人教a版高中数学选修2-1习题:第一章1.3简单的逻辑联结词含答案
高中数学人教A版选修2-1 简单的逻辑联结词

“p且q”形式的复合命题真假:
例2:判断下列命题的真假: (1)正方形ABCD是矩形,且是菱形; (2)5是10的约数且是15的约数 (3)5是10的约数且是8的约数
“p或q”形式的复合命题真假:
p
q
全假为假,有真即真.
思考3? 下列两个命题间有什么关系?
(1)35能被5的整除;
(2)35不能被5整除。
一般地,对一个命题p全盘否定,就得到一个新命题,
记作 p 读作“非p” 或 “p的否定”
p p
若p是真命题,则 p必是假命题;若p是假命 题,则 p必是真命题.
例1:指出下列复合命题的形式及构成它 的简单命题:
(1)12能被3整除;
(2)12能被4整除;
(3)12能被3整除且能被4整除.
一般地,用逻辑联结词”且”把命题p和命题q联结 起来.就得到一个新命题,
记作 p q 读作 “p且q”
规定:当p,q都是真命题时, p q 是真命题;当p,q两个命题 中有一个命题是假命题时, p q 是假命题.
pq
第一章 常用逻辑用语
1.31 简单的逻辑联结词
高二数学 选修2-1
复习回顾: 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1)请全体同学起立! (2)x2 + x > 0. (3)29是质数. (4)这道数学题目有趣吗? (5)任何无限小数都是无理数. (6)若x2=1,则x=1.
如何把(6)改成真命题?
例3:判断下列命题的真假: (1)5是10的约数或是15的约数; (2)5是12的约数或是8的约数; (3)5是12的约数或是15的约数; (4)方程x2-3x-4=0的判别式大于或等于零
高中数学(人教A版)选修2-1教师用书1.3 简单的逻辑联结词 Word版含答案

[核心必知].预习教材,问题导入根据以下提纲,预习教材~的内容,回答下列问题.()教材“思考”中的命题()与命题()、()之间有什么关系?联结得到的新命题.”且“使用联结词()()是由命题()命题提示:()教材“思考”中的命题()与命题()、()之间有什么关系?联结得到的新命题.”或“用联结词()()题是由命()命题提示:()教材“思考”中的命题()与命题()之间有什么关系?的否定.()是命题()命题提示:.归纳总结,核心必记()用逻辑联结词“或”“且”“非”构成新命题.”且“读作,∧记作,就得到一个新命题,和联结起来把命题”且“用联结词① .”或“读作,∨记作,就得到一个新命题,把命题和联结起来”或“用联结词② .”的否定“或”非“读作,记作,就得到一个新命题,对一个命题全盘否定③()含有逻辑联结词的命题的真假判断()“平面向量既有大小,又有方向”使用的逻辑联结词是什么?且.提示:()“≥”使用的逻辑联结词是什么?或.提示:()“方程-=没有有理根”使用的逻辑联结词是什么?非.提示:()“∨”为真是“∧”为真的什么条件?(充要、充分不必要、必要不充分、既不充分也不必要).提示:必要不充分.()命题的否定与否命题有什么不同?命题的否定只否定命题的结论,提示:而否命题,,又否定命题的结既否定命题的条件论.[课前反思]通过以上预习,必须掌握的几个知识点.()用逻辑联结词“且”、“或”、“非”构成的命题各是什么?其记法和读法各是什么?;()含逻辑联结词的命题的真假性有什么特点?;()“命题的否定”与“否命题”有什么不同?.讲一讲.指出下列命题的形式及构成它的命题.()向量既有大小又有方向;()矩形有外接圆或有内切圆;()集合⊆(∪);()正弦函数= (∈)是奇函数并且是周期函数.[尝试解答]()是“∧”形式的命题.其中:向量有大小,:向量有方向.()是“∨”形式的命题.其中:矩形有外接圆,:矩形有内切圆.()是“”形式的命题.。
人教版A版高中数学选修2-1课后习题解答

高中数学选修2-1课后习题答案第一章 常用逻辑用语1.1 命题及其关系练习(P4)1、2220,1;(2)1,20x x x x x x +-===+-=例:(1)若则若则.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:证明:命题的逆否命题是:若1a b -=,则22243a b a b -+--22243a b a b -+--()()2()23a b a b a b b =+-+---当1a b -=时22310a b b a b =++--=--=原式所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题. 否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径. 可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2 充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=. 所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3 简单的逻辑联结词练习(P18)1、(1)真; (2)假.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(3)1≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4 全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}.6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C==.第二章 圆锥曲线与方程2.1 曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t -==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -. 由于点M 是线段AB 的中点,由中点坐标公式得4,22t t x y -==. 由2t x =得2t x =,代入42t y -=, 得422x y -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2)此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线.习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0).由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y y x x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,33x y ==± 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=,即2230x y x +-=. 其他同解法一.习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y a b +=. 因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --= 由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y . 由于动圆截直线30x y -=和30x y +=所得弦分别为 AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+ 所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.(第1题)2.2 椭圆练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=. 3、解:由已知,5a =,4b =,所以3c ==.(1)1AF B ∆的周长1212AF AF BF BF =+++. 由椭圆的定义,得122AF AF a +=,122BF BF a +=.所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值.4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM y k x =+(1)x ≠-; 直线BM 的斜率 1BMy k x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48) 1、以点2B (或1B )为圆心,以线段2OA (或1OA 为半径画圆,圆与x 轴的两个交点分别为12,F F . 点12,F F 就是椭圆的两个焦点. 这是因为,在22Rt B OF ∆中,2OB b =,222B F OA a ==,所以,2OF c =. 同样有1OF c =.2、(1)焦点坐标为(8,0)-,(8,0);(2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=. 