浙江省2020年高考数学压轴卷(含解析)
【高中高考数学压轴题预测题-浙江省1】2020年高考数学计算题大题-含详细解析答案、可编辑

【高中高考数学压轴题预测题-浙江省1】2020年高考数学计算题大题-含详细解析答案、可编辑学校:__________ 班级:__________ 姓名:__________ 考号:__________一、解答题(本题共计 40 小题,每题 3 分,共计120分,)1. 已知实数a≠0,设函数f(x)=a ln x+√1+x,x>0.(1)当a=−34时,求函数f(x)的单调区间;(2)对任意x∈[1e2,+∞)均有f(x)≤√x2a,求a的取值范围.注:e=2.71828⋯为自然对数的底数.2. 如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B 两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求S1S2的最小值及此时点G的坐标.3. 设等差数列{a n}的前n项和为S n,a3=4,a4=S3.数列{b n}满足:对每个n∈N∗,S n+b n,S n+1+b n,S n+2+b n成等比数列.(1)求数列{a n},{b n}的通项公式;(2)记c n=√a n2b n, n∈N∗,证明:c1+c2+⋯+c n<2√n,n∈N∗.4. 如图,已知三棱柱ABC−A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90∘,∠BAC=30∘,A1A=A1C=AC,E, F分别是AC,A1B1的中点. (1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.5. 设函数f(x)=sin x,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=[f(x+π12)]2+[f(x+π4)]2的值域.6. 已知函数f(x)=√x−ln x.(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;(2)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.7. 如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+y24=1(x<0)上的动点,求△PAB面积的取值范围.8. 已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.9. 如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120∘,A 1A =4,C 1C =l ,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.10. 已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (−35,−45).(1)求sin (α+π)的值;(2)若角β满足sin (α+β)=513,求cos β的值.11. 设数列满足|a n −a n+12|≤1,n ∈N ∗.(1)求证:|a n |≥2n−1(|a 1|−2)(n ∈N ∗)(2)若|a n |≤(32)n ,n∈N ∗,证明:|a n |≤2,n ∈N ∗.12. 如图,设椭圆C:x 2a 2+y 2=1(a >1)(I )求直线y =kx +1被椭圆截得到的弦长(用a ,k 表示)(II )若任意以点A(0, 1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.13. 已知a ≥3,函数F(x)=min {2|x −1|, x 2−2ax +4a −2},其中min (p, q)={p,p ≤q q,p >q .(Ⅰ)求使得等式F(x)=x 2−2ax +4a −2成立的x 的取值范围; (Ⅱ)(i)求F(x)的最小值m(a);(ii)求F(x)在[0, 6]上的最大值M(a).14. 如图,在三棱台ABC −DEF 中,已知平面BCFE ⊥平面ABC ,∠ACB =90∘,BE =EF =FC =1,BC =2,AC =3,(1)求证:EF ⊥平面ACFD ;(2)求二面角B −AD −F 的余弦值.15. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.16. 已知数列{a n }满足a 1=12且a n+1=a n −a n 2(n ∈N ∗)(1)证明:1≤a nan+1≤2(n ∈N ∗);(2)设数列{a n 2}的前n 项和为S n ,证明12(n+2)≤S n n≤12(n+1)(n ∈N ∗).17. 已知椭圆x22+y2=1上两个不同的点A,B关于直线y=mx+12对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).18. 已知函数f(x)=x2+ax+b(a, b∈R),记M(a, b)是|f(x)|在区间[−1, 1]上的最大值.(1)证明:当|a|≥2时,M(a, b)≥2;(2)当a,b满足M(a, b)≤2时,求|a|+|b|的最大值.19. 如图,在三棱柱ABC−A1B1C1中,∠BAC=90∘,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1−BD−B1的平面角的余弦值.20. 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=π4,b2−a2=12c2.(1)求tan C的值;(2)若△ABC的面积为3,求b的值.21. 设函数f(x)=x3+1x+1,x∈[0, 1],证明:(1)f(x)≥1−x+x2(2)34<f(x)≤32.22. 如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|−1.求p的值;若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.23. 如图,在三棱台ABC−DEF中,平面BCFE⊥平面ABC,∠ACB=90∘,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.24. 设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N∗.(1)求通项公式a n;(2)求数列{|a n−n−2|}的前n项和.25. 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=23,求cos C的值.26. 设函数f(x)=x2+ax+b(a, b∈R).(Ⅰ)当b=a24+1时,求函数f(x)在[−1, 1]上的最小值g(a)的表达式.(Ⅱ)已知函数f(x)在[−1, 1]上存在零点,0≤b−2a≤1,求b的取值范围.27. 如图,已知抛物线C1:y=14x2,圆C2:x2+(y−1)2=1,过点P(t, 0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(Ⅰ)求点A,B的坐标;(Ⅱ)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.28. 如图,在三棱柱ABC−A1B1C1中,∠BAC=90∘,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.29. 已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N∗),b1+12b2+13b3+⋯+1nb n=b n+1−1(n∈N∗)(Ⅰ)求a n与b n;(Ⅱ)记数列{a n b n}的前n项和为T n,求T n.30. 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知tan(π4+A)=2.(1)求sin2Asin2A+cos2A的值;(2)若B=π4,a=3,求△ABC的面积.31. 已知函数f(x)=x3+3|x−a|(a∈R).(1)若f(x)在[−1, 1]上的最大值和最小值分别记为M(a),m(a),求M(a)−m(a);(2)设b∈R,若[f(x)+b]2≤4对x∈[−1, 1]恒成立,求3a+b的取值范围.32. 如图,设椭圆C:x2a2+y2b2=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a−b.33. 如图,在四棱锥A−BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90∘,AB=CD=2,DE=BE=1,AC=√2.