安徽省高一数学寒假作业六 Word版 含答案

合集下载

2018-2019学年度高中高一寒假作业数学试题:第六天Word版含答案

2018-2019学年度高中高一寒假作业数学试题:第六天Word版含答案

第六天一.选择题1.正实数x1,x2及函数f(x)满足,且f(x1)+f(x2)=1,则f(x1+x2)的最小值为()A.4 B.2 C.D.2.若函数f(x)=a x﹣k﹣1(a>0,a≠1)过定点(2,0),且f(x)在定义域R上是减函数,则g(x)=log a(x+k)的图象是()A.B.C. D.3.已知函数f(x)=(a>0,a≠1),在同一坐标系中,y=f﹣1(x)与y=a|x﹣1|的图象可能是()A.B.C.D.4.若0<a<1,b>0,且,则a b﹣a﹣b等于()A.B.2或﹣2 C.﹣ 2 D.25.若指数函数的图象过点(﹣1,2),则此指数函数是()A.B.y=2x C.y=3x D.y=10x6.已知函数f(x)=a x﹣1(a>0,且a≠1)满足f(1)>1,若函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(2,+∞)B.(2,5] C.(1,2)D.(1,5]7.若lga+lgb=0,且a≠b,则函数f(x)=a x与g(x)=b x的图象()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.关于直线y=x对称8.设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x ﹣1,则f(),f(),f()的大小关系是()A.f()<f()<f()B.f()<f()<f()C. f()<f()<f()D.f()<f()<f()9.已知实数a,b,c满足=3,log3b=﹣,c,则实数a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.b<c<a10.如图所示的是某池塘中的浮萍蔓延的面积(m2)与时间t(月)的关系:y=a t,有以下叙述:①这个指数函数的底数是2;②第5个月时,浮萍的面积就会超过30m2;③浮萍从4m2蔓延到12m2需要经过1.5个月;④浮萍每个月增加的面积都相等;⑤若浮萍蔓延到2m2、3m2、6m2所经过的时间分别为t1、t2、t3,则t1+t2=t3.其中正确的是()A.①② B.①②③④ C.②③④⑤ D.①②⑤二.填空题11.若10x=3,10y=4,则102x﹣y= .12.已知不论a为何正实数,y=a x+2﹣3的图象恒过定点,则这个定点的坐标是.13.方程:22x+1﹣2x﹣3=0的解为.14.函数y=的定义域为,值域为.三.解答题15.已知函数f(x)=()x,(1)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值g(a);(2)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由.答案:第六天1.解:由已知得,由f(x1)+f(x2)=+=1 于是可得:,所以得:=≥2,①设=t,则①式可得:t2﹣2t﹣3≥0,又因为t>0,于是有:t≥3或t≤﹣1(舍),从而得≥3,即:≥9,所以得:f(x1+x2)===≥1﹣=.所以有:f(x1+x2)的最小值为.故应选:C2.解:由题意可知f(2)=0,解得k=2,所以f(x)=a x﹣2﹣1,又因为是减函数,所以0<a<1.此时g(x)=log a(x+2)也是单调减的,且过点(﹣1,0).故选A符合题意.故选:A.3.解:f﹣1(x)=ax+1,在y轴上的截距为1,排除D;又因为a≠1,排除A;B、C中由直线可知a>1,y=a|x﹣1|,当x≥1时变为y=a x﹣1,在[1,+∞)上为增函数,故选C4.解:∵,∴a2b+a﹣2b=8﹣2=6.∴(a b﹣a﹣b)2=a2b+a﹣2b﹣2=4.∵0<a<1,b>0,∴a b<a﹣b,则a b﹣a﹣b=﹣2.故选:C.5.解:设指数函数的解析式为y=a x,函数过点(﹣1,2),则a﹣1=2,解得:,即函数的解析式为.故选:A.6.解:∵f(1)>1,∴a﹣1>1,即a>2。

高一年级(必修1)寒假作业6Word版含答案

高一年级(必修1)寒假作业6Word版含答案

高一年级(必修1)寒假作业6一、选择题1.已知集合{}{}A a a x x B A ∈===,2,3,2,1,0,则B A ⋂中元素的个数为( )A. 0B. 1C. 2D. 32.已知集合{}{}076,015222≥-+=<-+=x x x N x x x M ,则N M ⋂=( ) [)31.,A ]3,1.[B ),(37-.C ),(35-.D 3.已知集合{}⎭⎬⎫⎩⎨⎧<=≤≤-=01,31x x B x x A ,则B A ⋃=( )A.),(01-B. ]0,1[-C. ),(0-∞ D. (]3,∞- 4.已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( )A. -3B. -1C. 1D. 35.已知函数a x x f +=)(在()1--,∞上是单调函数,则a 的取值范围是( )]1-.,(∞A ]1--.,(∞B )C.[-1∞+, )D.[1∞+,6.定义在R 上的奇函数)(x f ,当0≥x 时,2)(x x f =,则不等式)3()21(f x f <-的解集是( )A.[1,2)B. (1,)-+∞C. [1,)-+∞D. (,1)-∞-7.以下四个集合中为空集的是( ) {}33.=+x x A}),.{(22x y y x B -= . }0.{2≤x x C}01.{2=+-x x x D 8.若集合{}{}1,322+==<<-=x y y N x x M ,则N M ⋂=( ) ),(∞+2-.A ),(32-.B [)31.,C R D . 9.已知集合{}2,1,0=A ,则集合{}A y A x y x B ∈∈-=,中元素的个数是( ) A. 1 B. 3 C. 5 D. 910.已知函数()2121)(---=a x a a x f 是幂函数,则=a ( ).A -1或2 .B -2或1 .C -1 .D 111.设)(x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则)2(f =A. 6B. -6C. 10D. -1012.已知函数1(),22017x f x x N x ++=∈-,则当x 取____时,f(x)取得最小值 A.2017 B.1008 C.2018 D.1009二.填空题:13.全集{}32322-+=a a U ,,,{}122-=a A ,,{}5=A C U ,则实数=a _________14.函数()114>-+=x x x y 的最小值是_________ 15.已知函数()()3521----=m x m m x f ,当=m _________时,()x f 是在()∞+,0上单调递增的幂函数16.函数()22444a a ax x x f --+-=在[]10,上有一个最大值-5,则=a _________三、解答题17.已知R U =,{}71≤≤=x x A ,{}m x m x B <<+-=12(1) 若m=5,求()B A C R ⋂(2)若A B A =⋂,求m 的取值范围18.已知集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-==1121x x y x A ,()[]()[]{}041<+-+-=a x a x x B (1)若A B A =⋂,求a 的取值范围(2)若∅≠⋂B A ,求a 的取值范围19.已知函数()x f 的定义域为()22-,,函数()()()x f x f x g 231-+-= (1)求()x g 定义域(2)若()x f 是奇函数,且定义域上递减,求()0≤x g 的解集20.求证:函数2()1x f x x =-在(1,)+∞时减函数21.设函数()12--=mx mx x f(1)若对于一切实数x,()0<x f 恒成立,求实数m 的范围(2)若对于[]3,1∈x ,()5+-<m x f 有解,求实数m 的取值范围22.已知函数()n mx x x f ++=2的图像过点()31,,且()()x f x f --=+-11对任意实数都成立,函数()x g y =与()x f y =的图像关于原点对称(1)求()x f 与()x g 的解析式(2)若()()()x f x g x F λ-=在[]11-,上是增函数,求实数λ的取值范围高一年级(必修1)寒假作业6答案 1-6.CADCAB 7-12.DCCCDB 13.2 14.5 15.-1 16.54或-5 17.(1)(-9,1) (2)m>7 18.(1)42a -<≤-(2)42a -<≤- 19.(1)(0.5,2.5) (2)1(,2]2 20.略 21.(1)(4,0]-(2)m>1 22.(1)22()2,()2f x x x g x x x =+=-+(2)0λ≤。