4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12,因为132>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=的离心率是3,椭圆221610x y +=,>221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆. 它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=; (3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =. 代入椭圆的方程,得21154x +=,解得x = 所以,点P的坐标是(1)±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =.所以,QO QA QO QP OP r +=+==.又因为点A 在圆内,所以OA OP < 根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆.8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=--(1)由0∆>,得m -<< 当这组直线在y轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y .则 1223x x m x +==-. 因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=. 这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上.(第7题)9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km.习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以2204x y += ……②. 将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--= 配方,得 22(3)4x y ++=, 22(3)100x y -+= 当P 与1O :22(3)4x y ++=外切时,有12O P R =+ ……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……②①②两式的两边分别相加,得1212O P O P +=12= ……③ 化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12,(第4题)所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a = 所以236927b =-=.于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭由此得12=将上式两边平方,并化简,得 223448x y +=,即2211612x y += 所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E -,F 因为,,R S T 是线段OF ,,R S T '''是线段CF 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+.联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n +=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =.所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上. 2.3 双曲线练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b -=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩ 令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a =.所以,a =又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >-练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -=3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==222c a =,因此2222222b c a a a a =-=-=. 设双曲线的标准方程为 22221x y a a -=,或22221y x a a -=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=. 5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=. 习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得 222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4 抛物线练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,-提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±.练习(P72)1、(1)2165y x =; (2)220x y =; (3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大.3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±. 因为22AB y ==⨯== 所以,3a = 因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-;(2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒=. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得13y =-,2y = 由第5题图知1(,)33-不合题意,所以点M 的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=, 化简得 2640x x -+=,解得 3x=±则 321y ==±因为OB k =,OA k =所以15195OB OA k k -⋅===--所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为 m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =.(第8题)由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =. 又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan303y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-.由题意,得2AM BM k k -=,所以,2(1)11y yx x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a+=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=解得 7782.5a =,8755c =所以 b ===用计算器算得 7722b ≈(第1题)因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上. 而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=- 令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点, 所以,k的取值范围为k >k < 6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp -设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32p y x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =+代入)2p y x =-,得 17(2x p =+.把22)y p =代入)32p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-+,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得 222(2)2(12)(12)20k x k k x k ------=2(20)k -≠. ……①所以,122(12)22x x k k x k +-==- 由题意,得2(12)22k k k -=-,解得4k =当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BC yk x x =≠-由题意,得AC BC k k m =. 