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B−AD−E的大小.34. 已知数列{a n}和{b n}满足a1a2a3...a n=(√2)b n(n∈N∗).若{a n}为等比数列,且a1=2,b3=6+b2.(1)求a n与b n;(2)设c n=1a n−1b n(n∈N∗).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N∗,均有S k≥S n.35. 在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=√3,cos2A−cos2B=√3sin A cos A−√3sin B cos B.(1)求角C的大小;(2)若sin A =45,求△ABC 的面积.36. 已知△ABP 的三个顶点在抛物线C:x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM →,(1)若|PF|=3,求点M 的坐标;(2)求△ABP 面积的最大值.37. 已知函数f(x)=x 3+3|x −a|(a >0),若f(x)在[−1, 1]上的最小值记为g(a). (Ⅰ)求g(a);(Ⅱ)证明:当x ∈[−1, 1]时,恒有f(x)≤g(a)+4.38. 如图,在四棱锥A −BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90∘,AB =CD =2,DE =BE =1,AC =√2.(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.39. 已知等差数列{a n }的公差d >0,设{a n }的前n 项和为S n ,a 1=1,S 2⋅S 3=36. (Ⅰ)求d 及S n ;(Ⅱ)求m ,k(m, k ∈N ∗)的值,使得a m +a m+1+a m+2+...+a m+k =65.40. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4sin 2A−B 2+4sin A sin B =2+√2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值.。
浙江省2020年高考数学压轴卷含解析

浙江省2020年高考数学压轴卷(含解析)一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则{|||2}A x x =<{1,0,1,2,3}B =-A B = A .B .{0,1}{0,1,2}C .D .{1,0,1}-{1,0,1,2}-2.复数(为虚数单位)的共轭复数是( )21+i i A .B .C .D .-1+i 1-i 1+i -1-i3.记为等差数列的前项和.若,,则的公差为n S {}n a n 4524a a +=648S ={}n a A .1B .2C .4D .84.底面是正方形且侧棱长都相等的四棱锥的三视图如图所示,则该四棱锥的体积是( )A .B .8CD .835.若实数满足不等式组,则( ),x y 02222y x y x y ⎧⎪-⎨⎪-⎩………3x y -A .有最大值,最小值B .有最大值,最小值22-83-83C .有最大值2,无最小值D .有最小值,无最大值2-6.“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.函数(其中为自然对数的底数)的图象大致为( )()()11x xe f x x e +=-e A .B .C .D .8.已知、,且,则( )a b R ∈a b >A .B .C .D .11a b<sin sin a b>1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭22a b >9.设是一个高为3,底面边长为2的正四棱锥,为中点,过P ABCD -M PC 作平面与线段,分别交于点,(可以是线段端点),则四棱AM AEMF PB PD E F 锥的体积的取值范围为( )P AEMF -A .B .C .D .4,23⎡⎤⎢⎥⎣⎦43,32⎡⎤⎢⎥⎣⎦31,2⎡⎤⎢⎥⎣⎦[]1,210若对圆上任意一点,的取22(1)(1)1x y -+-=(,)P x y 34349x y a x y -++--值与,无关, 则实数a 的取值范围是( )x y A .B .C .或D .4a ≤46a -≤≤4a ≤6a ≥6a ≥第II 卷(非选择题)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分11.《九章算术》中有一题:“今有女子善织,日自倍,五日织五尺.”该女子第二日织______尺,若女子坚持日日织,十日能织______尺.12.二项式的展开式中常数项为__________.所有项的系数和为521x __________.13.设双曲线的半焦距为c ,直线过(a ,0),(0,b )两点,()222210x y b a a b -=>>l 已知原点到直线,则双曲线的离心率为____;渐近线方程为l_________.14.已知函数,若,则实数_____;若22,0()log (),0x x f x x a x ⎧<=⎨-≥⎩(1)(1)f f -=a =存在最小值,则实数的取值范围为_____.()y f x =a 15.设向量满足,,,.若,则,,a b c 1a = ||2b = 3c = 0b c ⋅= 12λ-≤≤的最大值是________.(1)a b cλλ++- 16.某班同学准备参加学校在假期里组织的“社区服务”、“进敬老院”、“参观工厂”、“民俗调查”、“环保宣传”五个项目的社会实践活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂”与“环保宣讲”两项活动必须安排在相邻两天,“民俗调查”活动不能安排在周一.则不同安排方法的种数是________.17.已知函数若在区间上方程只有一()2122,01()2,10x x x m x f x x m x +⎧+≤≤⎪=⎨---≤<⎪⎩[1,1]-()1f x =个解,则实数的取值范围为______.m三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤。18.已知函数.()()222cos 1x R f x x x =-+∈(1)求的单调递增区间;()f x (2)当时,求的值域.,64x ππ⎡⎤∈-⎢⎥⎣⎦()f x 19.如图,四棱柱的底面是菱形,1111ABCD A B C D -ABCD AC BD O = 底面,.1A O ⊥ABCD 12AA AB ==(1)求证:平面平面;1ACO ⊥11BB D D (2)若,求与平面所成角的正弦值.60BAD ∠=︒OB 11A B C20.等比数列的各项均为正数,且.{}n a 212326231,9a a a a a +==(1)求数列的通项公式;{}n a (2)设 ,求数列的前项和.31323log log ......log nn b a a a =+++1n b ⎧⎫⎨⎬⎩⎭n n T 21.已知抛物线()上的两个动点和,焦点为F.22y px =0p >()11,A x y ()22,B x y 线段的中点为,且点到抛物线的焦点F 的距离之和为8AB ()03,My (1)求抛物线的标准方程;(2)若线段的垂直平分线与x 轴交于点C ,求面积的最大值.AE ABC ∆22.已知函数.2()(1)(0)x f x x e ax x =+->(1)若函数在上单调递增,求实数的取值范围;()f x (0,)+∞a (2)若函数有两个不同的零点.()f x 12,x x (ⅰ)求实数的取值范围;a (ⅱ)求证:.(其中为的极小值点)12011111x x t +->+0t ()f x参考答案及解析1.【答案】C【解析】由,得,选C.2.【答案】C【解析】因为,所以其共轭复数是,选C.21+i =1-i 1+i 【点睛】本题考查共轭复数概念,考查基本分析求解能力,属基本题.3.【答案】C【解析】设公差为,,d 45111342724a a a d a d a d +=+++=+=,联立解得,故选C.611656615482S a d a d ⨯=+=+=112724,61548a d a d +=⎧⎨+=⎩4d =点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如为等差数列,{}n a 若,则.m n p q +=+m n p q a a a a +=+4.【答案】C【解析】根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2,画出图形,如图所示;所以该四棱锥的底面积为,高为;224S ==h ==所以该四棱锥的体积是.11433V Sh ==⨯=故选:C.【点睛】本题考查了利用三视图求几何体体积的问题,属于中档题.5.