【首发】安徽省2013-2014学年高一寒假作业 数学六

【首发】安徽省2013-2014学年高一寒假作业 数学六

2013-2014学年度高一上学期数学寒假作业六一、选择题(在每小题给出的四个选项中,只有一项符合题目要求) 1.下列结论中正确的有 ( ) ①自然数集记作N ; ②{}{}2|0,1x xx ==;③中国∈{x|x 是联合国常任理事国}A .0个B .1个C .2个D .3个2.已知{|37} {|210}A x x B x x =≤≤=<<,则①A ∩B = A , ②A ∪B = B ,③()R C A ∩B=(2,3)∪(7,10)以上结论正确的有 ( ) A .0个B .1个C .2个D .3个3.函数f (x )=1-x x的定义域是 ( ) A .[0,+)∞ B .[0,1)(1,)+∞C .[1,+)∞D .[0,1)),1(+∞4.下列A 到B 对应中,映射与函数的个数分别有 ( ) ①A={x |x 是三角形} ,B={x |x 是圆},对应关系f :每一个三角形对应它的外接圆; ②A={x |x 是三角形},B 是实数集合,对应关系f :三角形→三角形的面积;③ A = R ,B = R ,对应关系f :x →x 的立方根; ④A = R , B = R ,对应关系f :x →x 的平方根. A .3个,1个B .4个,2个C .3个,2个D .1个,1个5.以下结论正确的一项是 ( )A .若k >0,则y =kx +b 是R 上减函数 B.0k >,则y =x k是(0,+∞) 上减函数 C.若0a >,则y =ax c bx ++2是R 上增函数 D.0k >,y =x +xk 是(0,+∞) 上增函数6.函数222y x x =-+在[2,3]上最小值是 ( )A .1B .2C .3D .57.某人驾车从乡村进城,各时间段的行驶速度如右图,则其行驶路程S 与时间t 的函数关系式是( )A .40 014080(1) 1 2 12030(2) 23t t S t t t t ≤<⎧⎪=+-≤<⎨⎪+-≤≤⎩B .40 0180t 1 2 40t 23t t S t t ≤<⎧⎪=≤<⎨⎪≤≤⎩C .40 014080 1 2 12030 23t t S t t t t ≤<⎧⎪=+≤<⎨⎪+≤≤⎩D .40 0160t 1 2 75t 23t t S t t ≤<⎧⎪=≤<⎨⎪≤≤⎩8.下列结论中错误的一项是 ( ) A .若(),n f x x n =为奇数,则()f x 是奇函数 B .若(),n f x x n =为偶数,则()f x 是偶函数C .若()()f x g x 与都是R 上奇函数,则()()f x g x ⋅是R 上奇函数D .若31()f x x x=+则()f x 是奇函数.9.某城市房价(均价)经过6年时间从1200元/m 2增加到了4800元/m 2,则这6年间平均每年的增长率是 ( ) ABC .50%D .600元10.已知a >0,且a ≠1, f (x )=x ,2xa -当x )1,1(-∈时恒有f (x )<21,则实数a 的取值范围是 ( ) A. (0,21)[2,)+∞ B. [1,41][1,4]C. [21,1)(1,2] D. (0, 41][4,)+∞二、填空题(把答案填在题中的横线上)11.已知指数函数xy a =是R 上的增函数,则a 的范围是12.函数 的值域是13.已知a >0的结果是 .14.满足不等式274122x x -->中x 的集合是 .15.已知物体作直线运动,其速度v 与时间t 的图象如图,则有 ①物体先加速运动,后匀速运动,再减速运动; ②当t = 0时,物体的初速度为0;t} 3,2 , 1 , 0 ,1{ 1||-∈-=x x y③物体加速度分别是3,0,– 1.5;④当t ∈(3,5)时,行驶路程是t 的增函数.以上正确的结论的序号是 .(要求写出所有正确的序号) 三、解答题(解答应写出文字说明,证明过程或演算步骤) 16.化简或计算:(8110000)41- 111200.253733()81(3)88----⎡⎤⎡⎤⨯⋅+⎢⎥⎢⎥⎣⎦⎣⎦-13100.027⨯17.某报刊亭每天从报社进报纸200份,价格是0.5元/份;以1元/份价格卖出,当日卖不完的以0.05元/份回收给废旧站.,假设一天卖出的报纸为 x 份. (1)求当日利润y 的关于x 的函数表达式,并写出定义域; (2)求该函数的最大值与最小值. 18.已知函数()x f x a =图象过点1(2且()().g x f x =-(1)求()f x 解析式,并指出定义域和值域;(2)在同一坐标系中用描点法画出()f x 、()g x 图象.19.(1)把0.13,0.53,0.21()2,(3.0)21由小到大排列;(2)已知方程2x px q++= 0的两个不相等实根α、β集合{},,Aαβ={}2,4,5,6,B={}1,2,3,4C=,A∩C = A,A∩B=φ,求p、q的值.20.已知f(x) = x +mx图象过点( 2,4 ),(1)求f(x)解析式与定义域;(2)判断f(x)奇偶性;(3)已知n≥4,()f x在[a,1a+]有最小值为n,求正数a范围.2013-2014学年度高一上学期数学寒假作业六参考答案一、(41040''⨯=)二、(4312''⨯=) 11.a >1 12. y ∈{-1,0,1,2} 13.a14.{}3x x <- 15.①②③④ 三、解答题18.①y=2x定义域是R 与值域是(0,+∞)②略,要求图象关于Y 轴对称,体现增减性,过定点即可 19 1) (3.0)21<0.21()2<0.13<0.53 2)解∵A ∩C = A ,A ∩B = φ,∴{}1,3A ,故1 + 3 = – 9,p = – 4,1·3 = q ⇒ q = 3. 20.解:(1)代入(2,4),得m = 4, 故y = x +4x.(2)∵x ≠0,f (x )+ f (– x )=0,∴f (x )奇函数 (3)增区间是),2(),2,(+∞-∞,减区间是(-2,0),(0,2) 4)利用数形结合画出图像即可 当n=4,a 21,12≤≤+≤≤a a 得当4<n<5, a=2162-+n n ,或a=12162---n n当n 5≥, a=2162-+n n。