所以,(5)55y ym x x x ⨯=≠±+-化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-; 当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===当2y =时,d. 此时1x =,点P 的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =--解得 24p =-(第12题)为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a =-.由题意,得2b bac a =,所以,b c =,a =.由已知及1F A a c =+,得 a c +=+所以 (1c = c =所以,a =,b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p =(第4题)当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =. 对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y yx x x +=≠±-+,化简,得21(1)xy x x =-≠±所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=.因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.第三章 空间向量与立体几何3.1 空间向量及其运算练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--.练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3练习(P92)1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=. 2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面, 于是c 与a ,b 共面,这与已知矛盾.2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++.练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,153DB CM DB CM DB CM-+⋅<>===⋅.习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=;(4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==.向量,,,AC AC AM AG '如图所示. 2、A .3、解:22()AC AB AD AA ''=++(第1题)2222222()15372(535737298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-;(3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==;(4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==;(5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==;(6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x=. 9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-,所以,点M 的坐标为19(,,2)22-,(AB =-10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N .1(1,1,)2CM =-,11(1,1,)2D N =-所以222131(1)()22CM =+-+=,22211311()22D N =++-=111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19.11、31(,,3)22-习题3.1 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅∵ OA OB =,CA CB =(已知),OC OC =. ∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠ ∴ OB OC OA OC ⋅=⋅ ∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足.求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点. ∴ BD ∥OA .3.2 立体几何中的向量方法练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β; (3)292247u v u v⋅=-,α与β练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥. 因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以 22cos AA d mn θ'==.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O .∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥习题3.2 A 组(P111)1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,212MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,212MN AD ⋅==1cos 2θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥.因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥. 因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3ACDB ⋅== 所以 1cos 3θ=-.因此1DB 与平面EFGHLK 的所成角α的余弦cos 3α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++ 11(111111)42=++-+-= 所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,32AE AO ⋅=1cos3θ===,sin θ=点O 到平面ABC 的距离sin 133OH OA θ==⨯=. 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向, 建立坐标系,得下列坐标:(0,0,0)O ,2D ,1(0,,0)2B,3(0,,0)2C,(0,0,2A .∴3((2224DO DA ⋅=-⋅-=,184DO DA⋅=,cos 2θ=. ∴ AD 与平面BCD 所成角等于45︒. (2)(0,1,0)(0BC DA ⋅=⋅=. 所以,AD 与BC 所成角等于90︒. (3)设平面ABD 的法向量为(,,1)x y ,则1(,,1)(,,1)(0,,02x y AB x y ⋅=⋅=,(,,1)(,,1)(022x y AD x y ⋅=⋅-=. 解得 1x =,y =显然(0,0,1)为平面BCD 的法向量.(0,0,1)1⋅=,cos θ==因此,二面角A BD C --的余弦cos cos()5απθ=-=-. 7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB ∥α,所以123412x y z-+==-. 因为226AB α==26. 解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a hE -.(1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE DE h a BE DE--⋅-<>==+.(2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-=,222h a = 222222641cos ,10123h a a BE DE h a a --<>===-+9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,)222O -,1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA⋅=,10OM BD ⋅=, 所以1OM AA ⊥,1OM BD ⊥,2OM ==.10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD == 解得12z =,x =1cos 2BD AC BD ACθ⋅==⋅,60θ=︒ 因此,线段BD 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02OP BD z ⋅=⋅-=,解得98z =. 