【答案】C【解析】画出不等式组表示的平面区域,如图阴影所示;2222y x y x y ⎧⎪-⎨⎪-≥⎩……设,则直线是一组平行线;3z x y =-30x y z --=当直线过点时,有最大值,由,得;A z 022y x y =⎧⎨-=⎩(2,0)A 所以的最大值为,且无最小值.z 3202x y -=-=z 故选:C.6.【答案】C 【解析】直线和直线互相垂直的充要条件是,即,故选0x y +=0x ay -=1()110a ⨯-+⨯=1a =C7.【答案】A【解析】∵f(﹣x)f (x ),()()()111111x x x x x x e e e x e x e x e--+++====-----∴f(x )是偶函数,故f (x )图形关于y 轴对称,排除C ,D ;又x=1时,<0,()e 111e f +=-∴排除B ,故选A .8.【答案】C 【解析】对于A 选项,取,,则成立,但,A 选项错误;1a =1b =-a b >11a b >对于B 选项,取,,则成立,但,即,B 选项a π=0b =a b >sin sin 0π=sin sin a b =错误;对于C 选项,由于指数函数在上单调递减,若,则,C 选13x y ⎛⎫= ⎪⎝⎭R a b >1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭项正确;对于D 选项,取,,则,但,D 选项错误.1a =2b =-a b >22a b <故选:C.9. 【答案】D 【解析】依题意表示到两条平行343493434955x y ax y x y a x y -+---++--=+(),P x y 直线和的距离之和与无关,故两条平行直线340x y a -+=3490x y --=,x y 和在圆的两侧,画出图像如下图所示,340x y a -+=3490x y --=22(1)(1)1x y -+-=故圆心到直线的距离,解得或(舍去)()1,1340x y a -+=3415ad -+=≥6a ≥4a ≤-故选:D.10.【答案】B【解析】首先证明一个结论:在三棱锥中,棱上取点S ABC -,,SA SB SC 111,,A B C则,设与平面所成角,111111S A B C S ABCV SA SB SC V SA SB SC --⋅⋅=⋅⋅SB SAC θ,证毕.11111111111111sin sin 3211sin sin 32S A B C B SA C S ABCB SACSA SC ASC SB V V SA SB SC V V SA SB SC SA SC ASC SB θθ----⨯⋅⋅∠⋅⋅⋅⋅===⋅⋅⨯⋅⋅∠⋅⋅四棱锥中,设,P ABCD -,PE PF x y PB PD ==212343P ABCDV -=⨯⨯=12222P AEMF P AEF P MEF P AEF P MEF P AEF P MEF P ABCD P ABD P ABD P DBC P ABD P DBC V V V V V V V V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭111222PA PE PF PE PM PF xy xy PA PB PD PB PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以3P AEMF V xy-=又12222P AEMF P AEM P MAF P AEM P MAF P AEM P MAF P ABCDP ABC P ABC P DAC P ABC P DAC V V V V V VV V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭11112222PA PE PM PA PM PF x y PA PB PC PA PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以P AEMF V x y-=+即,又,3,31x x y xy y x +==-01,0131xx y x ≤≤≤=≤-解得112x ≤≤所以体积,令2313,[,1]312x V xy x x ==∈-131,[,2]2t x t =-∈2(1)111()(2),[,2]332t V t t t t t +==++∈根据对勾函数性质,在递减,在递增()V t 1[,1]2t ∈[1,2]t ∈所以函数最小值,最大值,()V t 4(1)3V =13(2)()22V V ==四棱锥的体积的取值范围为P AEMF -43,32⎡⎤⎢⎥⎣⎦故选:B11.【答案】1031165【解析】设该女子每天的织布数量为,由题可知数列为公比为2的等比数列,n a {}n a 设数列的前n 项和为,则,解得,{}n a n S ()51512512a S -==-1531a =所以,.2110231a a ==()10105123116512S -==-故答案为:,.1031165【点睛】本题考查了等比数列的应用,关键是对于题目条件的转化,属于基础题.12.【答案】 325【解析】展开式的通项为,5552215521()r rrr r r T C C x x --+==令,解得,55022r -=1r =所以展开式中的常数项为,1255T C ==令,得到所有项的系数和为,得到结果.1x =5232=点睛:该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中的特定项以及展开式中的系数和,所用到的方法就是先写出展开式的通项,令其幂指数等于相应的值,求得r ,代入求得结果,对于求系数和,应用赋值法即可求得结果.13.【答案】2y =【解析】由题可设直线方程为:,即,则原点到直线的距离l 1x ya b +=0bx ay ab --=,解得,两式同时平方可得,又ab d c ===24ab =224163a b c =,代换可得,展开得:,同时除以222b c a =-()2224163a c a c -=224416162a c a c -=得:,整理得,解得或,又,4a 2416163e e -=()()223440e e --=243e =40b a >>所以,所以;2222222222b a c a a c a e >⇒->⇒>⇒>24,2c e e a ===b a ===by x a =±=故答案为:2;y =14.【答案】1[1,0)-【解析】,(1)(1)f f -= ,122log (1)a -∴=-,1212a ∴-=1a ∴=易知时,;0x <()2(0,1)xf x =∈又时,递增,故,0x …2()log ()f x x a =-2()(0)log ()f x f a =-…要使函数存在最小值,只需,()f x 20()0a log a ->⎧⎨-⎩…解得:.10a -<…故答案为:,.1[1,0)-15.【答案】1+【解析】令,则,因为,()1n b cλλ=+- n == 12λ-≤≤所以当,,因此当与同向时的模最大,1λ=-max n == n aa n + max 1a n a n +=+=+16.【答案】36【解析】把“参观工厂”与“环保宣讲”当做一个整体,共有种,4242A A 48=把“民俗调查”安排在周一,有,3232A A 12⋅=∴满足条件的不同安排方法的种数为,481236-=故答案为:36.17.【答案】或1|12m m ⎧-≤<-⎨⎩1}m =【解析】当时,由,得,即;当时,由01x ≤≤()1f x =()221x x m +=212xx m ⎛⎫=+ ⎪⎝⎭10x -≤<,得,即.()1f x =1221x x m +--=1221x x m +-=+令函数,则问题转化为函数与函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩的图像在区间上有且仅有一个交点.()h x =2x m +[1,1]-在同一平面直角坐标系中画出函数与在区间函数11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩2y x m =+上的大致图象如下图所示:[1,1]-结合图象可知:当,即时,两个函数的图象只有一个交点;(0)1h =1m =当时,两个函数的图象也只有一个交点,故所求实数(1)(1),11(1)(1)2h g m h g <⎧⇒-≤<-⎨-≥-⎩的取值范围是.m 1|112m m m ⎧⎫-≤<-=⎨⎬⎩⎭或18.【答案】(1);(2).,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦⎡-⎣【解析】(1) 函数,()222cos 122226f x x x cos x in x x s π⎛⎫ ⎪=⎝=-+-=⎭-令,求得,222()262πππππ-≤-≤+∈k x k k Z ()63k x k k Z ππππ-≤≤+∈故函数f(x)的增区间为;,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)若,则,故当时,函数f(x)取得最小,64x ππ⎡⎤∈-⎢⎥⎣⎦2,623x πππ⎡⎤-∈-⎢⎥⎣⎦262x ππ-=-值为−2;当时,函数f(x).263x ππ-=⎡-⎣【点睛】本题考查三角恒等变换,考查正弦型函数的性质,考查运算能力,属于常考题.19.