高一年级(必修一、二)寒假作业6Word版含答案

高一年级(必修一、二)寒假作业6Word版含答案

高一年级(必修一、二)寒假作业6一、选择题:本大题共12小题,每小题5分,满分60分. 1.直线310x +=的倾斜角是( )A 、30︒B 、60︒C 、120︒D 、135︒ 2.两条平行线1:4320l x y -+=与2:4310l x y --=之间的距离是( ) A .3B .35C .15D .13.已知函数()2030xx x f x x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( )A .9B .19 C .9- D .19- 4.函数lg(1)()1x f x x +=-的定义域是( ) A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞5.下列函数在其定义域内既是奇函数,又是增函数的是( )A .x y =B. xy 3= C. 2log y x = D.31x y =6 .在圆224x y +=上,与直线43120x y +-=的距离最小的点的坐标为( )86.(,)55A - 86.(,)55B - 86(,)55C 86.(,)55D --7.221:46120O x y x y +--+= 与222:86160O x y x y +--+= 的位置关系是( ) A .相交B .外离C .内含D .内切8.函数()44x f x x e =--(e 为自然对数的底)的零点所在的区间为( )A .(1,2) B.(0,1) C.(1,0)- D.(2,1)-- 9.已知0.5122log 5,log 3,1,3a b c d -====,那么( )A .a c b d <<<B .a d c b <<<C .a b c d <<<D .a c d b <<< 10. 把正方形ABCD 沿对角线BD 折成直二角后,下列命题正确的是:A.BC AB ⊥B. BD AC ⊥C. ABC CD 平面⊥D. ACD ABC 平面平面⊥2242224222俯视图侧视图正视图11.函数xx x x f +=)(的图像为( )A B C D12.设奇函数()f x 在(0)+∞,上为减函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A.(10)(1)-+∞ ,, B.(1)(01)-∞- ,, C.(1)(1)-∞-+∞ ,,D.(10)(01)- ,,二、填空题:本大题共4小题,每小题5分,满分20分.13.14.过点(5,2)且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是 .15. 一个几何体的三视图如图2所示,那么这个几何体的表面积...为 . 16.函数y =2221(1)mm m m x ----是幂函数,且在()+∞∈,0x 上是减函数,则实数m =三、解答题:本大题共6小题,满分70分.17.(本小题满分14分)已知直线l :240x y +-=, (1)求与l 平行,且过点(1,4)的直线方程:(2)已知圆心为(1,4),且与直线l 相切求圆的方程;18. (本小题满分14分)已知圆:2246120x y x y +--+=, (1)求过点(3,5)A 的圆的切线方程; (2)点(,)P x y 为圆上任意一点,求yx的最值。

高一上册数学寒假作业高一上册数学寒假作业及答案

高一上册数学寒假作业高一上册数学寒假作业及答案

高一上册数学寒假作业高一上册数学寒假作业及答案高一上册数学寒假作业|高一上册数学寒假作业及答案高中新生应该根据自己的情况,以及高中阶段多学科知识、综合性强、知识与思维接触广泛的特点,寻找一套有效的学习方法。

今天,我们为全体学生整理了《高中一册数学寒假作业及答案》。

我希望这将有助于你的学习!高一上册数学寒假作业及答案(一)1.[0,1]上函数f(x)=x2的最小值为()a.1b.0c、 14天。

不存在解析:选b.由函数f(x)=x2在[0,1]上的图象(图略)知,F(x)=x2在[0,1]上单调增加,因此最小值为F(0)=02.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()a、 10,6b。

10,8c.8,6d.以上都不对分析:选择A.f(x)作为x的递增函数∈ [1,2],f(x)max=f(2)=10,f(x)min=f(-1)=63.函数y=-x2+2x在[1,2]上的值为()a、 1b。

二c.-1d.不存在分析:选择A。

因为函数y=-x2+2x=-(x-1)2+1,对称轴是x=1,开口是向下的,所以它是[1,2]上的单调递减函数,所以ymax=-1+2=14.函数y=1x-1在[2,3]上的最小值为()a、 2b。

十二c.13d.-12分析:选择B.函数y=1x-1作为[2,3]上的减法函数,∴ymin=13-1=12.5.一家公司同时在两地销售一辆品牌汽车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销量(单位:辆)如果公司在两地共销售15辆汽车,则可获得的利润为()a.90万元b.60万元c、 120万元d.1225万元解析:选c.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润l=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,l为120万元,故选c.6.给定函数f(x)=-x2+4x+A,x∈ [0,1],如果f(x)的最小值为-2,则f(x)的值为()a.-1b.0c、 1d。

高一数学寒假作业06 函数的单调性与最值(教师版)

高一数学寒假作业06 函数的单调性与最值(教师版)