所以,938tan 38PB OB θ===.12、解:不妨设这条线段MN 长为2,则点M 到二面角的棱的距离1MP =,点N 到二面角的棱的距离1NQ =,QM PN ==PQ =22cos 2PQ MNPQ PQ MNθ⋅====⋅, 45θ=︒. 习题 3.2 B 组(P113)1、解:12222ABC S ∆=⨯⨯=, ()224502AD BE AB BD BE ⋅=+⋅=︒+=,202cos AD BE AD AD θ⋅==,20AD =,204BD ==. 184233ABCD V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F,,0,1)M -,,0)22N . 222(0,1)122MN a =-=-+,MN =(2)2211(2a a -+=+,当2a =时,MN 的长最小. (3)当2a =时,MN 的中点为111(,,)244G , 所求二面角的余弦值1cos 3GA GBGA GBθ⋅==-⋅.3、证明:设AE BF b ==. 以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(0,,0)A a , (,,0)B a a -,(,0,0)C a -,(0,0,)O a ',(0,,)A a a ',(,,)B a a a '-,(,0,)C a a '-,(,,0)E b a -,(,,0)F a a b --.(1)(,,)(,,)0A F C E a b a a b a a ''⋅=---⋅--=,A F C E ''⊥.(2)221111()[()]2242BEF S b a b a a b ∆=-=--,当2a b =时,BEF S ∆最大,三棱锥体积最大.此时,EF 的中点G 与点B的连线4BG a =,tan BB BGθ'==. 第三章 复习参考题A 组(P117)1、B .2、(1)111222AP a b c =++; (2)1122AM a b c =++; (3)12AN a b c =++; (4)114555AQ a b c =++.3、证明:因为1116()()302AM BA AB BC CM BA AA AB BA CM AA ⋅=++⋅+=⋅+⋅=-+= 所以1AM BA ⊥4、解:(1)以点C 为原点建立坐标系,得下列坐标:(0,0,0)C ,(,0,0)A a ,1(,,0)22B a a ,1()A a ,1)C .(2)点1C 在侧面11ABB A 内的射影为点23(,)44C a , 12123cos 2AC AC AC AC θ⋅==⋅,30θ=︒.。
人教版A版高中数学选修2-1课后习题解答

高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
2014-2015学年人教A版选修2-1高中数学《1.3简单的逻辑联结词》课时提升作业(含答案解析)

课时提升作业(六)简单的逻辑联结词(30分钟50分)一、选择题(每小题3分,共18分)1.(2014·重庆高考)已知命题p:对任意x∈R,总有≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧qB.p∧qC.p∧qD.p∧q【解题指南】先判断出命题p,q的真假,再利用逻辑联结词进行相关判断.【解析】选A.易知命题p为真命题,q为假命题,故p∧q为真命题,p∧q为假命题,p∧q为假命题,p∧q为假命题.2.(2014·驻马店高二检测)若p∨q是假命题,则( )A.p是真命题,q是假命题B.p,q均为假命题C.p,q至少有一个是假命题D.p,q至少有一个是真命题【解析】选B.只有当p,q均为假命题时,p∨q才是假命题,故选B.3.(2014·广州高二检测)已知命题p:a2+b2<0(a,b∈R);命题q:(a-2)2+|b-3|≥0(a,b∈R),下列结论正确的是( )A.“p∨q”为真B.“p∧q”为真C.“p”为假D.“q”为真【解析】选A.显然p假q真,故“p∨q”为真,“p∧q”为假,“p”为真,“q”为假,故选A.4.命题p:“若a<b,则2a<2b”的否命题及命题p的否定为( )A.否命题:若a≥b,则2a≥2b,否定:若a<b,则2a≥2bB.否命题:若a<b,则2a≥2b,否定:若a≥b,则2a≥2bC.否命题:若2a<2b,则a<b,否定:若2a<2b,则a≥b.D.否命题:若a>b,则2a>2b,否定:若a<b,则2a>2b.【解析】选A.命题“若a<b,则2a<2b”的否命题为“若a≥b,则2a≥2b”,命题p 的否定为“若a<b,则2a≥2b”.5.在下列结论中,正确的结论为( )①“p∧q”为真是“p∨q”为真的充分不必要条件;②“p∧q”为假是“p∨q”为真的充分不必要条件;③“p∨q”为真是“p”为假的必要不充分条件;④“p”为真是“p∧q”为假的必要不充分条件.A.①②B.①③C.②④D.③④【解析】选B.充分理解含逻辑联结词的命题真假的判断方法,对于①,当p∧q为真时,p与q均为真,p∨q为真,但当p∨q为真时,p与q至少有一个为真,但p∧q不一定为真,故是充分不必要条件.对于②,p∧q为假,即p与q中至少有一个为假,则p∨q真假不确定,而当p∨q 为真时,即p与q中至少有一个为真,则p∧q真假不确定,故既不是充分条件也不是必要条件.对于③,p∨q为真,则p与q至少有一个为真,但p真假不确定,但当p为假,即p 为真时,p∨q一定为真,故是必要不充分条件.对于④p为真,即p为假,则p∧q为假,但当p∧q为假,即p与q至少有一个为假时,p真假不确定,故是充分不必要条件.6.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是( )A.a>0B.a≥0C.a>1D.a≥1【解题指南】先分别求出命题p,q为真的充要条件,再分别求出p,q为假的充要条件,利用分类讨论思想求解.【解析】选B.命题p:“方程x2+2x+a=0有实数根”的充要条件为Δ=4-4a≥0,即a≤1,则p为真时,a>1;命题q:“函数f(x)=(a2-a)x是增函数”的充要条件为a2-a>0,即a<0或a>1, 则“q”为真命题时,0≤a≤1.由“p∧q”为假命题,“p∨q”为真命题,得p,q一真一假:若p真q假,则0≤a≤1;若p假q真,则a>1.所以实数a的取值范围是a≥0.【举一反三】若本题变为“q”为假命题且“p∨(q)”为真命题,其余条件不变,则实数a的取值范围是.【解析】由“q”为假命题且“p∨(q)”为真命题,得p真q真,所以实数a的取值范围是a<0.答案:a<0二、填空题(每小题4分,共12分)7.(2014·郑州高二检测)设有两个命题:p:|x|+|x-1|≥m的解集为R;q:函数f(x)=-(7-3m)x是减函数,若p∨q为真命题,p∧q为假命题,实数m的取值范围是.【解析】若p为真命题,则根据绝对值的几何意义可知m≤1.若q为真命题,则7-3m>1,所以m<2,若p真q假,则m∈.若p假q真,则1<m<2. 综上所述,1<m<2.答案:1<m<28.已知全集为R,命题p:0∈N,q:{0}⊆ðQ,则下述判断:①p∧q为真;②p∨q为R真;③p为真;④q为假,其中正确的序号为.【解析】由于N表示自然数集,ðQ表示无理数集,于是p:0∈N为真,q:{0}⊆RðQR为假,所以p∧q为假,①错误;p∨q为真,②正确;p为假,③错误;q为真,④错误.答案:②9.(2014·杭州高二检测)p:<0,q:x2-4x-5<0,若p且q为假命题,则x的取值范围是___________.【解析】p:x<3;q:-1<x<5.因为p且q为假命题,所以p,q中至少有一个为假,所以x≥3或x≤-1.答案:(-≦,-1]∪[3,+≦).三、解答题(每小题10分,共20分)10.分别指出由下列各组命题构成的“p∨q”“p∧q”及“p”形式,并判断真假:(1)p:2n-1(n∈Z)是奇数,q:2n-1(n∈Z)是偶数.(2)p:a2+b2<0(a∈R,b∈R),q:a2+b2≥0.(3)p:集合中的元素是确定的,q:集合中的元素是无序的.【解析】(1)p∨q,2n-1(n∈Z)是奇数或是偶数;(真)p∧q:2n-1(n∈Z)既是奇数又是偶数;(假)p:2n-1(n∈Z)不是奇数.(假)(2)p∨q:a2+b2<0,或a2+b2≥0;(真)p∧q:a2+b2<0,且a2+b2≥0;(假)p:a2+b2≥0.(真)(3)p∨q:集合中的元素是确定的或是无序的;(真)p∧q:集合中的元素是确定的且是无序的;(真)p集合中的元素是不确定的.(假).11.(2014·惠州高二检测)设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x2-5x+6≤0.(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若p是q成立的必要不充分条件,求实数a的取值范围.【解题指南】先根据题意化简给出的两个命题:p:a<x<3a,q:2≤x≤3,(1)当a=1时,确定p:1<x<3,再由p∧q为真,可知p,q均为真,故所求实数x的取值范围就是命题p,q所表示的集合的交集.