【答案】(1)证明见解析(2(1)证明:由底面可得,1A O ⊥ABCD 1AO BD ⊥又底面是菱形,所以,ABCD CO BD ⊥因为,所以平面,1A O CO O ⋂=BD ⊥1A CO 因为平面,BD ⊂11BB D D 所以平面平面.1ACO ⊥11BB D D (2)因为底面,以为原点,,,为,,轴建立如图1A O ⊥ABCD O OB OC 1OAx y z 所示空间直角坐标系,O xyz-则,,,,(1,0,0)BC (0,A 1(0,0,1)A ,,11A B AB ==()11A C =- 设平面的一个法向量为,11A B C (,,)m x y z =由,取得,1110000m A B x m A C z ⎧⋅=⇒+=⎪⎨⋅=⇒-=⎪⎩ 1x=1,1m ⎛⎫=- ⎪⎝⎭ 又,(1,0,0)OB =所以,cos ,||||OB mOB m OB m ⋅===所以与平面.OB 11A B C 20.【答案】(1)(2)13n n a =21nn -+(Ⅰ)设数列{a n }的公比为q,由=9a2a 6得=9,所以q 2=.23a23a24a 19由条件可知q >0,故q =.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=.1313故数列{a n }的通项公式为a n =.13n(Ⅱ)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-.()21n n +故.()1211211n b n n n n ⎛⎫=-=-- ⎪++⎝⎭121111111122122311n n b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦所以数列的前n 项和为1n b⎧⎫⎨⎬⎩⎭21n n -+21.【答案】(1)(224y x =【解析】(1)由题意知,126x x +=则,1268AF BF x x p p +=++=+=,2p ∴=抛物线的标准方程为∴24y x=(2)设直线:(),AB x my n =+0m ≠由,得,24x my n y x =+⎧⎨=⎩2440y my n --=124y y m∴+=,即,212426x x m n ∴+=+=232n m =-即,()21221216304812m y y m y y m ⎧∆=->⎪⎪+=⎨⎪⋅=-⎪⎩,2AB y ∴=-=设的中垂线方程为:,即,AB ()23y m m x -=--()5y m x =--可得点C 的坐标为,()5,0直线:,即,AB 232x my m =+-2230x my m -+-=点C 到直线的距离,∴AB d ()21412S AB d m ∴=⋅=+令,则(,t =223m t =-0t <<令,()()244f t t t=-⋅,令,则,()()2443f t t'∴=-()0ft '∴=t =在上;在上,⎛⎝()0f t '>()0f t '<故在单调递增,单调递减,()ft ⎛ ⎝当,即,∴t =m =maxS =22.【答案】(1);(2)(ⅰ);(ⅱ)证明见⎛-∞ ⎝⎫+∞⎪⎪⎭解析.【解析】(1)由,得,2()(1)x f x x e ax =+-2()2x x f x x e a x +⎛⎫'=- ⎪⎝⎭设,;则;2()x x g x e x +=⋅(0)x >2222()xx x g x e x +-'=⋅由,解得,()0g x '…1x ≥-所以在上单调递减,在上单调递增,()gx 1)1,)-+∞所以1min()1)(2==+⋅g x g 因为函数在上单调递增,所以在恒成立()f x (0,)+∞()0f x '…(0,)+∞所以;1(22+⋅≥a 所以,实数的取值范围是:.a ⎛-∞ ⎝(2)(i )因为函数有两个不同的零点,不单调,所以.()f x ()fx a >因此有两个根,设为,且,()0f x '=10,tt 1001t t <<-<所以在上单调递增,在上单调递减,在上单调递增;()f x ()10,t ()10,t t ()0,t +∞又,,当充分大()1(0)1f t f >=()22()(1)(1)x x xf x x e ax a e x x a e =+-=-++-⋅x 时,取值为正,因此要使得有两个不同的零点,则必须有,即()f x ()f x ()00f t <;()200010t t e a t +-⋅<又因为;()()0000220tf t t e at '=+-=所以:,解得,所以;()()000002202t tt t e t e +-⋅+<0t>12>=a g 因此当函数有两个不同的零点时,实数的取值范围是.()f xa ⎫+∞⎪⎪⎭(ⅱ)先证明不等式,若,,则.12,(0,)x x ∈+∞12x x≠211221112x x x xnx nx -+<<-证明:不妨设,即证,210x x >>21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭<<+设,,,211x t x =>()ln g t t =-2(1)()ln 1t h t t t -=-+只需证且;()0g t <()0h t >因为,,()0g t '=<22(1)()0(1)t h t t t -'=>+所以在上单调递减,在上单调递增,()g t (1,)+∞()h t (1,)+∞所以,,从而不等式得证.()(1)0g t g <=()(1)0h t h >=再证原命题.12011111x x t +->+由得;()()1200f x f x ⎧=⎪⎨=⎪⎩()()122112221010x x x e ax x e ax ⎧+-=⎪⎨+-=⎪⎩所以,两边取对数得:()()2212221211xx x e x e x x ++=;()()()2121212ln ln ln 1ln 1x x x x x x ⎡⎤--+-+=-⎣⎦即.()()()()()212121212ln ln ln 1ln 1111x x x x x x x x -+-+-=-+-+因为,()()()()()()()2121212112211111121111nx nx n x n x x x x x x x-+-+-<--+-++++所以,121221112x x x x +<<+++因此,要证.12011111x x t +->+只需证;1202x x t +<因为在上单调递增,,所以只需证,()f x ()0,t +∞1020x t x <<<()()2022f x f t x <-只需证,即证,其中;()()1012f x f t x <-()()00f t x f t x +<-()0,0x t ∈-设,,只需证;()()00()r x f t x f t x =+--00t x -<<()0r x <计算得;()()00000()224t tr x x t e x x t e x at '=++++-++--.()()2000()33t xr x e x x t e x t ''⎡⎤=-+++--⎣⎦由在上单调递增,()()20033x y x t e x t =+++--()0,0t -得,()()0003030y t e t <++--=所以;即在上单调递减,()0r x ''<()r x '()0,0t -所以:;()0()(0)20r x r f t '''>==即在上单调递增,所以成立,即原命题得证.()r x ()0,0t -()(0)0r x r <=。
2020年浙江省高考数学试卷(解析版)

为
当 时,则 , ,要使 ,必有 ,且 ,
即 ,且 ,所以 ;
当 时,则 , ,要使 ,必有 .
综上一定有 .
故选:C
【点晴】本题主要考查三次函数在给定区间上恒成立问题,考查学生分类讨论思想,是一道中档题.
10.设集合S,T,S N*,T N*,S,T中至少有两个元素,且S,T满足:
【详解】依题意 是空间不过同一点的三条直线,
当 在同一平面时,可能 ,故不能得出 两两相交.
当 两两相交时,设 ,根据公理 可知 确定一个平面 ,而 ,根据公理 可知,直线 即 ,所以 在同一平面.
综上所述,“ 在同一平面”是“ 两两相交”的必要不充分条件.
故选:B
【点睛】本小题主要考查充分、必要条件的判断,考查公理 和公理 的运用,属于中档题.
故选:A.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
5.某几何体 三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且 .
(I)求角B的大小;
(II)求cosA+cosB+cosC的取值范围.