高一数学寒假作业专题06函数的单调性与最值1.定义域为R的函数f(x)满足:对任意的x1,x2∈R,有(x1−x2)⋅(f(x1)−f(x2))>0,则有()A.f(−2)<f(1)<f(3)B.f(1)<f(−2)<f(3)C.f(3)<f(−2)<f(1)D.f(3)<f(1)<f(−2)【答案】A【解析】定义域在R上的函数f(x)满足:对任意的x1,x2∈R,有(x1−x2)⋅(f(x1)−f(x2))>0,可得函数f(x)是定义域在R上的增函数,所以f(−2)<f(1)<f(3).故选:A.2.下列命题是真命题的是()A.函数f(x)=−3x−2在[2,3]上是减函数最大值为−11B.函数f(x)=−1x 在[1,2]是增函数,最小值为−12C.函数f(x)=−x2+2x在区间[0,2]先减再增,最小值为0D.函数f(x)=x2−2x在区间[0,2]先减再增,最大值为0【答案】D【解析】选项A,由一次函数的单调性知,f(x)=−3x−2在[2,3]上是减函数,最大值为f(2)=−3×2−2=−8,故A错误;选项B,由反比例函数的单调性可知,f(x)=−1x在[1,2]是增函数,最小值为f(1)=−1,故B错误;选项C,函数f(x)=−x2+2x为开口向下的二次函数,对称轴为x=1,故在[0,1)单增,在(1,2]单减,先增再减,故C错误;选项D,函数f(x)=x2−2x为开口向上的二次函数,对称轴为x=1,故在[0,1)单减,在( 1,2]单增,先减再增,最大值为f(0)=f(2)=0,故D正确故选:D3.若奇函数f(x)在区间[3,7]上单调递增,且最小值为5,则f(x)在区间[-7,-3]上()A.单调递增且有最大值-5B.单调递增且有最小值-5C.单调递减且有最大值-5D.单调递减且有最小值-5【答案】A【解析】因为f (x )在区间[3,7]上单调递增,且最小值为5,所以f (3)=5.由奇函数在对称区间上单调性相同,可知f (x )在区间[-7,-3]上单调递增, 且有最大值f (−3)=−f (3)=−5. 故选:A .4.已知函数f (x )=x 2−x +1,函数g (x )=ax −1,对于任意x 1∈[1,2],总存在x 2∈[−1,1],使得g (x 2)=f (x 1)成立,则实数a 的取值范围是( ) A .(−∞,−4]B .[4,+∞)C .(−∞,−4]∪[4,+∞)D .(−∞,−4)⋃(4,+∞)【答案】C 【解析】因为f(x)=x 2−x +1,则f (x )在 [1,2]上为单调递增函数, 所以 f (x )的值域为 [1,3],记为A =[1,3], (1)当a >0时, g (x )在 [−1,1]上为增函数,所以 g (x )的值域为[−a −1,a −1],记为 B =[−a −1,a −1], 由题意可得 A ⊆B , {−a −1⩽1a −1⩾3解得 a ≥4, (2)当 a <0时,g (x )在 [−1,1] 上为减函数,故g (x )的值域为[a −1 ,−a −1],记为 C =[a −1 ,− a −1 ], 由题意可知A ⊆B , {−a −1≥3a −1≤1解得 a ≤−4,综上所述,实数 a 的取值范围是(−∞,−4]∪[4,+∞). 故选:C5.对于每一个实数x ,设f (x )取y =4x +1,y =x +2,y =−2x +4三个函数值中的最小值,则f (x )的最大值为( ) A .1 B .23C .43D .83【答案】D 【解析】因为f (x )取y =4x +1、y =x +2、y =−2x +4三个函数中的最小值, 所以可根据y =4x +1、y =x +2、y =−2x +4图像绘出f (x )的图像, 如图:联立{y =x +2y =−2x +4,解得(23,83),f (x )的最大值为83,故选:D.6.函数f (x )=|x |(2−x )的单调递增区间是( ) A .[0,1] B .[−1,0] C .[−1,1] D .[0,2]【答案】A 【解析】当x ≥0时,f(x)=x(2−x)=−x 2+2x ,开口向下,对称轴为x =1,故其递增区间是[0,1];当x <0时,f(x)=−x(2−x)=x 2−2x ,开口向上,对称轴为x =1,在x <0时,f(x)单调递减,综上:f (x )=|x |(2−x )的单调递增区间是[0,1]. 故选:A.7.下列函数中为增函数的是( ) A .f (x )=1x+1 B .f (x )=x 13C .f (x )=(23)xD .f (x )=lg (x 2+1)【答案】B 【解析】对于A 选项,函数f (x )=1x+1在定义域上不单调; 对于B 选项,函数f (x )=x 13为R 上的增函数;对于C 选项,函数f (x )=(23)x为R 上的减函数;对于D 选项,函数f (x )=lg (x 2+1)的定义域为R ,内层函数u =x 2+1在(−∞,0)上为减函数,在(0,+∞)上为增函数,而外层函数y =lgu 为增函数,故函数f (x )的减区间为(−∞,0),增区间为(0,+∞). 故选:B.8.已知定义在(0,+∞)上的函数f (x )满足:对任意正数a 、b ,都有f (ab )=f (a )⋅f (b )≠0,且当x >1时,f (x )<1,则下列结论正确的是( ) A .f (x )是增函数,且f (x )<0B .f (x )是増函数,且f (x )>0C.f(x)是减函数,且f(x)<0D.f(x)是减函数,且f(x)>0【答案】D【解析】法一:取f(x)=1x(x>0),满足题干条件,则f(x)是减函数,且f(x)>0;法二:当x>0时,f(x)=f(√x⋅√x)=[f(√x)]2>0.设x1>x2>0,则x1x2>1,由已知,f(x1x2)<1.所以f(x1)−f(x2)=f(x1x2⋅x2)−f(x2)=f(x1x2)f(x2)−f(x2)=f(x2)[f(x1x2)−1]<0,即f(x1)<f(x2),所以f(x)是减函数,故选:D.9.已知函数f(x)=x−bx2+1是奇函数,则下列选项正确的有()A.b=0B.f(x)在区间(1,+∞)单调递增C.f(x)的最小值为−12D.f(x)的最大值为2【答案】AC【解析】函数f(x)=x−bx2+1是奇函数,则f(0)=0,代入可得b=0,故A正确;由f(x)=x−bx2+1=xx2+1=1x+1x,对勾函数y=x+1x在(1,+∞)上单调递增,所以f(x)=1x+1x在(1,+∞)上单调递减,故B错误;由y=x+1x ∈(−∞,−2]⋃[2,+∞),所以f(x)=1x+1x∈[−12,0)∪(0,12],所以f(x)min=−12,故C正确、D错误.故选:AC10.已知函数f(x)=|x|−x2,则下列说法正确的是()A.f(x)的最大值为14B.f(x)在(−1,0)上是增函数C.f(x)>0的解集为(−1,1)D.f(x)+2x≥0的解集为[0,3]【答案】AD【解析】f(−x)=|−x|−(−x)2=|x|−x2=f(x),所以f (x )是偶函数, 在x ≥0时,f(x)=−x 2+x , 图象为开口向下的抛物线的部分, 对称轴为x =12,在(0,12)内单调递增,在(12,+∞)上单调递减, 最大值为f (12)=−14+12=14,∴函数f(x)=|x|−x 2在R 上的最大值为14, 在(−1,−12)内单调递增,在(−12,0)内单调递减, 故A 正确,B 错误;由于f (0)=0,f (1)=0,f (−1)=0,结合函数的单调性和偶函数的性质画出图象如图所示. 可知f (x )>0的解集为(−1,0)∪(0,1), 故C 错误;f(x)+2x ={−x 2+3x,x ≥0,−x 2+x,x <0 画出图象如图所示:由图象可得不等式f(x)+2x ≥0的解集为[0,3],故D 正确. 故选:AD.11.对于函数f(x)=x1+|x|(x∈R),下列判断正确的是()A.f(−x)+f(x)=0B.当m∈(0,1)时,方程f(x)=m总有实数解C.函数f(x)的值域为[−1,1]D.函数f(x)的单调区间为(−∞,0)【答案】AB【解析】f(−x)+f(x)=−x1+|−x|+x1+|x|=0,故A正确;因为−|x|≤x≤|x|,所以−1<−|x|1+|x|≤x1+|x|≤|x|1+|x|<1,∴f(x)的值域为(−1,1),因此当m∈(0,1)时,方程f(x)=m总有实数解,故B正确;故C错误;f(x)={x1+x ,x≥0x 1−x ,x<0,x≥0,f′(x)=1(1+x)2>0所以f(x)在[0,+∞)单调递增;由于与f(−x)+f(x)=0知f(x)为奇函数,所以函数f(x)在(−∞,0)也单调递增,且在x=0时连续,故f(x)的单调增区间为(−∞,+∞),故D错误;故选:AB.12.已知函数f(x)=−2x+1(x∈[−2,2]),g(x)=x2−2x,(x∈[0,3]),则下列结论正确的是()A.∀x∈[−2,2],f(x)>a恒成立,则实数a的取值范围是(−∞,−3)B.∃x∈[−2,2],f(x)>a恒成立,则实数a的取值范围是(−∞,−3)C.∃x∈[0,3],g(x)=a,则实数a的取值范围是[−1,3]D.∀x∈[−2,2],∃t∈[0,3],f(x)=g(t)【答案】AC【解析】在A中,因为f(x)=−2x+1(x∈[−2,2])是减函数,所以当x=2时,函数取得最小值,最小值为−3,因此a<−3,A正确;在B中,因为f(x)=−2x+1(x∈[−2,2])减函数,所以当x=−2时,函数取得最大值,最大值为5,因此a<5,B错误;在C中,g(x)=x2−2x=(x−1)2−1(x∈[0,3]),所以当x=1时,函数取得最小值,最小值为−1,当x=3时,函数取得最大值,最大值为3,故函数的值域为[−1,3],由g(x)= a有解,知a∈[−1,3],C正确;在D 中,∀x ∈[−2,2],∃t ∈[0,3],f(x)=g(t)等价于f(x)的值域是g(t)的值域的子集,而f(x)的值域是[−3,5],g(t)的值域[−1,3],D 错误. 故选:AC13.函数f (x )=2xx 2+1,x ∈[−1,1]的最大值是__________.【答案】1 【解析】任取x 1,x 2∈[−1,1],且−1≤x 1<x 2≤1, 则f (x 1)−f (x 2)=2x 1x12+1−2x 2x22+1=2x 1(x 22+1)−2x 2(x 12+1)(x 12+1)(x 22+1)=2(x 1−x 2)(1−x 1x 2)(x 12+1)(x 22+1), ∵−1≤x 1<x 2≤1∴根据不等式的性质可得x 1−x 2<0,x 1x 2<1, ∵x 12+1>0,x 22+1>0∴f (x 1)−f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )=2xx 2+1在[−1,1]上单调递增,∴函数f (x )=2xx 2+1在[−1,1]上的最大值是f (1)=2×112+1=1. 故答案为:1.14.函数f(x)=√x 2−3x +2的单调递增区间是____________. 【答案】[2,+∞) 【解析】x 2−3x +2≥0,x ≤1或x ≥2,y =√u 是增函数,u =x 2−3x +2在(−∞,1]上递减,在[2,+∞)上递增, 所以f(x)的增区间是[2,+∞). 