(2)由条件可知,q是p的充分不必要条件,故命题q所表示的集合是命题p所表示的集合的真子集,然后借用数轴求解即可.【解析】(1)由x2-4ax+3a2<0得(x-3a)·(x-a)<0,又a>0,所以a<x<3a,当a=1时,1<x<3,即p为真命题时,实数x的取值范围是1<x<3,由x2-5x+6≤0得2≤x≤3,所以q为真时实数x的取值范围是2≤x≤3.若p∧q为真,则2≤x<3,所以实数x的取值范围是[2,3).(2)设A={x|a<x<3a},B={x|2≤x≤3},由题意可知q是p的充分不必要条件,则B A,所以⇒1<a<2,所以实数a的取值范围是(1,2).(30分钟50分)一、选择题(每小题4分,共16分)1.(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(p)∨(q)B.p∨(q)C.(p)∧(q)D.p∨q【解题指南】本题考查了逻辑联结词的应用.【解析】选A.至少有一位学员没有降落在指定范围指的是甲没有降落在指定范围或乙没有降落在指定范围,故选A.2.(2014·聊城高二检测)设命题p:函数y=在(-∞,0)∪(0,+∞)上是减函数;命题q:函数y=的图象关于原点对称,则下列判断正确的是( )A.p真B.q假C.p∧q真D.p∨q假【解析】选B.命题p为假命题,命题q为真命题,故选B.【变式训练】给出两个命题:p:函数y=x2-x-1有两个不同的零点;q:若<1,则x>1,那么在下列四个命题中,真命题是( )A.(p)∨qB.p∧qC.(p)∧(q)D.(p)∨(q)【解析】选D.对于p,函数对应的方程x2-x-1=0的判别式Δ=(-1)2-4×(-1)=5>0. 可知函数有两个不同的零点,故p为真.当x<0时,不等式<1恒成立;当x>0时,不等式的解为x>1.故不等式<1的解为x<0或x>1.故命题q为假命题.所以只有(p)∨(q)为真,故选D.3.已知命题(p∧q)∧(p∨q)为真命题,则( )A.p,q都为真B.p真,q假C.p假,q真D.p,q都为假【解析】选B.因为(p∧q)∧(p∨q)为真命题,所以(p∧q)为真命题,(p∨q)也为真命题,因为(p∧q)为真命题,所以p和q都是真命题,所以p真,q假.此时(p∨q)也为真命题,符合题意.【误区警示】解答本题易出现如下错误现象:(1)不知从何处入手,找不到问题突破口.(2)层次不清,推理混乱.(3)步骤不衔接,前后矛盾.(4)对逻辑联结词理解不准,出现知识性错误.4.(2014·长春高二检测)已知:p:|x-1|≥2,q:x∈Z,若p∧q,q同时为假命题,则满足条件的x的集合为( )A.{x|x≤-1或x≥3,x∉Z}B.{x|-1≤x≤3,x∉Z}C.{x|x<-1或x∈Z}D.{x|-1<x<3,x∈Z}【解析】选D.p:x≥3或x≤-1,q:x∈Z,由p∧q,q同时为假命题知,p假q真, 所以满足-1<x<3且x∈Z,故满足条件的集合为{x|-1<x<3,x∈Z}.二、填空题(每小题5分,共10分)5.(2014·广州高二检测)命题p:2∉{1,3},q:2∉{x|x2-4=0},则命题p∧q是命题,命题p∨q是命题.【解析】命题p:2∉{1,3}是真命题.因为{x|x2-4=0}={-2,2},所以命题q:2∉{x|x2-4=0}是假命题,所以命题p∧q是假命题,命题p∨q是真命题.答案:假真6.已知命题p:x=π是y=|sinx|的一条对称轴,q:2π是y=|sinx|的最小正周期.下列命题:①p∨q;②p∧q;③p;④q.其中真命题的序号是.【解析】因为π是y=|sinx|的最小正周期,所以q为假.又因为p为真,所以p∨q为真,p∧q为假,p为假,q为真.答案:①④三、解答题(每小题12分,共24分)7.(2014·九江高二检测)已知命题p:不等式x2+kx+1≥0对于一切x∈R恒成立,命题q:已知方程x2+(2k-1)x+k2=0有两个大于1的实数根,若p且q为假,p或q 为真.求实数k的取值范围.【解析】当p为真命题时,Δ=k2-4≤0,所以,-2≤k≤2.当q为真命题时,令f(x)=x2+(2k-1)x+k2,方程有两个大于1的实数根⇔即所以k<-2.要使p且q为假,p或q为真,则p真q假,或者是p假q真.当p真q假时,-2≤k≤2,当p假q真时,k<-2.综上:k≤2.8.设命题p:方程2x2+x+a=0的两根x1,x2满足x1<1<x2,命题q:函数y=log2(ax-1)在区间[1,2]内单调递增.(1)若p为真命题,求实数a的取值范围.(2)试问:p∧q是否有可能为真命题?若有可能,求出a的取值范围;若不可能,请说明理由.【解析】(1)若p为真命题,令f(x)=2x2+x+a,则f(1)<0,即3+a<0,所以a<-3.(2)假设p∧q是真命题,则p,q均为真命题,由(1)知p真时a<-3.当q为真命题时,需即a>1.显然p,q均为真命题时需此时a不存在,故不存在a的值使p∧q为真命题.。
高中数学人教版选修2-1教师专用同步作业解析(含答案)第一章 1.3 简单的逻辑联接词

1.13[学习目标] 1.了解联结词“且”“或”“非”的含义.2.会用联结词“且”“或”“非”联结或改写某些数学命题,并判断新命题的真假.3.通过学习,明白对条件的判定应该归结为判断命题的真假.知识点一且“p且q”就是用联结词“且”把命题p和命题q联结起来,得到的新命题,记作p∧q.知识点二或“p或q”就是用联结词“或”把命题p和命题q联结起来,得到的新命题,记作p∨q.知识点三命题的否定一般地,对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.知识点四含有逻辑联结词的命题的真假判断[思考](1)逻辑联结词“或”与生活用语中的“或”的含义是否相同?(2)命题的否定与否命题有什么区别?答案(1)生活用语中的“或”表示不兼有,而在数学中所研究的“或”则表示可兼有但不一定必须兼有.(2)命题的否定只否定命题的结论,而否命题既否定命题的条件,又否定命题的结论.题型一p∧q命题及p∨q命题例1分别写出下列命题构成的“p∧q”“p∨q”的形式,并判断它们的真假.(1)p:函数y=3x2是偶函数,q:函数y=3x2是增函数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任何一个内角;(3)p:3是无理数,q:3是实数;(4)p:方程x2+2x+1=0有两个相等的实数根,q:方程x2+2x+1=0两根的绝对值相等.解(1)p∧q:函数y=3x2是偶函数且是增函数;∵p真,q假,∴p∧q为假.p∨q:函数y=3x2是偶函数或是增函数;∵p真,q假,∴p∨q为真.(2)p∧q:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角;∵p真,q真,∴p∧q为真.p∨q:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;∵p真,q真,∴p∨q为真.(3)p∧q:3是无理数且是实数;∵p真,q真,∴p∧q为真.p∨q:3是无理数或是实数;∵p真,q真,∴p∨q为真.(4)p∧q:方程x2+2x+1=0有两个相等的实数根且两根的绝对值相等;∵p真,q真,∴p∧q为真.p∨q:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等;∵p真,q真,∴p∨q为真.反思与感悟(1)判断p∧q形式的命题的真假,首先判断命题p与命题q的真假,然后根据真值表“一假则假,全真则真”进行判断.(2)判断p∨q形式的命题的真假,首先判断命题p与命题q的真假,只要有一个为真,即可判定p∨q形式命题为真,而p与q均为假命题时,命题p∨q为假命题,可简记为:有真则真,全假为假.跟踪训练1指出下列命题的构成形式及构成它们的简单命题:(1)李明是男生且是高一学生.(2)方程2x2+1=0没有实数根.(3)12能被3或4整除.解(1)是“p且q”形式.其中p:李明是男生;q:李明是高一学生.(2)是“非p”形式.其中p:方程2x2+1=0有实根.(3)是“p或q”形式.其中p:12能被3整除;q:12能被4整除.题型二綈p命题例2写出下列命题的否定形式.(1)面积相等的三角形都是全等三角形;(2)若m2+n2=0,则实数m、n全为零;(3)若xy=0,则x=0或y=0.解 (1)面积相等的三角形不都是全等三角形. (2)若m 2+n 2=0,则实数m 、n 不全为零. (3)若xy =0,则x ≠0且y ≠0.反思与感悟 綈p 是对命题p 的全盘否定,对一些词语的正确否定是写綈p 的关键,如“都”的否定是“不都”,“至多两个”的反面是“至少三个”、“p ∧q ”的否定是“綈p ∨綈q ”等.跟踪训练2 写出下列命题的否定,并判断其真假. (1)p :y = sin x 是周期函数; (2)p :3<2;(3)p :空集是集合A 的子集; (4)p :5不是75的约数.解 (1) 綈p :y = sin x 不是周期函数.命题p 是真命题,綈p 是假命题; (2) 綈p :3≥2.命题p 是假命题,綈p 是真命题;(3) 綈p :空集不是集合A 的子集.命题p 是真命题,綈p 是假命题; (4) 綈p :5是75的约数.命题p 是假命题,綈p 是真命题.