【答案】(I) ;(II)
【解析】
【分析】
(I)首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定∠B的大小;
2020浙江省高考压轴卷数学理(解析版)

绝密★启封前2020浙江省高考压轴卷数 学 理 科数学I注意事项考生在答题前请认真阅读本注意事项及答题要求1.本试卷共4页,包含填空题(第1题~第14题)、 解析题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效. 4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:球体的体积公式:V =334R π,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.全集12{}345U =,,,,,集合134{}}35{A B =,,,=,,则U A B ⋂()ð═ . 2.已知i 是虚数单位,若12i a i a R +∈(﹣)()=,,则a = . 3.我国古代数学算经十书之一的《九章算术》一哀分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽 人.4.如图是一个算法的流程图,则输出y 的取值范围是 .5.已知函数22353log (1)3x x f x x x -⎧-<⎨-+≥⎩()=,若f (m )=﹣6,则f (m ﹣61)= . 6.已知f (x )=sin (x ﹣1),若p ∈{1,3,5,7},则f (p )≤0的概率为 . 7.已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<2π)的部分图象如图所示,则f (76π)的值为 .8.已知A ,B 分别是双曲线2212x y C m :-=的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为 .9.已知f (x )是R 上的偶函数,且当x ≥0时,f (x )=|x 2﹣3x |,则不等式f (x ﹣2)≤2的解集为 . 10.若函数f (x )=a 1nx ,(a ∈R )与函数g (x )=x ,在公共点处有共同的切线,则实数a 的值为 .11.设A ,B 在圆x 2+y 2=4上运动,且23AB =,点P 在直线3x +4y ﹣15=0上运动.则|PA PB |+u u u r u u u r 的最小值是 .12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =23π,∠ABC 的平分线交AC 于点D ,BD =1,则a +c 的最小值为 .13.如图,点D 为△ABC 的边BC 上一点,2BD DC =u u u r u u u r,E n (n ∈N )为AC 上一列点,且满足:11414n n n n n E A E D E a B a +=+u u u u r u u u u r u u u u r (﹣)﹣5,其中实数列{a n }满足4a n ﹣1≠0,且a 1=2,则111a -+211a -+311a -+…+11n a -= .14.已知函数2910(1)e ,023xx x f x x x ⎧++<⎪⎨⎪-≥⎩()=+6,x 0,其中e 是自然对数的底数.若集合{x ∈Z|x (f (x )﹣m )≥0}中有且仅有4个元素,则整数m 的个数为 .二、解答题(本大题共6小题,计90分. 解析应写出必要的文字说明,证明过程或演算步骤,请把 答案写在答题卡的指定区域内)15.(本小题满分14分) 如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,已知点M 为棱BC 上异于B ,C 的一点. (1)若M 为BC 中点,求证:A 1C ∥平面AB 1M ; (2)若平面AB 1M ⊥平面BB 1C 1C ,求证:AM ⊥BC .16.(本小题满分14分)已知12(,),(0,cos(),.2273πππαπβαβαβ∈∈-=+=), (1)求22sin αβ(﹣)的值; (2)求cos α的值.17.(本小题满分14分) 学校拟在一块三角形边角地上建外籍教室和留学生公寓楼,如图,已知△ABC 中,∠C =2π,∠CBA =θ,BC =a .在它的内接正方形DEFG 中建房,其余部分绿化,假设△ABC 的面积为S ,正方形DEFG 的面积为T . (1)用a ,θ表示S 和T ; (2)设f (θ)=TS,试求f (θ)的最大值P ;18.(本小题满分16分) 已知椭圆22221x y C a b:+=0a b (>>)的离心率为22,短轴长为22. (Ⅰ)求C 的方程;(Ⅱ)如图,经过椭圆左项点A 且斜率为k (k ≠0)直线l 与C 交于A ,B 两点,交y 轴于点E ,点P 为线段AB 的中点,若点E 关于x 轴的对称点为H ,过点E 作与OP (O 为坐标原点)垂直的直线交直线AH 于点M ,且△APM面积为23,求k 的值.19.(本小题满分16分) 已知函数()212ln 2f x x x ax a R =+-∈,. (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由.20.(本小题满分16分) 已知集合A =a 1,a 2,a 3,…,a n ,其中a i ∈R (1≤i ≤n ,n >2),l (A )表示和a i +a j (1≤i <j ≤n )中所有不同值的个数.(Ⅰ)设集合P =2,4,6,8,Q =2,4,8,16,分别求l (P )和l (Q ); (Ⅱ)若集合A =2,4,8, (2),求证:(1)()2n n l A -=; (Ⅲ)l A ()是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由? 数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内........注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共2页,均为非选择题(第21~23题)。
2020年浙江省高考数学压轴试卷 (含答案解析)

2020年浙江省高考数学压轴试卷一、选择题(本大题共10小题,共40.0分)1. 已知集合A ={x||x|<2},B ={−1,0,1,2,3},则A ∩B =( )A. {0,1}B. {0,1,2}C. {−1,0,1}D. {−1,0,1,2} 2. 复数5i−2的共轭复数是( )A. 2+iB. −2−iC. −2+iD. 2−i3. 记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A. 1B. 2C. 4D. 84. 一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则四棱锥的表面积为( )A. 83B. 4√3C. 4√5+1D. 4(√5+1)5. 已知x 、y ∈R ,不等式组{x +2y ≥0x −y ≤00≤y ≤k 所表示的平面区域的面积为6,则实数k 的值为( )A. 1B. 2C. 3D. 46. 已知直线l 1:mx +y −1=0,直线l 2:(m −2)x +my −1=0,则“l 1⊥l 2”是“m =1”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 7. 函数f(x)=(e x +1)lnx 2e x −1(e 是自然对数的底数)的图象大致为( )A. B. C. D.8. 已知实数a >b >0,m ∈R ,则下列不等式中成立的是( )A. (12)a <(12)bB. a −2>b −2C. m a >m bD. b+m a+m >ba 9. 如图,四棱锥P −ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N −PAC 与四棱锥P −ABCD 的体积比为( )A. 1:2B. 1:3C. 1:6D. 1:810. 若对圆(x −1)2+(y −1)2=1上任意一点P(x,y),|3x −4y +a|+|3x −4y −9|的取值与x ,y无关,则实数a 的取值范围是( )A. a ≤−4B. −4≤a ≤6C. a ≤−4或a ≥6D. a ≥6二、填空题(本大题共7小题,共36.0分) 11. 古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述的已知条件,可求得该女子前3天所织布的总尺数为______ .12. 在二项式(√2+x)9的展开式中,常数项是_____________,系数为有理数的项的个数是______________.13. 已知双曲线x 2a 2−y 2b 2=1(b >a >0),焦距为2c ,直线l 经过点(a,0)和(0,b),若(−a,0)到直线l 的距离为2√23c ,则离心率为______. 14. 已知函数f(x)={|x +a|+|x −1|,x >0x 2−ax +2,x ≤0的最小值为a +1,则实数a 的取值范围为____________. 15. 