是空集正确. 故选:C .3.C解析:直接利用方程的解法化简求解.详解:因为集合{(2)(2)0}{2,0,2}M xx x x =+-==-∣, 故选:C4.A解析:集合中的元素具有确定性、互异性、无序性,利用元素的三个特性对四个命题逐一的进行判断,能够得到答案.详解:对于选项A ,由集合的定义可知,一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合,显然A 项符合定义.故A 项正确.对于B 项和C 项,根据集合中元素的互异性可知,对于一个给定的集合,集合中的元素一定是不同的,故B 项和C 项错误.对于D 项,根据集合中元素的确定性可知,作为一个集合中的元素,必须是确定的,而D项中的元素显然不是确定的.故D项错误.点睛:本题主要考查集合的含义与表示,以及集合中元素的特性.5.A解析:由题知:12a+=,解得:1a=.详解:因为A B⊆,所以,解得:1a=.故选:A点睛:本题考查集合的子集关系,理解子集的概念是关键,属于简单题.6.C解析:可画出圆x2+y2=1和直线x+y=1的图象,从而可看出它们交点的个数,从而得出A∩B中的元素个数.详解:画出x2+y2=1和x+y=1的图象如下:可看出圆x2+y2=1和直线x+y=1有两个交点,∴A∩B的元素个数为2.故选:C.点睛:考查了描述法的定义,交集的定义及运算,数形结合解题的方法,考查了计算能力,属于容易题.7.C解析:由方程组31x yx y+=⎧⎨-=-⎩,解得12xy=⎧⎨=⎩,得到解集中只含有一个元素,根据集合的表示方法,逐项判定,即可求解.详解:由题意,方程组31x yx y+=⎧⎨-=-⎩,解得12xy=⎧⎨=⎩,其解集中只含有一个元素,根据集合的表示方法,其中A,B.D项表示都是正确的,其中选项C是表示由两个元素组成的熟记,不符合要求,所以不能表示为{}1,2.故选C.点睛:本题主要考查了集合的表示方法,其中解答中正确理解集合的表示方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.A解析:根据元素是否具备确定性逐项分析即可.详解:A .具备集合中元素的确定性,可以构成一个集合,故正确;B.“较好”不满足集合中元素的确定性,故错误;C.“难题”不满足集合中元素的确定性,故错误;D.“接近”不满足集合中元素的确定性,故错误.故选:A.点睛:本题考查集合中元素的特征,着重考查了集合中元素的确定性,难度较易.集合中元素的特征:确定性、无序性、互异性.9.C解析:根据元素与集合的关系,逐一分析①②③④,即可得答案.详解:对于①:0为自然数,所以0N∈,故①正确;Q,故②错误;对于③:0含有元素0,不是空集,故③错误;对于④:R为实数集,所以④正确;故选:C二、填空题1.{}0,1,2解析:根据题意,由列举法,即可得出结果.详解:因为{}2,1,0,1A =--, 所以{}{},0,1,2B y y x x A ==∈=. 故答案为:{}0,1,2.点睛:本题主要考查列举法表示集合,属于基础题型.2.{}202-,, 解析:根据a b 、的正负性分类讨论进行求解即可.详解:当0,0a b >>时,||||2a b a b a b a b +=+=; 当0,0a b ><时,||||0a b a b a b a b +=-=; 当0,0a b <>时,||||0a b a b a b a b +=-+=; 当0,0a b <<时,||||2a b a b a b a b+=--=-, 故答案为:{}202-,,3.①③④解析:根据元素与集合间的关系和特殊集合:有理数集,自然数集,整数集,实数集所含的元素可得选项.详解: 对于①: 12是分数,所有的分数都是实数,故①正确;对于③:3是自然数,故③正确;对于④:0是整数,故④正确;所以①③④正确,故选①③④.点睛:本题考查特殊集合:有理数集,自然数集,整数集,实数集所含的元素和元素与集合的关系,属于基础题.4.2解析:利用集合的互异性,分类讨论即可求解详解:因为a∈1,a 2﹣2a+2},则:a=1或a=a 2﹣2a+2,当a=1时:a 2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a 2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2点睛:本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题5.3或-1解析:根据3∈A 即可得出a 2-2a=3,解方程得到a 即可.详解:∵3∈A,A=1,2,a 2-2a},∴a 2-2a=3,解得a=-1或3故答案为-1或3.点睛:本题考查了列举法的定义,元素与集合的关系,考查了推理和计算能力,属于基础题.三、解答题1.(1)32a =-;(2)9016a a ⎧-<<⎨⎩或}0a >. 解析:(1)分析可得12a -=-或22512a a ++=-,结合集合中元素的互异性可求得实数a 的值;(2)根据已知条件得出09160a a ≠⎧⎨∆=+>⎩,即可解得实数a 的取值范围. 详解:(1)因为210a +>,故212a +≠-,因为2A -∈,则12a -=-或22512a a ++=-.①当12a -=-时,即当1a =-时,此时212512a a a -=++=-,集合A 中的元素不满足互异性;②当22512a a ++=-时,即22530a a ++=,解得32a =-或1a =-(舍), 此时512a -=-,21314a +=,集合A 中的元素满足互异性. 综上所述,32a =-;(2)因为集合{}2340A x R ax x =∈--=中有两个元素,则09160a a ≠⎧⎨∆=+>⎩, 解得916a 且0a ≠, 因此,实数a 的取值范围是9016a a ⎧-<<⎨⎩或}0a >.2.(1)2a >;(2)1a ≤-解析:(1)由A B A =,可得A B ⊆,即可列出不等关系,求出a 的取值范围;(2)由A B =∅,且B ≠∅,可列出不等关系,求出a 的取值范围.详解:(1)由集合{|12}A x x =-≤≤,{|}B x x a =<,因为A B A =,所以A B ⊆,则2a >,即实数a 的取值范围为2a >.(2)因为A B =∅,且B ≠∅,所以1a ≤-,故实数a 的取值范围为1a ≤-. 3.113,,23-- 解析:根据定义依次计算即可得答案.详解:解:因为若a A ∈,则11a A a +∈-, 所以当2a =时,11a a +=-12312A +=-∈-; 当3a =-时,11a a +=-131132A -=-∈+, 当12a =-时,11a a +=-11121312A -=∈+,当13a=时,11aa+=-1132113A+=∈-,综上A中其他所有元素为:11 3,,23 --.点睛:本题考查集合的元素的求解,是基础题.。