故答案为:[2,+∞).15.对任意的x ∈(0,+∞),不等式(x −a +ln xa )(−3x 2+ax +10)≤0恒成立,则实数a =______. 【答案】√5 【解析】由题可知,x ∈(0,+∞)且ln xa 成立,则a ∈(0,+∞)因为对任意的x ∈(0,+∞),不等式(x −a +ln xa )(−3x 2+ax +10)≤0恒成立等价于不等式[(x +lnx )−(a +lna )](−3x 2+ax +10)≤0恒成立记f (x )=x +lnx,g (x )=−3x 2+ax +10,则f (x )在(0,+∞)上单调递增当0<x <a 时,f (x )<f (a ),即(x +lnx )−(a +lna )<0恒成立,则−3x 2+ax +10≥0所以{g (0)=10≥0g (a )=−3a 2+a ⋅a +10=−2a 2+10≥0,得0<a ≤√5当x =a 时,不等式显然成立当x >a 时,f (x )>f (a ),即(x +lnx )−(a +lna )>0恒成立,则−3x 2+ax +10≤0 因为函数g (x )=−3x 2+ax +10=−3(x −a 6)2+a 212+10在(a,+∞)上单调递减所以x >a 时,g (x )<g (a )=−2a 2+10≤0,得a ≥√5因为对任意的x ∈(0,+∞),该不等式恒成立,故应取交集则a =√5 故答案为:√516.若函数f (x )={mx −1,x >1−x +1,x ≤1,满足:对任意的x 1≠x 2,都有f (x 1)≠f (x 2),则m 的取值范围为____________. 【答案】(−∞,0)∪(0,1] 【解析】依题意知函数f (x )的图象与直线y =a (a ∈R )最多只有一个交点. 当x ≤1时,函f (x )单调递减且f (x )≥0;当x >1时,若m =0,f (x )=−1,此时不合题意; 若m <0时,函数f (x )单调递增且f (x )=m x−1<0,满足题意;若m >0时,当x >1时,函数f (x )=m x−1单调递减,此时只需m −1≤0,即0<m ≤1.综上,m 的取值范围为(−∞,0)∪(0,1]. 故答案为:(−∞,0)∪(0,1].17.已知函数f(x)=x +1x.(1)判断函数f (x )在[1+∞)上的单调性,并用单调性的定义证明;(2)当x ∈[0,1]时,不等式f (4x )−f (2x )−k ≤0恒成立,求实数k 的取值范围. 【答案】(1)函数f (x )是[1+∞)上的增函数,证明见解析 (2)k ≥6 【解析】 【分析】(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,f (x 2)−f (x 1)=(x 2+1x 2)−(x 1+1x 1)=x 2−x 1+1x 2−1x 1=(x 2−x 1)(x 2x 1−1)x 2x 1,∵x 1,x 2∈[1,+∞),且x 1<x 2,x 2−x 1>0,x 2x 1>1, ∴f (x 2)−f (x 1)>0即f (x 1)<f (x 2),∴函数f (x )是[1,+∞)上的增函数 (2)f (4x )−f (2x )−k ≤0⇒4x +14x −(2x+12x)−k ≤0 ⇔4x +14x −(2x +12x)≤k 令t =2x +12x ,x ∈[0,1]⇒t ∈[2,52] 原问题等价于t 2−t −2≤k令ℎ(t )=t 2−t −2,t ∈[2,52]⇒ℎ(t )max =ℎ(52)=74 ∴k ≥74.18.函数f (x )是R 上的偶函数,且当x >0时,函数的解析式为f(x)=2x −1 (1)求f (-1)的值∶(2)用定义证明f (x )在(0,+∞)上是减函数; (3)求当x <0时,函数的解析式. 【答案】 (1)1;(2)证明见解析; (3)f(x)=−2x −1. 【解析】 【分析】(1)f(−1)=f(1)=1;(2)证明:任取0<x 1<x 2,则f(x 1)−f(x 2)=2x 1−1−2x 2+1=2(x 1−x 2)x 1x 2,所以x 1x 2>0,x 2−x 1>0 ,即f(x 1)>f(x 2),所以f(x)在(0,+∞)上是减函数;(3)任取x <0,则−x >0,故f(−x)=−2x −1=f(x),即x <0时,函数的解析式为f(x )=−2x −1.19.已知函数f (x )=x 2+2x. (1)用定义证明:f (x )在区间[1,+∞)上是增函数;(2)设集合A =[1,2],B ={x |x 3+x 2−ax +2<0},若A ⊆B ,求实数a 的取值范围. 【答案】 (1)证明见解析 (2)(7,+∞) 【解析】 (1)设x 1>x 2≥1,则f (x 1)−f (x 2)=(x 12−x 22)+(2x 1−2x2)=(x 1−x 2)(x 1+x 2)+2(x 2−x 1)x 1x 2=(x 1−x 2)(x 1+x 2−2x 1x 2).因为x 1>x 2≥1,则x 1−x 2>0,x 1+x 2>2,x 1x 2>1,从而0<2x 1x 2<2,x 1+x 2−2x 1x 2>0.所以f (x 1)−f (x 2)>0,即f (x 1)>f (x 2).所以f(x)在区间[1,+∞)上是增函数. (2)因为A ⊆B ,则当x ∈[1,2]时,不等式x 3+x 2−ax +2<0恒成立, 即a >x 2+2x +x 恒成立.设g(x)=x 2+2x +x ,则当x ∈[1,2]时,a >g(x)max 即可.因为f(x)=x 2+2x 和y =x 在[1,2]上都是增函数,则g(x)在[1,2]上是增函数. 所以当x ∈[1,2]时,g(x)max =g(2)=7,故a 的取值范围是(7,+∞). 20.已知f(x)=2x+1−32x −1.(1)判断函数f (x )在(0,+∞)上的单调性,并用定义证明;(2)若f(x)≥k ⋅2x ,k >0在区间[1,2]上恒成立,求实数k 的取值范围;(3)若存在实数b >a >0,使得函数f (x )在(a ,b )上的值域是(m2a ,m2b ),求实数m 的取值范围. 【答案】(1)单调递增,证明见解析; (2)0<k ≤512; (3)0<m <4−2√3. 【解析】 (1)∵f(x)=2x+1−32x −1,即f (x )=2−12x −1在(0,+∞)上单调递增,证明:∀x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)−f (x 2)=2−12x 1−1−(2−12x 2−1)=2x 1−2x 2(2x 1−1)(2x 2−1), 由0<x 1<x 2,可得1<2x 1<2x 2, ∴2x 1−1>0,2x 2−1>0,2x 1−2x 2<0, 可得2x 1−2x 2(2x 1−1)(2x 2−1)<0,即f (x 1)<f (x 2), ∴函数f (x )在(0,+∞)上为增函数; (2)∵f(x)≥k ⋅2x ,k >0在区间[1,2]上恒成立, 令t =2x ,t ∈[2,4],可得2x −1>0,11 / 13 由f(x)≥k ⋅2x 得,2x+1−32x −1≥k ⋅2x 即为2t −3≥kt(t −1),∴kt 2−(k +2)t +3≤0(k >0)在[2,4]上恒成立,∴{4k −2(k +2)+3≤016k −4(k +2)+3≤0,即有{k ≤12k ≤512, 即 k ≤512,又k >0,∴0<k ≤512;(3)若存在实数b >a >0,使得函数f (x )在(a ,b )上的值域是(m 2a ,m 2b ),又函数f (x )在(0,+∞)上单调递增,可得f(a)=m2a ,f(b)=m2b ,则m >0, 可得2a +1−3=m2a (2a −1),2b +1−3=m2b (2b −1),则方程m2x (2x −1)−2x +1+3=0有两个不等的正根,设t =2x ,t >1,可得mt 2−(m +2)t +3=0有两个大于1的根,设ℎ(t )=mt 2−(m +2)t +3,m >0,可得{ Δ>0m+22m >1ℎ(1)>0m >0,即 {(m +2)2−12m >00<m <2m −m −2+3>0 解得0<m <4−2√3,故实数m 的取值范围为0<m <4−2√3.21.设函数f (x )对任意实数x ,y 都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=−2.(1)求证:f (x )是奇函数;(2)求f (x )在[−3,3]上的最大值与最小值.【答案】(1)证明见解析;(2)最大值为6,最小值为−6.【解析】(1)令x =y =0,得f (0)=f (0)+f (0)=2f (0),所以f (0)=0,令y =−x ,得f (x −x )=f (x )+f (−x )=f (0),所以f (−x )=−f (x ),所以f (x )是奇函数.(2)设x 1<x 2∈R ,则x 2−x 1>0,所以f (x 2)−f (x 1)=f (x 2)+f (−x 1)=f (x 2−x 1)<0,可得f (x 2)<f (x 1),即f (x 1)>f (x 2),所以f (x )在R 上是减函数,f (2)=f (1)+f (1)=−4,f (3)=f (2)+f (1)=−4−2=−6,所以f(−3)=−f(3)=−(−6)=6,所以f(x)在[−3,3]上的最大值为f(−3)=6,最小值为f(3)=−6.22.已知函数f(x)=log132−kxx−2为奇函数.(1)求常数k的值;(2)判断并证明函数f(x)在(2,+∞)上的单调性(3)求函数f(x)在[4,+∞)上的值域.【答案】(1)k=−1(2)单调递增,证明见解析(3)[−1,0)【解析】(1)函数f(x)=log132−kxx−2为奇函数,则f(x)+f(−x)=0⇒log132−kxx−2+log132+kx−x−2=0,化简得到log13(2−kxx−2×2+kx−x−2)=log131,即log13k2x2−4x2−4=log131⇒k2x2−4=x2−4⇒k=±1,当k=1时,f(x)=log132−xx−2不符合对数函数的定义,故舍去;故k=−1.(2)由第一问得到f(x)=log13x+2x−2,设ℎ(x)=x+2x−2,x>2,任取x1>x2∈(2,+∞),ℎ(x1)−ℎ(x2)=x1+2x1−2−x2+2x2−2=4(x2−x1)(x1−2)(x2−2),因为x1>x2∴x2−x1<0,∵(x1−2)(x2−2)>0∴ℎ(x1)<ℎ(x2),故得到函数ℎ(x)在(2,+∞)上是单调递减的,外层函数y=log13x是单调递减的,由复合函数单调性,得到函数f(x)在(2,+∞)上是单调递增的.(3)由第二问得到函数f(x)在(2,+∞)上是单调递增的,故得到函数f(x)在[4,+∞)上也是增的,f(x)=log13x+2x−2,令g(x)=x+2x−2=1+4x−2,x∈[4,+∞),g(x)∈(1,3],12/ 13∴f(x)∈[−1,0)故函数值域为:[−1,0).13/ 13。