若平面向量a ⃗ ,b ⃗ 满足|a ⃗ |=|2a ⃗ +b ⃗ |=2,则a ⃗ ⋅b⃗ 的取值范围是______. 16. 从甲、乙等8名志愿者中选5人参加周一到周五的社区服务活动,每天安排一人,每人只参加一天,若要求甲、乙两人中至少有一人参加,且当甲、乙两人都参加时,他们参加社区服务活动的日期不相邻,那么不同的安排方法种数为________(用数字作答).17. 若方程x +m =√4−x 2有且只有一个实数解,则实数m 的取值范围为________.三、解答题(本大题共5小题,共74.0分)18. 已知函数f(x)=(sinx +cosx)2+2cos 2x −1.(1)求函数f(x)的递增区间;(2)当x ∈[0,π2]时,求函数f(x)的值域.19. 如图,在四棱锥P −ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60∘.(1)求证:平面PBD ⊥平面PAC ;(2)若PA=AB,求PC与平面PBD所成角的正弦值20.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列{a n}的通项公式;}的前n项和T n.(2)设b n=log3a1+log3a2+⋯+log3a n,求数列{1b n21.已知点F是抛物线C:y2=2px(p>0)的焦点,一点M(0,√2)满足线段MF的中点在抛物线C2上.(1)求抛物线C的方程;(2)若直线MF与抛物线C相交于A、B两点,求线段AB的长.22.已知函数f(x)=lnx+ax,a∈R.(1)讨论函数f(x)的单调性;(2)若函数f(x)的两个零点为x1,x2,且x2x1⩾e2,求证:(x1−x2)f′(x1+x2)>65.-------- 答案与解析 --------1.答案:C解析:本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.先求出集合A和B,由此利用交集的定义能求出A∩B.解:∵集合A={x||x|<2}={x|−2<x<2},B={−1,0,1,2,3},∴A∩B={−1,0,1}.故选C.2.答案:C解析:解:复数5i−2=5(−2−i)(−2+i)(−2−i)=5(−2−i)5=−2−i的共轭复数为−2+i.故选:C.利用复数的运算法则、共轭复数的定义即可得出.本题考查了复数的运算法则、共轭复数的定义,属于基础题.3.答案:C解析:本题主要考查等差数列公式及等差数列求和的基本量运算,属于简单题.利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.解:S n为等差数列{a n}的前n项和,设公差为d,∵a4+a5=24,S6=48,∴{a 1+3d +a 1+4d =246a 1+6×52d =48, 解得a 1=−2,d =4,∴{a n }的公差为4.故选C .4.答案:D解析:解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,由该四棱锥的主视图可知四棱锥的底面边长2,高为2,则四棱锥的斜高为√22+12=√5.所以该四棱锥侧面积为:4×12×2×√5=4√5,底面积为:2×2=4,故表面积S =4+4√5=4(√5+1),故选:D由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,进而可得答案. 本题考查三视图复原几何体形状的判断,几何体的表面积与体积的求法,考查空间想象能力与计算能力. 5.答案:B解析:解:作出不等式组对应的平面区域:则k >0由{x +2y =0y =k,解得{x =−2k y =k ,即A(−2k,k), 由{x −y =0y =k,解得{x =k y =k ,即B(k,k) ∵平面区域的面积是9,∴12(3k)k =6,即k 2=4解得k =±2,解得k =2或k =−2(舍),故选:B .作出不等式组对应的平面区域,利用平面区域的形状,结合面积公式即可得到结论.本题主要考查二元一次不等式组表示平面区域,以及三角形的面积公式的计算,比较基础. 6.答案:B解析:解:直线l 1:mx +y −1=0,直线l 2:(m −2)x +my −1=0,若“l 1⊥l 2”, 则m(m −2)+m =0,解得m =0或m =1,故“l 1⊥l 2”是“m =1”的必要不充分条件,故选:B .利用两条直线相互垂直的充要条件求出m 的值,再根据充分必要条件的定义即可得出.本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.7.答案:A解析:解:f(−x)=(e −x +1)ln(−x)2e −x −1=(1+e x )lnx 21−e x =−(e x +1)lnx 2e x −1=−f(x),则函数f(x)是奇函数,图象关于原点对称,排除B ,C .当x >1时,f(x)>0,排除D ,故选:A .判断函数的奇偶性和图象的对称性,利用特殊值的符号是否对应进行排除.本题主要考查函数图象的识别和判断,判断函数的奇偶性以及对称性是解决本题的关键. 8.答案:A解析:解:∵函数y =(12)x 在R 上单调递减,∴当a >b >0时,(12)a <(12)b .故选:A .根据函数y =(12)x 在R 上单调递减知当a >b >0时,(12)a <(12)b .本题考查了利用函数的单调性判断比较大小和不等式的基本性质,属基础题.。
2020年浙江省高考数学试卷(解析版)

1 3
1 2
2
1
1
1 2
2
1
2
1 3
2
7 3
.
故选:A
【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.
6. 已知空间中不过同一点的三条直线 m,n,l,则“m,n,l 在同一平面”是“m,n,l 两两相交”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
台体的体积公式V
1 3 (S1
S1S2 S2 )h
其中 S1, S2 分别表示台体的上、下底面积, h 表示台体的高
柱体的体积公式V Sh 其中 S 表示柱体的底面积, h 表示柱体的高 锥体的体积公式V 1 Sh
3 其中 S 表示锥体的底面积, h 表示锥体的高 球的表面积公式
S 4 R2
【合等差数列的性质即可判断各等式是否成立. 【详解】对于 A,因为数列 an 为等差数列,所以根据等差数列的下标和性质,由 4 4 2 6 可得, 2a4 a2 a6 ,A 正确; 对于 B,由题意可知, bn1 S2n2 S2n a2n1 a2n2 , b1 S2 a1 a2 , ∴ b2 a3 a4 , b4 a7 a8 , b6 a11 a12 , b8 a15 a16 . ∴ 2b4 2 a7 a8 , b2 b6 a3 a4 a11 a12 . 根据等差数列的下标和性质,由 3 11 7 7, 4 12 8 8 可得 b2 b6 a3 a4 a11 a12 =2a7 a8 =2b4 ,B 正确; 对于 C, a42 a2a8 a1 3d 2 a1 d a1 7d 2d 2 2a1d 2d d a1 ,
2020年高考数学浙江卷附答案解析版
(n
N
)
的前
3
项和是
.
12.设 1 2x5 a1 a2x a3x 2 a4x3 a5x 4 a6x5 , 则 a5
; a1 2 3a a
.
13.已知tan 2 ,则 cos2
; tan( π)
.
4
14.已知圆锥的侧面积(单位: cm2 )为 2 ,且它的侧面积展开图是一个半圆,则这个
其中S1 , S2 分别表示台体的上、下底面积, h
3
题
表示台体的高
其中 R 表示球的半径
选择题部分(共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只
无
有一项是符合题目要求的.
1.已知集合 P {x |1<x<4} , Q 2<x<3,则 P Q
D.6
6.已知空间中不过同一点的三条直线m , n , l ,则“ m , n , l 在同一平面”是“ m ,
n , l 两两相交”的
()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
7.已知等差数列 an的前n 项和 S ,n 公差d 0 ,
D.既不充分也不必要条件
a1 d
≤1
.记
b1
S 2 ,n1
毕业学校
姓名
考生号
绝密★启用前
在
2020 年普通高等学校招生全国统一考试(浙江卷)
数学此Βιβλιοθήκη 参考公式:如果事件 A , B 互斥,那么
柱体的体积公式V Sh
PA B PA PB
其中S 表示柱体的底面积,h 表
卷 如果事件 A , B 相互独立,那么
浙江省高考数学压轴试卷