高一数学集合的概念试题答案及解析

高一数学集合的概念试题答案及解析

高一数学集合的概念试题答案及解析1.(本小题10分)若,求实数的值.【答案】或.【解析】首先直接由元素与集合的关系,知或,即可计算出实数的值;然后由集合的确定性、互异性、无序性,分别验证所求的的值是否符合要求即可得出答案.试题解析:或或.当时,,,,适合条件;当时,,,,适合条件.从而,或.【考点】元素与集合的基本关系.2.集合的子集中,含有元素的子集共有A.2个B.4个C.6个D.8个【答案】B【解析】。

【考点】子集的概念。

3.设实数集为全集,.(1)当时,求及;(2)若,求实数的取值范围.【答案】(1),;(2)【解析】(1)首先解出集合,然后求出、即可;(2)若,则,,然后对分与两类进行讨论,可得到参数的取值范围.试题解析:(1) 1分当时, 2分4分6分(2)由(1)可知 7分由可知 8分当时,即时成立 9分当,即时, 10分此时要使,须有 11分综上可知的取值范围是:.【考点】1.集合的运算;2.子集的性质.4.设全集,集合,则()A.B.C.D.【答案】B【解析】,,所以答案为:.【考点】集合的补集和交集.5.若则等于【答案】1【解析】因为,所以,但,只有b=0,根据集合中元素的互异性,只有a=-1,故=1.【考点】集合的概念,指数运算。

点评:中档题,利用集合相等,确定a,b,进一步求。

6.下列各组对象中不能构成集合的是()A.大名三中高一(2)班的全体男生B.大名三中全校学生家长的全体C.李明的所有家人D.王明的所有好朋友【答案】D【解析】分析四个答案中所列的对象是否满足集合元素的确定性和互异性,即可得到答案.解:A中,大名三中高一(2)班的全体男生,满足集合元素的确定性和互异性,故可以构造集合; B 中,大名三中全校学生家长的全体,满足集合元素的确定性和互异性,故可以构造集合; C中,李明的所有家人,满足集合元素的确定性和互异性,故可以构造集合;D中,王明的所有好朋友,不满足集合元素的确定性,故不可以构造集合;故选D【考点】集合点评:本题以判断对象能否构成集合为载体考查了集合元素的性质,熟练掌握集合元素的确定性和互异性,是解答的关键.7.在“①高一数学课本中的难题;②所有的正三角形;③方程的实数解”中,能够表示成集合的是()A.②B.③C.②③D.①②③【答案】C【解析】集合有三个特点:确定性、无序性和不重复性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的概念
课前准备
1、用集合符号填空:0 {0,1};{a ,b } {b ,a };0 φ
2、用列举法表示{y |y =x 2-1,|x |≤2,
x ∈Z}= .
{(x ,y )|y =x 2