题型三 p ∨q 、p ∧q 、綈p 命题的综合应用例3 已知命题p :方程x 2+2ax +1=0有两个大于-1的实数根,命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,若“p ∨q ”与“綈q ”同时为真命题,求实数a 的取值范围. 解 命题p :方程x 2+2ax +1=0有两个大于-1的实数根,等价于 ⎩⎪⎨⎪⎧Δ=4a 2-4≥0,x 1+x 2>-2,(x 1+1)(x 2+1)>0,⇔⎩⎪⎨⎪⎧a 2-1≥0,-2a >-22-2a >0,,解得a ≤-1.命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,等价于a =0或⎩⎪⎨⎪⎧a >0,Δ<0.由于⎩⎨⎧a >0Δ<0⇔⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0<a <4, 所以0≤a <4.因为“p ∨q ”与“綈q ”同时为真命题,即p 真且q 假,所以⎩⎪⎨⎪⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1].反思与感悟 由真值表可判断p ∨q 、p ∧q 、綈p 命题的真假,反之,由p ∨q ,p ∧q ,綈p 命题的真假也可判断p 、q 的真假情况.一般求满足p 假成立的参数范围,应先求p 真成立的参数的范围,再求其补集.跟踪训练3 已知命题p :方程x 2+ax +1=0有两个不等的实根;命题q :方程4x 2+2(a -4)x +1=0无实根,若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围. 解 ∵“p 或q ”为真,“p 且q ”为假,∴p 与q 一真一假, 由a 2-4>0得a >2或a <-2. 由4(a -4)2-4×4<0得2<a <6.①若p 真q 假,则有⎩⎪⎨⎪⎧a >2或a <-2,a ≤2或a ≥6,∴a <-2或a ≥6;②若p 假q 真,则有⎩⎪⎨⎪⎧-2≤a ≤2,2<a <6,通过分析可知不存在这样的a .综上,a <-2或a ≥6.1.命题p :“x >0”是“x 2>0”的必要不充分条件,命题q :△ABC 中,“A >B ”是“sin A >sin B ”的充要条件,则( ) A.p 真q 假 B.p ∧q 为真 C.p ∨q 为假 D.p 假q 真答案 D解析 命题p 假,命题q 真. 2.给出下列命题: ①2>1或1>3;②方程x 2-2x -4=0的判别式大于或等于0; ③25是6或5的倍数;④集合A ∩B 是A 的子集,且是A ∪B 的子集. 其中真命题的个数为( ) A.1 B.2 C.3 D.4 答案 D解析 ①由于2>1是真命题,所以“2>1或1>3”是真命题;②由于方程x 2-2x -4=0的Δ=4+16>0,所以“方程x 2-2x -4=0的判别式大于或等于0”是真命题;③由于25是5的倍数,所以命题“25是6或5的倍数”是真命题;④由于A ∩B ⊆A ,A ∩B ⊆A ∪B ,所以命题“集合A ∩B 是A 的子集,且是A ∪B 的子集”是真命题.3.已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数.则在命题q1:p1∨p2,q2:p1∧p2,q3:(綈p1)∨p2和q4:p1∧(綈p2)中,为真命题的是() A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4答案 C解析p1是真命题,则綈p1为假命题;p2是假命题,则綈p2为真命题;∴q1:p1∨p2是真命题,q2:p1∧p2是假命题,∴q3:(綈p1)∨p2为假命题,q4:p1∧(綈p2)为真命题.∴为真命题的是q1,q4.4.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下列判断正确的是()A.p假q真B.“p∨q”为真C.“p∧q”为真D.“綈p”为真答案 B解析由(x+2)(x-3)<0得-2<x<3,∵1∈(-2,3),∴p真.∵∅≠{0},∴q为假,∴“p∨q”为真.5.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.綈p是真命题D.綈q是真命题答案 D解析根据“且”“或”“非”命题的真假判定法则知D正确.1.正确理解逻辑联结词是解题的关键,日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”是两个中至少选一个.2.判断含逻辑联结词的命题的真假的步骤:(1)逐一判断命题p,q的真假.(2)根据“且”“或”的含义判断“p∧q”,“p∨q”的真假.p∧q为真⇔p和q同时为真,p∨q为真⇔p和q中至少一个为真.3.若命题p为真,则“綈p”为假;若p为假,则“綈p”为真,类比集合知识,“綈p”就相当于集合p在全集U中的补集∁U p.因此(綈p)∧p为假,(綈p)∨p为真.4.命题的否定只否定结论,否命题既否定结论又否定条件,要注意区别.一、选择题1.已知命题p:2+2=5,命题q:3>2,则下列判断正确的是()A.“p∨q”为假,“綈q”为假B.“p∨q”为真,“綈q”为假C.“p∧q”为假,“綈p”为假D.“p∧q”为真,“p∨q”为假答案 B解析显然p假q真,故“p∨q”为真,“p∧q”为假,“綈p”为真,“綈q”为假,故选B.2.已知全集S=R,A⊆S,B⊆S,若p:2∈(A∪B),则“綈p”是()A.2D∈/AB.2D∈/∁S BC.2D∈/(A∩B)D.2∈(∁S A)∩(∁S B)答案 D解析p:2∈(A∪B),綈p:2∈∁S(A∪B),即2∈(∁S A)∩(∁S B).3.“p是真命题”是“p∧q为真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B4.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨qB.p∧qC.(綈p)∧(綈q)D.p∨(綈q)答案 A解析方法一命题p中,取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,∴p是假命题.命题q中,a,b,c是非零向量,由a∥b知a=x b,由b∥c知b=y c,∴a=xy c,∴a∥c,∴q是真命题.综上可知:p∨q是真命题,p∧q是假命题.又∵綈p 为真命题,綈q 为假命题, ∴(綈p )∧(綈q ),p ∨(綈q )都是假命题. 方法二命题p 中,由于a ,b ,c 都是非零向量,∵a ·b =0,∴a ⊥b .∵b ·c =0,∴b ⊥c .如图,则可能a ∥c ,∴a ·c ≠0,∴命题p 是假命题,∴綈p 是真命题.命题q 中,a ∥b ,则a 与b 方向相同或相反;b ∥c ,则b 与c 方向相同或相反.故a 与c 方向相同或相反,∴a ∥c ,即q 是真命题,则綈q 是假命题,故p ∨q 是真命题,p ∧q ,(綈p )∧(綈q ),p ∨(綈q )都是假命题.5.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.(綈p )∨(綈q ) B.p ∨(綈q ) C.(綈p )∧(綈q ) D.p ∨q答案 A解析 至少有一位学员没有降落在指定范围意味着甲或乙没有降落在指定范围.6.命题p :若a >0,b >0,则ab =1是a +b ≥2的必要不充分条件,命题q :函数y =log 2x -3x +2的定义域是(-∞,-2)∪(3,+∞),则( ) A.“p ∨q ”为假 B.“p ∧q ”为真 C.p 真q 假 D.p 假q 真 答案 D解析 由命题p :a >0,b >0,ab =1得a +b ≥2ab =2,所以p 为假命题; 命题q :由x -3x +2>0得x <-2或x >3,所以q 为真命题.7.已知命题p :若a =(1,2)与b =(-2,λ)共线,则λ=-4;命题q :∀k ∈R ,直线y =kx +1与圆x 2+y 2-2y =0相交.则下面结论正确的是( ) A.(綈p )∨q 是真命题 B.p ∧(綈q )是真命题 C.p ∧q 是假命题 D.p ∨q 是假命题 答案 A解析 命题p 为真,命题q :圆心(0,1)到直线kx -y +1=0的距离为d =|0|k 2+1<1,命题q 是真命题.故(綈p )∨q 是真命题.8.给定命题p :函数y =ln [(1-x )(x +1)]为偶函数;命题q :函数y =e x -1e x +1为偶函数,下列说法正确的是( ) A.p ∨q 是假命题 B.(綈p )∧q 是假命题 C.p ∧q 是真命题 D.(綈p )∨q 是真命题答案 B解析 p 中,f (-x )=ln [(1+x )(1-x )]=f (x ),又定义域关于原点对称,故函数为偶函数,故p 为真;q 中,f (-x )=e -x -1e -x +1=1-e xe x +1=-f (x ),定义域为R ,故函数为奇函数,故q 为假,故(綈p )∧q 为假. 二、填空题9.命题“若a <b ,则2a <2b ”的否命题为________________,命题的否定为________________. 答案 若a ≥b ,则2a ≥2b 若a <b ,则2a ≥2b解析 命题“若a <b ,则2a <2b ”的否命题为“若a ≥b ,则2a ≥2b ”,命题的否定为“若a <b ,则2a ≥2b ”.10.