高考数学压轴试卷题号一二三总分得分一、选择题(本大题共11小题,共44.0分)1.已知全集U={1,2,3,4,5,6},集合A={1,3,5},B={1,2},则A∩(∁U B)()A. ∅B. {5}C. {3}D. {3,5}2.已知双曲线(a>0)的离心率为,则a的值为()A. B. C. D.3.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的表面积为()A. 4+2B. 2C. 4+4D. 6+44.若复数z满足:1+(1+2z)i=0(i是虚数单位),则复数z的虚部是()A. B. C. D.5.函数y=2x2-e|x|在[-2,2]的图象大致为()A. B.C. D.6.已知平面α与两条不重合的直线a,b,则“a⊥α,且b⊥α”是“a∥b”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7.(1-x)4(1+x)5的展开式中x3的系数为()A. 4B. -4C. 6D. -68.4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了查.根据调查结果知道,从该校学生中任意抽取1名学生恰为读书迷的概率是.现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,则期望E(X)和方差D(X)分别是()A. ,B. ,C. ,D. ,9.已知A,B,C是球O球面上的三点,且,D为该球面上的动点,球心O到平面ABC的距离为球半径的一半,则三棱锥D-ABC体积的最大值为()A. B. C. D.10.设S n为等差数列{a n}的前n项和,若a7=5,S5=-55,则nS n的最小值为()A. B. C. D.11.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有()A. 120种B. 156种C. 188种D. 240种二、填空题(本大题共6小题,共32.0分)12.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有______人;所合买的物品价格为______元.13.已知x,y满足条件则2x+y的最大值是______,原点到点P(x,y)的距离的最小值是______14.在△ABC中,若b=2,A=120°,三角形的面积,则c=________;三角形外接圆的半径为________.15.已知向量、满足||=1,||=2,则|+|+|-|的最小值是______,最大值是______.16.已知实数f(x)=,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围为______.17.已知直线y=-x+1与椭圆+=1(a>b>0)相交于A,B两点,且OA⊥OB(O为坐标原点),若椭圆的离心率e∈[,],则a的最大值为______.三、解答题(本大题共5小题,共60.0分)18.设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[-,]上的最小值.19.已知等差数列{a n}的前n项和为S n,若.(1)求首项a1与m的值;(2)若数列{b n}满足,求数列{(a n+6)•b n}的前n项和.20.如图,已知四棱锥P-ABCD,底面ABCD为菱形,AB=2,∠BAD=120°,PA⊥平面ABCD,M,N分别是BC,PC的中点.(1)证明:AM⊥平面PAD;(2)若H为PD上的动点,MH与平面PAD所成最大角的正切值为,求二面角M-AN-C的余弦值.21.已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为5.(1)求该抛物线C的方程;(2)已知抛物线上一点M(t,4),过点M作抛物线的两条弦MD和ME,且MD⊥ME,判断直线DE是否过定点?并说明理由.22.已知函数.若函数是单调递减函数,求实数a的取值范围;若函数在区间上既有极大值又有极小值,求实数a的取值范围.答案和解析1.【答案】D【解析】解:∵U={1,2,3,4,5,6},B={1,2},∴∁U B═{3,4,5,6},又集合A={1,3,5},∴A∩∁U B={3,5},故选:D.先由补集的定义求出∁U B,再利用交集的定义求A∩∁U B.本题考查交、并补集的混合运算,解题的关键是熟练掌握交集与补集的定义,计算出所求的集合.2.【答案】B【解析】解:双曲线,可得c=1,双曲线的离心率为:,∴,解得a=.故选:B.直接利用双曲线求出半焦距,利用离心率求出a即可.本题考查双曲线的离心率的求法,双曲线的简单性质的应用.3.【答案】D【解析】解:根据题意和三视图知几何体是一个放倒的直三棱柱ABC-A′B′C′,底面是一个直角三角形,两条直角边分别是、斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积S=2×+2×2+2×=6+4,故选:D.根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积.本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.4.【答案】B【解析】解:由1+(1+2z)i=0,得z=,∴复数z的虚部是,故选:B.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.【答案】D【解析】【分析】本题考查的知识点是函数的图象,属于基础题.根据已知函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵,∴,故函数为偶函数,当时,,故排除A,B;当时,,则有解为x0,当时,时,故函数在[0,2]不是单调的,故排除C,故选D.6.【答案】A【解析】解:a⊥α,且b⊥α⇒a∥b,反之不成立.可能a,b分别于α,β斜交.∴“a⊥α,且b⊥α”是“a∥b”的充分不必要条件.故选:A.a⊥α,且b⊥α⇒a∥b,反之不成立.可能a,b分别于α,β斜交.本题考查了空间线面位置关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7.【答案】B【解析】解:(1-x)4(1+x)5=(1-4x+6x2-4x3+x3)(1+5x+10x2+10x3+5x4+x5),故展开式中x3的系数为10-40+30-4=-4,故选:B.把(1-x)4和(1+x)5按照二项式定理展开,可得展开式中x3的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8.【答案】B【解析】解:由题意,从该校学生中任意抽取1名学生恰为读书迷的概率.从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,所以.X0123p均值,方差.从该校学生中任意抽取1名学生恰为读书迷的概率.说明每次抽取的结果是相互独立的,推出.得到分布列,然后求解期望即可.本题考查独立重复实验的概率的分布列以及期望的求法,考查转化思想以及计算能力.9.【答案】D【解析】解:如图,在△ABC中,∵AB=AC=3,BC=3,∴由余弦定理可得cos A==-,则A=120°,∴sin A=.设△ABC外接圆的半径为r,则,得r=3.设球的半径为R,则,解得R=2.∵×3×3×=,∴三棱锥D-ABC体积的最大值为=,故选:D.由题意画出图形,求出三角形ABC外接圆的半径,设出球的半径,利用直角三角形中的勾股定理求得球的半径,则三棱锥D-ABC体积的最大值可求.本题主要考查空间几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想等,是中档题.10.【答案】A【解析】解:由题意可得,解可得a1=-19,d=4,∴S n=-19n=2n2-21n,∴nS n=2n3-21n2,设f(x)=2x3-21x2,f′(x)=6x(x-7),当0<x<7时,f′(x)<0;函数是减函数;当x>7时,f′(x)>0,函数是增函数;所以n=7时,nS n取得最小值:-343.故选:A.分别利用等差数列的通项公式及求和公式表示已知条件,然后求出得a1,d,在代入求和公式即可求解.本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题.11.【答案】A【解析】【分析】本题考查排列、组合的应用,注意题目限制条件比较多,需要优先分析受到限制的元素,是简单题.根据题意,由于节目甲必须排在前三位,对甲的位置分三种情况讨论,依次分析乙丙的加法原理计算可得答案.【解答】解:根据题意,由于节目甲必须排在前三位,分3种情况讨论:①甲排在第一位,节目丙、丁必须排在一起,则丙丁相邻的位置有4个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有4×2×6=48种编排方法;②甲排在第二位,节目丙、丁必须排在一起,则丙丁相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有3×2×6=36种编排方法;③甲排在第三位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有3×2×6=36种编排方法;则符合题意要求的编排方法有36+36+48=120种;故选:A.12.【答案】7 ;53【解析】解:设人数为x,物品价格为y,则,解得x=7,y=53.故答案为:7,53.列方程组求解.本题考查了方程的应用,属于基础题.13.【答案】6【解析】解:作出x,y满足条件的可行域如图:目标函数z=2x+y在的交点A(2,2)处取最大值为z=2×2+1×2=6.原点到点P(x,y)的距离的最小值是:|OB|=.故答案为:6;;画出约束条件表示的可行域,判断目标函数z=2x+y的位置,求出最大值.