寒假作业含答案

寒假作业含答案

高一寒假作业数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合{}1,2,3A =, ()(){}|120, B x x x x =+−<∈Z ,则A B 等于( )A . {}1B . {}1,2C . {}0,1,2,3D . {}1,0,1,2,3−2.点)在直线:10l ax y −+=上,则直线l 的倾斜角为( )A . 120°B . 60°C .45°D . 30°3.函数()f x =的定义域是( )A . {|23}x x <<B .{|23}x x x <>或C .{|23}x x x ≤≥或D .{|23}x x x <≥或4.一个球被两个平行平面截后所得几何体形如我国的一种民族打击乐器“鼓”,该“鼓”的三视图如图所示,则球的表面积为( ) A . 5π B . 10π C . 20πD .5.设,x y 为正数,且34x y =,当3x py =时,p 的值为( ) A . 3log 4 B . 4log 3 C . 36log 2 D . 3log 26.定义域为D 的奇函数()f x ,当0x >时,()()12f x f ≤=.给出下列命题:①[1,1]D −;②对任意, |()|2x D f x ∈≤;③存在0x D ∈,使得0()0f x =;④存在1x D ∈,使得1()1f x =.其中所有正确的命题的个数为( )A .0B .1C . 2D .37.如图,1111ABCD A B C D −为正方体,下列结论错误..的是( )A . 11BD CB D ∥平面 B . 1AC BD ⊥C . 111AC CBD ⊥平面 D . 异面直线AD 与1CB 所成角为60°8.定义在R 上的偶函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()21f x x =−+,设函数|1|1()(13)2x g x x − =−<<,则函数()f x 与()g x 的图象交点个数为( )A . 3B . 4C . 5D . 69.如图1,直线EEEE 将矩形纸AAAAAAAA 分为两个直角梯形AAAAEEEE 和AAAAEEEE ,将梯形AAAAEEEE 沿边EEEE 翻折,如图2,在翻折的过程中(平面AAAAEEEE 和平面AAAAEEEE 不重合),下面说法正确的是( )图1 图2A . 存在某一位置,使得AAAA ∥平面AAAAEEEEB . 在翻折的过程中,AAEE ∥平面AAAAEE 恒成立C . 存在某一位置,使得AAEE ⊥平面AAAAEEEE D.在翻折的过程中,AAEE ⊥平面AAAAEEEE 恒成立10.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆222x y +=的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( )A .1)0x y +−−= B .1)0x y += C .1)0x y −+= D .1)0x y −−+=11.设集合{|48}x A x =>,集合2{|210,0}B x x ax a =−−≤>,若A B 中恰含有一个整数,则实数a 的取值范围是( )A .34,43B .41,3C .3,4 +∞D .(1,)+∞12.在直角坐标系内,已知(3,3)A 是C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为xx −yy +1=0和xx +yy −7=0,若C 上存在点P ,使90MPN ∠=°,其中M 、N 的坐标分别为(,0)m −、(,0)m ,则m 的最大值为( )A . 4B . 5C . 6D . 7第II 卷(非选择题)二、填空题13.已知过点(1,)A m −和(,5)B m 的直线与310x y −−=平行,则m 的值为______. 14.给定下列四个命题:①过直线外一点可作无数条直线与已知直线平行;②如果一条直线不在这个平面内,那么这条直线就与这个平面平行; ③垂直于同一直线的两条直线可能相交、可能平行也可能异面; ④若两个平面分别经过两条垂直直线,则这两个平面互相垂直。