若命题p :不等式ax +b >0的解集为{x |x >-ba },命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b },则“p 且q ”“p 或q ”“非p ”中真命题是________. 答案 非p解析 因为命题p ,q 均为假命题,所以“p 或q ”“p 且q ”均为假命题,而“非p ”为真命题.11.已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :若平面α上不共线的三点到平面β的距离相等,则有平面α∥平面β.对以上两个命题,下列结论中: ①p ∧q 为真;②p ∨q 为假;③p ∨q 为真;④(綈p )∨(綈q )为假. 其中,正确的是________(填序号). 答案 ②解析 命题p 是假命题,这是因为α与γ也可能相交,命题q 也是假命题,这两个平面α,β也可能相交. 三、解答题12.已知c >0,设p :函数y =c x 在R 上单调递减,q :曲线y =4x 2-4c (x +12)+c 2+1与x 轴交于不同的两点,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值范围. 解 方法一 ∵函数y =c x 在R 上单调递减, ∴0<c <1.令A ={c |0<c <1}.由y =4x 2-4c (x +12)+c 2+1与x 轴交于不同的两点,可得方程4x 2-4cx +c 2-2c +1=0所对应的判别式Δ=16c 2-16(c 2-2c +1)>0. 解得c >12,令B ={c |c >12}.根据题意,如果p 真,q 假,则0<c ≤12;如果p 假,q 真,则c ≥1, ∴c 的取值范围为(0,12]∪[1,+∞).方法二 同方法一,问题等价于求集合 [(∁R B )∩A ]∪[(∁R A )∩B ]=(0,12]∪[1,+∞).∴c 的取值范围为(0,12]∪[1,+∞).13.已知命题p :方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若命题“p ∨q ” 是假命题,求实数a 的取值范围. 解 由a 2x 2+ax -2=0,得(ax +2)(ax -1)=0. 显然a ≠0,∴x =-2a 或x =1a .若命题p 为真,∵x ∈[-1,1],故⎪⎪⎪⎪-2a ≤1或⎪⎪⎪⎪1a ≤1, ∴|a |≥1. 若命题q 为真,即只有一个实数x 满足x 2+2ax +2a ≤0,即函数y =x 2+2ax +2a 的图象与x 轴只有一个交点. ∴Δ=4a 2-8a =0, ∴a =0或a =2.∵命题“p ∨q ”为假命题,∴a 的取值范围是{a |-1<a <0或0<a <1}.。
高中数学人教A版选修2-1优化练习:第一章 1.3 简单的逻辑联结词 Word版含解析

[课时作业][A组基础巩固]1.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.綈p是真命题D.綈q是真命题解析:根据“且”“或”“非”命题的真假判定法则知D正确.答案:D2.命题p:2n-1是奇数,q:2n+1是偶数(n∈Z),则下列说法中正确的是() A.p或q为真B.p且q为真C.非p为真D.非q为假解析:由题设知:p真q假,故p或q为真命题.答案:A3.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(綈p)∨q B.p∧qC.(綈p)∨(綈q) D.(綈p)∧(綈q)解析:∵p真,q假,∴(綈p)∨(綈q)为真.答案:C4.已知命题p:“任意x∈[0,1],a≥e x”,命题q:“存在x∈R,x2+4x+a=0”,若命题“p且q”是真命题,则实数a的取值范围是()A.(4,+∞) B.[1,4]C.[e,4] D.(-∞,1]解析:“p且q”是真命题,则p与q都是真命题;p真则任意x∈[0,1],a≥e x,需a≥e;q真则x2+4x+a=0有解,需Δ=16-4a≥0,所以a≤4;p且q为真,则e≤a≤4.答案:C5.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:“至少有一位学员没有降落在指定范围”是指“甲或乙有一个没有降落在指定范围”或“甲、乙都没有降落在指定范围”,所以其可表示为“(綈p )∨(綈q )”.故选A.答案:A6.命题p :方向相同的两个向量共线,q :方向相反的两个向量共线,则命题 “p ∨q ”为________.解析:方向相同的两个向量共线或方向相反的两个向量共线,即“方向相同或相反的两个向量共线”.答案:方向相同或相反的两个向量共线7.p :点P 在直线y =2x -3上,q :点P 在曲线y =-x 2上,则使“p ∧q ”为真命题的一个点P (x ,y )的坐标是________.解析:由⎩⎨⎧ y =2x -3y =-x 2得⎩⎨⎧ x =1y =-1或⎩⎨⎧x =-3y =-9. 答案:(1,-1)或(-3,-9)8.下列命题:①命题“2是素数也是偶数”是“p ∧q ”命题;②命题“綈p ∧q ”为真命题,则命题p 是假命题;③命题p :1、3、5都是奇数,则綈p :1、3、5不都是奇数;④命题“(A ∩B )⊆A ⊆(A ∪B )”的否定为“(A ∩B )⊇A ⊇(A ∪B )”.其中,所有正确命题的序号为________.解析:①②③都正确;命题“(A ∩B )⊆A ⊆(A ∪B )”的否定为“(A ∩B )A 或 A (A ∪B )”,④不正确. 答案:①②③9.分别指出下列命题的形式及构成它的命题,并判断真假.(1)相似三角形周长相等或对应角相等;(2)垂直于弦的直径平分这条弦,并且平分弦所对的两段弧;(3)2≤2;(4)有两个角相等的三角形相似或有两条边相等的三角形相似.解析:(1)这个命题是“p ∨q ”的形式,其中p :相似三角形周长相等,q :相似三角形对应角相等,因为p 假q 真,所以“p ∨q ”为真.(2)这个命题是“p ∧q ”的形式,其中p :垂直于弦的直径平分这条弦,q :垂直于弦的直径平分这条弦所对的两段弧,因为p 真q 真,所以“p ∧q ”为真.(3)命题“2≤2”是由命题p :2=2,q :2<2用“或”联结构成的新命题, 即p ∨q .因为命题p 是真命题,所以命题p ∨q 是真命题.(4)由p :有两个角相等的三角形相似与q :有两条边相等的三角形相似构成 “p ∨q ”形式的命题.因为p 是真命题,所以p ∨q 是真命题.10.对命题p :1是集合{x |x 2<a }中的元素;q :2是集合{x |x 2<a }中的元素,则a 为何值时,“p 或q ”为真?a 为何值时,“p 且q ”为真?解析:若p 为真,则1∈{x |x 2<a },所以12<a ,即a >1;若q 为真,则2∈{x |x 2<a },即a >4.若“p 或q ”为真,则a >1或a >4,即a >1;若“p 且q ”为真,则a >1且a >4,即a >4.[B 组 能力提升]1.设a ,b ,c 是非零向量.已知命题p :若a·b =0,b·c =0,则a·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )解析:如图,若a =A 1A →,b =AB →,c =B 1B →,则a·c ≠0,命题p 为假命题;显然命题q 为真命题,所以p ∨q 为真命题.故选A.答案:A2.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p ∨q ”是真命题B .“p ∨q ”是假命题C .綈p 为假命题D .綈q 为假命题解析:当a ·b >0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎨⎧-x +1,x ≤0,-x +2,x >0,所以“p ∨q ”是假命题,选B. 答案:B3.p :1x -3<0,q :x 2-4x -5<0,若p 且q 为假命题,则x 的取值范围是________. 解析:p 为真:1x -3<0,∴x <3; q 为真:x 2-4x -5<0,∴-1<x <5;p 且q 为真:⎩⎨⎧x <3,-1<x <5,∴-1<x <3. 故p 且q 为假时x 的范围是x ≤-1或x ≥3.答案:x ≤-1或x ≥34.已知命题p :不等式x x -1<0的解集为{x |0<x <1};命题q :在△ABC 中, “A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真,其中正确结论的序号是__________.(请把正确结论的序号都填上)解析:解不等式知,命题p 是真命题,在△ ABC 中,“A >B ”是“sin A >sin B ”的充分必要条件,所以命题q 是假命题,∴①正确,②错误,③正确,④错误. 答案:①③5.设p :函数f (x )=|x -a |在区间(4,+∞)上单调递增;q :log a 2<1,如果“綈p ”是真命题,“q ”也是真命题,求实数a 的取值范围.解析:p :f (x )=|x -a |在区间(4,+∞)上递增,故a ≤4.q :由log a 2<1=log a a ⇒0<a <1或a >2.如果“綈p ”为真命题,则p 为假命题,即a >4.又q 为真,即0<a <1或a >2,由⎩⎨⎧ 0<a <1或a >2,a >4可得实数a 的取值范围是a >4. 6.已知p :方程x 2+mx +1=0有两个不等的负实数根;q :方程4x 2+4(m -2)x +1=0无实数根,若“p ∨q ”为真命题,且“p ∧q ”是假命题,求实数m 的取值范围.解析:p :方程x 2+mx +1=0有两个不等的负实数根⇔⎩⎨⎧Δ=m 2-4>0,-m <0,⇔m >2. q :方程4x 2+4(m -2)x +1=0无实数根⇔Δ=16(m -2)2-16<0⇔1<m <3.∴綈p :m ≤2,綈q :m ≤1或m ≥3.∵“p ∨q ”为真命题,且“p ∧q ”是假命题,∴p 为真且q 为假,或p 为假且q 为真.(1)当p 为真且q 为假时,即p 为真且綈q 为真,∴⎩⎨⎧ m >2,m ≤1或m ≥3,解得m ≥3;(2)当p 为假且q 为真时,即綈p 为真且q 为真,∴⎩⎨⎧ m ≤2,1<m <3,解得1<m ≤2.综上所述,实数m 的取值范围是(1,2]∪[3,+∞).。