1

|x |

2

x ∈Z}= .
3、M ={x |x 2+2x -a =0,x ∈R}≠φ,则实数a 的取值范围是( )
(A )a ≤-1 (B ) a ≤1 (C ) a ≥-1 (D ) a ≥1.
4、已知集合A ={x |x 2-p x +15=0},B ={x |x 2-5x +q =0},如果A ∩
B ={3},那么p +q = .
5、已知集合A ={x |-1≤x ≤2},B ={x |x <a },如果A ∩B =A ,那么a 的取值范围是 .
6、已知集合A ={x |x ≤2},B ={x |x >a },如果A ∪B =R ,那么a 的取值范围是 .
7、集合元素具有的三大特征是: 、 、 ; 集合的表示方法: 、 、 ; 元素与集合只有两种关系: 、 ;
课后作业
一、选择: 1、方程组⎪⎩⎪⎨
⎧=-=+9
1
2
2y x y x 的解(x,y )的集合是:
( )
A .(5,-4)
B .{5,-4}
C .{(-5,4)}
D .{(5,-4)}
2、若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有 ( )
(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )
φ=A
3、设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则N M 等于( )
(A ){|}x x <-2 (B ){|}x x -<<21 (C ){|}x x <1 (D ){|}x x -≤<21 4、含有三个实数的集合可表示为}1,,{a
b a ,也可表示为{a 2,a+b,0},则
a 2003+
b 2003的值为 ( )
A .0
B .1
C .-1
D .±1 5、设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是( )
(A )(C I A ) B =I (B )(C I A ) (C I B )=I (C )A (C I B )=∅ (D )(C I A ) (C I B )=C I B 6、设M ={x |x ∈Z},N ={x |x =2
n
,n ∈Z },P ={x |x =n +2
1},则下列关系正确的是( )
(A )N ⊂M (B ) N ⊂P (C )N =M ∪P (D ) N =M ∩P 二、填空:
7、用列举法表示集合A=},512
|
{**N x N x
x ∈∈-=_______________. 8、设U={x|x<10,x ∈N *},A ∩B={2},(C u A)∩(C u B)={1},(C u A)∩B={4,6,8}, 则
A

_________________________B

_________________________
9、A ={x |x =a 2+1,a ∈Z},B ={y |y =b 2-4b +5,b ∈Z},则A 、B 的关系是 .
10、满足{0,1}⊂M ⊆{0,1,3,5,6}的集合M 的个数为 . 11、设集合A ={x |10+3x -x 2≥0},B ={x |x 2+a <0},如果B ⊆A ,那
么实数a 的取值范围是 .
12、已知集合A={x │a+1<x <2a —1},B={x │-1<x <4},若A ≠∅,
且A B ⊆,则a 的取值范围是_________________________ 三、解答
13、设集合A={x|-3<x<-2}∪{x|x>2},B={x|a ≤x ≤b}.(a,b 是常数),且A ∩B={x|2<x ≤4}, A ∪B={x| x >-3},求a,b 的值.
14、1)若集合A=24k x x k Z ππ⎧
⎫=
+∈⎨⎬⎩⎭,B=42k x x k Z ππ⎧⎫
=+∈⎨⎬⎩⎭
,问A 、B 是否相等,
为什么?
2)若集合M={}31,x x m m Z =+∈ P={}32,y y n n Z =+∈,x 0∈M ,y 0∈P ,求x 0y 0与集合M 、P 的关系。

15、函数f(x)=1
3
2++-x x 的定义域为A,g(x)=lg[(x -a -1)(2a -x)] (a<1)的定义域为B ① 求A ② 若B A,求实数a 的取值范围
16、}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

相关文档
最新文档