高一上学期数学寒假作业(每天一套)(含答案) (6)

高一上学期数学寒假作业(每天一套)(含答案) (6)

高一上学期数学寒假作业06一、选择题(本大题共12小题,共60.0分)1.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A. {x|0<x≤1}B. {x|0<x<1}C. {x|1≤x<2}D. {x|0<x<2}2.直线x-2y+1=0关于直线x=1对称的直线方程是()A. x+2y-1=0B. 2x+y-1=0C. 2x+y-3=0D. x+2y-3=03.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()4.已知a=log2e,b=ln2,c a,b,c的大小关系为()A. a>b>cB. b>a>cC. c>b>aD. c>a>b5.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A. 若m∥α,n∥α,则m∥nB. 若m⊥α,n⊂α,则m⊥nC. 若m⊥α,m⊥n,则n∥αD. 若m∥α,m⊥n,则n⊥α6.函数y=-x4+x2+2的图象大致为()7.x2+y2-4y所截得的弦长为()A. B. 28.根据有关资料,汽车二级自动驾驶仪能够处理空间复杂度的上限M约为1010,目前人类可预测的地面危机总数N约为36×230.()(参考数据:lg2≈0.30,lg3≈0.48)9.设四面体的六条棱的长分别为2,2,2,2和的两条棱是异面直线,则该四面体的外接球的表面积为()A. 5πB. 20πC. 12πD. 3π10.已知函数f(x)=ln x)+1,f(a)=4,则f(-a)=()A. -4B. 2C. -2D. 311.如图,在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,二面角S-EF-G的正切值是()A. C. 2 D. 312.设函数f(x)f(x)+f(1的x的取值范围是()A. ()B. (-∞,0)C.D.二、填空题(本大题共4小题,共20.0分)13.已知函数f(x)g(x)=f(x)所有零点之积为______.15.过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为______.16.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为______.三、解答题(本大题共6小题,共70.0分)17.(Ⅰ(Ⅱ)在△ABC中,∠B,∠C的内角平分线分别为x=0,y=x,A(3,-1),求BC 边所在的直线方程.18.如图,在正方体ABCD-A1B1C1D1中.(Ⅰ)求证:B1D⊥平面A1C1B;(Ⅱ)求BD1与平面A1C1B所成角的正弦值.19.设函数f(x)是二次函数,且f(x+1)-f(x-1)=3x-2对一切实数x成立,若f(0)=1.(Ⅰ)求f(x)的表达式;(Ⅱ)设A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.(i)求证A⊆B;(ii)若2∈A,函数f(x)在区间[m,m+1]上的最小值大于2,求实数m的取值范围.20.视某地全体中小学生为群体S,S的人均回家时间是指某次S中成员从学校到家的平均用时.S的成员以乘私家车方式或绿色出行(乘公交、骑自行车、步行、家长骑电动车接)方式回家.调查发现:当S中x%(0<x<100)的成员乘私家车时,乘私家车群体的人均回家时间为f(x)均回家时间不受x的影响,恒为40分钟,根据上述分析结果回答下列问题:(Ⅰ)当x在什么范围内时,绿色出行群体的人均回家时间小于乘私家车群体的人均回家时间?(Ⅱ)求该地中小学生群体S的人均回家时间g(x)的表达式,讨论g(x)的单调性,求g(x)的最小值,并说明其实际意义.21.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.22.已知圆C经过点P(1,3),Q(2,0),且圆心在直线y=x+1上.(Ⅰ)求圆C的标准方程;(Ⅱ)已知点A与点Q关于y轴对称,点B在圆C上(与点A不重合),记AB的中点为M,且|OA|=|OM|,求直线AB的方程.答案和解析1.【答案】B【解析】【分析】本题考查了集合的化简与运算问题,是基础题.根据补集、交集的定义即可求出.【解答】解:∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1},故选B.2.【答案】D【解析】解:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于x=1对称点为(2-x,y)在直线x-2y+1=0上,∴2-x-2y+1=0化简得x+2y-3=0故选答案D.解法二:根据直线x-2y+1=0关于直线x=1对称的直线斜率是互为相反数得答案A或D,再根据两直线交点在直线x=1选答案D故选:D.设所求直线上任一点(x,y),关于x=1的对称点求出,代入已知直线方程,即可得到所求直线方程.本题采用两种方法解答,一是相关点法:求轨迹方程法;法二筛选和排除法.本题还有点斜式、两点式等方法.3.【答案】A【解析】【分析】本题看出简单几何体的三视图的画法,是基本知识的考查.直接利用空间几何体的三视图的画法,判断选项的正误即可.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.4.【答案】D【解析】【分析】本题考查了对数函数及其性质的运用,比较大小,考查了对数运算和变形能力,属于基础题.根据对数函数的单调性和对数运算法则,求出a、b、c的大致范围,即可作出比较.【解答】则a,b,c的大小关系c>a>b,故选D.5.【答案】B【解析】【分析】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型,属于基础题.A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α或n与α相交,故D错.故选B.6.【答案】D【解析】【分析】本题主要考查函数的图象的识别和判断,利用函数过定点以及判断函数的单调性是解决本题的关键.属于基础题.根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=-4x3+2x=-2x(2x2-1),由f′(x)>0得2x(2x2-1)<0,得x<0<x由f′(x)<0得2x(2x2-1)>0,得x x<0,此时函数单调递减,排除C,也可以利用f(1)=-1+1+2=2>0,排除A,B,故选D.7.【答案】A【解析】解:根据题意:直线方程为:y,∵圆x2+y2-4y=0,∴圆心为:(0,2),半径为:2,圆心到直线的距离为:d=1,∴弦长为故选:A.先由题意求得直线方程,再由圆的方程得到圆心和半径,再求得圆心到直线的距离,即可求解.8.【答案】B【解析】解:汽车二级自动驾驶仪能够处理空间复杂度的上限M约为1010,目前人类可预测的地面危机总数N约为36×230.两边取常用对数,可得-6×0.48-30×0.30=-1.88.故选:B.本题考查对数的运算性质,考查运算求解能力,是基础题.9.【答案】A【解析】【分析】将四面体放在长方体中,设长方体的长、宽、高分别为x、y、z,根据题中条件列勾股定理,可得出长方体的体对角线长,即为四面体的外接球直径,再利用球体表面积公式可得出答案.本题考查球体表面积的计算,解决本题的关键在于找出合适的模型计算处球体的半径,考查计算能力,属于中等题.【解答】解:如下图所示,四面体ABCD AC=AD=BC=BD=2,可将四面体ABCD放在长方体AEDF-GBHC,设BG=x,CG=y,AG=z,2(x2+y2+z2)=10,则x2+y2+z2=5,设四面体ABCD的外接球直径为2R,则(2R)2=x2+y2+z2=5,因此,该四面体外接球的表面积为4πR2=π×(2R)2=5π.故选:A.10.【答案】C【解析】【分析】根据对数函数的运算性质,结合条件建立方程关系进行求解即可.本题主要考查函数值的计算,结合对数函数的运算性质进行转化是解决本题的关键.【解答】解:∵f(a)=4,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014学年度高一上学期数学寒假作业六
一、选择题(在每小题给出的四个选项中,只有一项符合题目要求) 1.下列结论中正确的有 ( ) ①自然数集记作N ; ②{}{}2
|0,1x x
x ==;
③中国
∈{x|x 是联合国常任理事国}
A .0个
B .1个
C .2个
D .3个
2.已知{|37} {|210}A x x B x x =≤
≤=<<,则①A ∩B = A , ②A ∪B = B ,③()R C A ∩B
=(2,3)∪(7,10)以上结论正确的有 ( ) A .0个
B .1个
C .2个
D .3个
3.函数f (x )=
1
-x x
的定义域是 ( ) A .[0,+)∞ B .[0,1)(1,)+∞
C .[1,+)∞
D .[0,1)),1(+∞
4.下列A 到B 对应中,映射与函数的个数分别有 ( ) ①A={x |x 是三角形} ,B={x |x 是圆},对应关系f :每一个三角形对应它的外接圆; ②A={x |x 是三角形},B 是实数集合,对应关系f :三角形→三角形的面积;
③ A = R ,B = R ,对应关系f :x →x 的立方根; ④A = R , B = R ,对应关系f :x →x 的平方根. A .3个,1个
B .4个,2个
C .3个,2个
D .1个,1个
5.以下结论正确的一项是 ( )
A .若k >0,则y =kx +b 是R 上减函数 B.0k >,则y =
x k
是(0,+∞) 上减函数 C.若0a >,则y =ax c bx ++2
是R 上增函数 D.0k >,y =x +x
k 是(0,+∞) 上增函数
6.函数
2
22y x x =-+在[2,3]上最小值是 ( ) A .1 B .2 C .3 D .5
7.某人驾车从乡村进城,各时间段的行驶速度如右
图,则其行驶路程S 与时间t 的函数关系式是( )
A .40 01
4080(1) 1 2 12030(2) 23t t S t t t t ≤<⎧⎪=+-≤<⎨⎪+-≤≤⎩
B .40 01
80t 1 2 40t 23t t S t t ≤<⎧⎪=≤<⎨⎪≤≤⎩
C .40 01
4080 1 2 12030 23t t S t t t t ≤<⎧⎪
=+≤<⎨⎪+≤≤⎩
D .40 01
60t 1 2 75t 23t t S t t ≤<⎧⎪=≤<⎨⎪≤≤⎩
8.下列结论中错误的一项是 ( ) A .若(),n f x x n =为奇数,则()f x 是奇函数 B .若(),n f x x n =为偶数,则()f x 是偶函数
C .若
()()f x g x 与都是R 上奇函数,则()()f x g x ⋅是R 上奇函数
D .若3
1()f x x x
=+
则()f x 是奇函数.
9.某城市房价(均价)经过6年时间从1200元/m 2
增加到了4800元/m 2
,则这6年间平均每年的增长率是 ( ) A
B
C .50%
D .600元
10.已知a >0,且a ≠1, f (x )=x ,2
x
a -当x )1,1(-∈时恒有f (x )<
2
1
,则实数a 的取值范围是 ( ) A. (0,
2
1
)[2,)+∞ B. [1,41][1,4] C. [
2
1
,1)(1,2] D. (0, 41][4,)+∞
二、填空题(把答案填在题中的横线上)
11.已知指数函数x
y a =是R 上的增函数,则a 的范围是
12.函数
的值域是 13.已知a >0
的结果是 .
14.满足不等式27
412
2x x -->中x 的集合是 .
15.已知物体作直线运动,其速度v 与时间t 的图象如图,则有 ①物体先加速运动,后匀速运动,再减速运动;
t
} 3,2 , 1 , 0 ,1{ 1||-∈-=x x y
②当t = 0时,物体的初速度为0; ③物体加速度分别是3,0,– 1.5; ④当t ∈(3,5)时,行驶路程是t 的增函数.
以上正确的结论的序号是 .(要求写出所有正确的序号) 三、解答题(解答应写出文字说明,证明过程或演算步骤) 16.化简或计算:
(81
10000)4
1
- 11
1
2
00.253
733()81(3)
88-
---⎡⎤⎡⎤⨯⋅+⎢⎥⎢
⎥⎣⎦⎣