人教A版选修2-1第一章第5课时同步练习§1.3简单的逻辑联结词

§1.3简单的逻辑联结词一、选择题1、命题“p ”或“非p ”( )A 、可能都是真命题B 、可能都是假命题C 、一真一假D 、只有p 是真命题2、“a+b>2c ”的一个充分不必要条件是( )A 、a>c 或b>cB 、a>c 且b<cC 、a>c 且b>cD 、a>c 或b<c3、用反证法证明命题“如果a>b,那么33b a >”时,假设的内容应是( ) A 、33b a =B 、33b a <C 、且33b a =33b a < D 、或33b a =33b a < 4、如果原命题的结论是“p 且q ”形式,那么否命题的结论形式是( )A 、q p ⌝⌝且B 、q p ⌝⌝或C 、q p 或⌝D 、p q 或⌝5、如果原命题的结论是“p 或q ”形式,那么否命题的结论形式是( )A 、q p ⌝⌝或B 、q p 或⌝C 、p q 或⌝D 、q p ⌝⌝且6、|x|+|y|0≠等价于( )A 、x=0且y=0B 、x=0或y=0C 、00≠≠y x 且D 、00≠≠y x 或7、命题“存在实数x,使|x+1|4,02<≤x 且”是( )A 、“p 或q ”的形式B 、“非p ”的形式C 、真命题D 、假命题8、的是且""""B A x B x A x ⋂∉∉∉( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件9、若命题p:0是偶数,命题q :2是3的约数,则下列命题中为真的是( )A 、q p ∧B 、q p ∨C 、p ⌝D 、q p ⌝∧⌝10、如果命题“非p 或非q ”是假命题,则在下列各结论中正确的是( )(1)命题“q p ∧”是真命题; (2)命题“q p ∧”是假命题;(3)命题“q p ∨”是真命题; (4)命题“q p ∨”是假命题;A 、(1)(3)B 、(2)(4)C 、(2)(3)D 、(1)(4)11、设A 、B 是全集U 的子集,命题p 为“3B A ⋂∈”,则命题“非p ”为( ):A 、)()(3BC A C U U ⋃∈ B 、 )()(3B C A C U U ⋂∈C 、B A ⋃∈3D 、B A ⋃∉312、设p 、q 是两个命题,则“复合命题p 或q 为真,p 且q 为假”的充要条件是( )A 、p 、q 中至少有一个为真B 、p 、q 中至少有一个为假C 、p 、q 中只有一个为真D 、p 为真,q 为假13、由下列各组命题构成“p 或q ”、“p 且q ”、“非p ”形式的复合命题中,“p 或q ”为真,“p 且q ”为假,“非p ”为真的是( )A 、p :3为偶数;q :4是奇数B 、p :3+2=6;q :5>3C 、{}b a a p ,:∈;q :{a}≠⊂ {a,b}D 、Q ≠⊂R ;N=N14、下列命题:(1)5>4或4>5;(2)9≥3;(3)命题“若a>b,则a+c>b+c ”;(4)命题“菱形的两条对角线互相垂直”,其中,假命题的个数是( )A 、0B 、1C 、2D 、315、若p 、q 是两个简单命题,且“p 或q ”的否定是真命题,则必有( )A 、p 真q 真B 、p 假q 假C 、p 真q 假D 、p 假q 真二、填空题16、由命题p:6是12的约数,q: 6是24的约数,构成“p 或q ”的形式的命题是 ;“p 且q ”的形式的命题是 ;“非p ”的形式的命题是 ;17、若把命题""B A ⊆看成一个复合命题,那么复合命题的形式是 ,其中构成它的两个简单命题是 、 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章常用逻辑用语
1.3 简单的逻辑联结词
A级基础巩固
一、选择题
1.已知命题p:3≥3,q:3>4,则下列判断正确的是( )
A.p∨q为真,p∧q 为真,綈p为假
B.p∨q为真,p∧q 为假,綈p为真
C.p∨q为假,p∧q 为假假,綈p为假
D.p∨q为真,p∧q 为假,綈p为假
解析:因为p为真命题,q为假命题,所以p∨q 为真,p∧q为假,綈p为假,应选D。
答案:D
2.已知p,q为两个命题,则“p∨q是假命题”是“綈p为真命题”的( ) A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析:“p∨q”为假,则p与q均是假命题,綈p为真命题,又因为綈p为真命题,则p为假命题.但若q为真命题,则推不出p∨q是假命题.
答案:A
3.已知p:∅⊆{0},q:{1}∈{1,2}.由它们构成的新命题“p∧q”“p∨q”“綈p”中,真命题有( )
A.1个B.2个
C.3个D.4个
解析:容易判断命题p:∅⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p∧q是假命题.p∨q是真命题,綈p是假命题.
答案:A
4.已知命题p:a2+b2<0(a,b∈R);命题q:(a-2) 2+|b-3|≥0(a,b∈R),下列结论正确的是( )
A.“p∨q”为真B.“p∧q”为真
C.“綈p”为假D.“綈q”为真
解析:显然p假q真,故“p∨q”为真,“p∧q”为假,“綈p”为真,“綈q”为假.答案:A
5.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是( )
A.a>0 B.a≥0
C.a>1 D.a≥1
解析:命题p:“方程x2+2x+a=0有实数根”的充要条件为Δ=4-4a≥0,即a≤1,则綈p:a>1;
命题q:“函数f(x)=(a2-a)x是增函数”的充要条件为a2-a>0,即a<0
或a>1,
则綈q:0≤a≤1.
由“p∧q”为假命题,“p∨q”为真命题,得p,q一真一假;
若p真q假,则0≤a≤1;若p假q真,则a>1.所以实数a的取值范围是a≥0.
答案:B
二、填空题
6.命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p∨q”为________________.
解析:方向相同的两个向量共线或方向相反的两个向量共线,即“方向相同或相反的两个向量共线”.
答案:方向相同或相反的两个向量共线
7.命题“若a<b,则2a<2b”的否命题为________________,命题的否定为________________.
解析:命题“若a<b,则2a<2b”的否命题为“若a≥b,
则2a≥2b”,命题的否定为“若a<b,则2a≥2b”.
答案:若a≥b,则2a≥2b若a<b,则2a≥2b
8.对于函数:①f(x)=|x+2|;②f(x)=(x-2)2;③f(x)=cos(x-2)有命题p:f(x+2)是偶函数;命题q:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数.能使p∧q为真命题的所有函数的序号是________.
答案:②
三、解答题
9.已知p:x2-x≥6,q:x∈Z,若p∧q和綈q都是假命题,求x的取值集
合.
解:因为綈q 是假命题,所以q 为真命题.又p ∧q 为假命题,所以p 为假命题.
因此x2-x<6且x ∈Z ,解之得-2<x<3且x ∈Z ,故x =-1,0,1,2, 所以x 的取值集合是{-1,0,1,2}.
10.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.
(1)若a =1,且p ∧q 为真,求实数x 的取值范围;
(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围.
解:(1)由x 2-4ax +3a 2<0得(x -3a)(x -a)<0,
又a >0,所以a <x <3a.
当a =1时,1<x <3,即p 为真时,实数x 的取值范围是1<x <3. 由⎩⎪⎨⎪⎧x 2-x -6≤0,
x 2+2x -8>0
,得2<x ≤3, 则q 为真时实数x 的取值范围是2<x ≤3.
若p ∧q 为真,则p 真且q 真,
所以实数x 的取值范围是2<x <3.
(2)綈p 是綈q 的充分不必要条件, 即綈p ⇒綈q ,
且綈q 綈p.
设A ={x|綈p},B ={x|綈q},则A
B , 又A ={x|綈p}={x|x ≤a 或x ≥3a},。