-13
100.027⨯
17.某报刊亭每天从报社进报纸200份,价格是0.5元/份;以1元/份价格卖出,当日卖不完的以0.05元/份回收给废旧站.,假设一天卖出的报纸为 x 份. (1)求当日利润y 的关于x 的函数表达式,并写出定义域; (2)求该函数的最大值与最小值. 18.已知函数()x f x a =
图象过点1(2

()().g x f x =-
(1)求
()f x 解析式,并指出定义域和值域;
(2)在同一坐标系中用描点法画出
()f x 、()g x 图象
.
19.(1)把0.13,0.53,0.21()2
,(3
.0)2
1
由小到大排列;
(2)已知方程
2x px q ++= 0的两个不相等实根α、β集合{},,A αβ={}2,4,5,6,B =
{}1,2,3,4C =,A ∩C = A ,A ∩B =φ,求p 、q 的值.
20.已知f (x ) = x +
m
x
图象过点( 2,4 ),(1)求f (x )解析式与定义域;(2)判断f (x )奇偶性;(3)已知n ≥4,()f x 在[a ,1a +]有最小值为n ,求正数a 范围.
2013-2014学年度高一上学期数学寒假作业六
参考答案
一、(41040''⨯=)
二、(4312''⨯=) 11.a >1 12. y∈{-1,0,1,2} 13.a
14.{}3x x <- 15.①②③④ 三、解答题
18.①y=2x
定义域是R 与值域是(0,+∞)②略,要求图象关于Y 轴对称,体现增减性,过定点即可 19 1) (3
.0)
2
1<0.21
()2
<0.13<0.53 2)解∵A ∩C = A ,A ∩B = φ,
∴{}1,3A ,故1 + 3 = – 9,p = – 4,1·3 = q ⇒ q = 3. 20.解:(1)代入(2,4),得m = 4, 故y = x +4
x
.
(2)∵x ≠0,f (x )+ f (– x )=0,∴f (x )奇函数 (3)增区间是),2(),2,(+∞-∞,减区间是(-2,0),(0,2) 4)利用数形结合画出图像即可 当n=4,a 21,12≤≤+≤≤a a 得
当4<n<5, a=2162-+n n ,或a=1216
2---n n
当n 5≥, a=2
16
2-+n n。

相关文档
最新文档