利用可行域转化求解距离即可.本题考查简单的线性规划的应用,正确画出可行域,判断目标函数经过的位置是解题的关键.14.【答案】2;2【解析】【分析】本题主要考查正弦定理的应用,三角形的面积公式,属于基础题.由条件求得c =2=b,可得B的值,再由正弦定理求得三角形外接圆的半径R的值.【解答】解:△ABC中,∵b=2,A=120°,三角形的面积S==bc•sin A=c•,∴c=2=b,故B=(180°-A)=30°.再由正弦定理可得=2R==4,∴三角形外接圆的半径R=2.故答案为2;2.15.【答案】4【解析】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|-|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=-x+z,则直线y=-x+z过M、N时z最小为z min=1+3=3+1=4,当直线y=-x+z与圆弧MN相切时z最大,由平面几何知识易知z max即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以z max=×=.综上所述,|+|+|-|的最小值是4,最大值是.故答案为:4、.通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|-|=,进而换元,转化为线性规划问题,计算即得结论.本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.【答案】(-∞,-2]【解析】解:原问题等价于f2(x)+f(x)=-t有三个不同的实根,即y=-t与y=f2(x)+f(x)有三个不同的交点,当x≥0时,y=f2(x)+f(x)=e2x+e x为增函数,在x=0处取得最小值为2,与y=-t只有一个交点.当x<0时,y=f2(x)+f(x)=lg2(-x)+lg(-x),根据复合函数的单调性,其在(-∞,所以,要有三个不同交点,则需-t≥2,解得t≤-2.原问题等价于f2(x)+f(x)=-t有三个不同的实根,即y=-t与y=f2(x)+f(x)有三个不同的交点,然后分x≥0和x<0两种情况代入解析式可得.本题考查了函数与方程的综合运用,属难题.17.【答案】【解析】解:设A(x1,y1)、B(x2,y2),由,消去y,可得(a2+b2)x2-2a2x+a2(1-b2)=0,∴则x1+x2=,x1x2=,由△=(-2a2)2-4a2(a2+b2)(1-b2)>0,整理得a2+b2>1.∴y1y2=(-x1+1)(-x2+1)=x1x2-(x1+x2)+1.∵OA⊥OB(其中O为坐标原点),可得•=0∴x1x2+y1y2=0,即x1x2+(-x1+1)(-x2+1)=0,化简得2x1x2-(x1+x2)+1=0.∴2•-+1=0.整理得a2+b2-2a2b2=0.∵b2=a2-c2=a2-a2e2,∴代入上式,化简得2a2=1+,∴a2=(1+).∵e∈[,],平方得≤e2≤,∴≤1-e2≤,可得≤≤4,因此≤2a2=1+≤5,≤a2≤,可得a2的最大值为,满足条件a2+b2>1,∴当椭圆的离心率e=时,a的最大值为.故答案为:.将直线方程代入椭圆方程,由韦达定理,向量数量积的坐标运算,求得2a2=1+,由离心率的取值范围,即可求得a的最大值.本题考查椭圆的标准方程,直线与椭圆的位置关系,韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.18.【答案】解:(Ⅰ)函数f(x)=sin(ωx-)+sin(ωx-)=sinωx cos-cosωx sin-sin(-ωx)=sinωx-cosωx=sin(ωx-),又f()=sin(ω-)=0,∴ω-=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x-),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin (x-)的图象;再将得到的图象向左平移个单位,得到y=sin(x+-)的图象,∴函数y=g(x)=sin(x-);当x∈[-,]时,x-∈[-,],∴sin(x-)∈[-,1],∴当x=-时,g(x)取得最小值是-×=-.【解析】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[-,]时g(x)的最小值.19.【答案】解:(1)由已知得a m=S m-S m-1=4,且a m+1+a m+2=S m+2-S m=14,设数列{a n}的公差为d,则有2a m+3d=14,∴d=2由S m=0,得,即a1=1-m,∴a m=a1+(m-1)×2=m-1=4∴m=5,a1=-4(2)由(1)知a1=-4,d=2,∴a n=2n-6∴n-3=log2b n,得.∴.设数列{(a n+6)b n}的前n项和为T n∴①②①-②得==∴【解析】(1)利用a m=S m-S m-1,转化求出数列的公差,然后利用已知条件求解m.(2)化简数列的通项公式,利用错位相减法求和求解即可.本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.20.【答案】(1)证明:由四边形ABCD为菱形,∠BAD=120°,可得∠ABC=60°,△ABC 为正三角形.因为M为BC的中点,所以AM⊥BC.…(2分)又BC∥AD,因此AM⊥AD.因为PA⊥平面ABCD,AM⊂平面ABCD,所以PA⊥AM.而PA∩AD=A,所以AM⊥平面PAD.…(4分)(2)解:AB=2,H为PD上任意一点,连接AH,MH.由(1)知:AM⊥平面PAD,则∠MHA为MH与平面PAD所成的角.在Rt△MAH中,AM=,∴当AH最短时,∠MHA最大,即当AH⊥PD时,∠MHA最大.此时,tan∠MHA==又AD=2,∴∠ADH=45°,∴PA=2.由(1)知AM,AD,AP两两垂直,以A为坐标原点如图建立空间直角坐标系,则A(0,0,0),P(0,0,2),D(0,2,0),,,,则,,,设AC的中点为E,则,故就是面PAC的法向量,.设平面MAN的法向量为n=(x,y,1),二面角M-AN-C的平面角为θ..,∴二面角M-AN-C的余弦值为.…(12分)【解析】(1)利用菱形与等边三角形的性质可得:AM⊥BC,于是AM⊥AD.利用线面垂直的性质可得PA⊥AM.再利用线面垂直的判定与性质定理即可得出;(2)连接AH,MH.由(1)知:AM⊥平面PAD,可得:∠MHA为EH与平面PAD所成的角.在Rt△EAH中,AM=,可知:当AH最短时,∠MHA最大,即当AH⊥PD时,∠MHA最大.利用直角三角形边角关系可得PA=2.由(1)知AM,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系.求出法向量,利用向量夹角求解即可.本题考查了直线与平面垂直的判定.在题中出现了探究性问题,在解题过程中“空间问题平面化的思路”,是立体几何常用的数学思想,属于中档题.21.【答案】解:(1)由题意设抛物线方程为y2=2px,其准线方程为,∵P(4,m)到焦点的距离等于A到其准线的距离,∴,∴p=2.∴抛物线C的方程为y2=4x.(2)由(1)可得点M(4,4),可得直线DE的斜率不为0,设直线DE的方程为:x=my+t,联立,得y2-4my-4t=0,则△=16m2+16t>0①.设D(x1,y1),E(x2,y2),则y1+y2=4m,y1y2=-4t.∵•=(x1-4,y1-4)•(x2-4,y2-4),=x1x2-4(x1+x2)+16+y1y2-4(y1+y2)+16,=,=,=t2-16m2-12t+32-16m=0即t2-12t+32=16m2+16m,得:(t-6)2=4(2m+1)2,∴t-6=±2(2m+1),即t=4m+8或t=-4m+4,代入①式检验均满足△>0,∴直线DE的方程为:x=my+4m+8=m(y+4)+8或x=m(y-4)+4.∴直线过定点(8,-4)(定点(4,4)不满足题意,故舍去).【解析】(1)求出抛物线的焦点坐标,结合题意列关于p的等式求p,则抛物线方程可求;(2)由(1)求出M的坐标,设出直线DE的方程x=my+t,联立直线方程和抛物线方程,化为关于y的一元二次方程后D,E两点纵坐标的和与积,利用⊥得到t与m的关系,进一步得到DE方程,由直线系方程可得直线DE所过定点.本题考查抛物线的简单性质,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,属中档题.22.【答案】解:(1),∵函数f(x)是单调递减函数,∴f'(x)≤0对(0,+∞)恒成立,∴-2x2+ax-1≤0对(0,+∞)恒成立,即对(0,+∞)恒成立,∵(当且仅当2x=,即x=时取等号),∴;(2)∵函数f(x)在(0,3)上既有极大值又有极小值.∴在(0,3)上有两个相异实根,即2x2-ax+1=0在(0,3)上有两个相异实根,,则,得,即.【解析】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查转化思想以及计算能力.(1)求出导函数,通过f'(x)≤0对(0,+∞)恒成立,分离变量推出a,利用基本不等式求解函数的最小值,得到a的范围.(2)通过函数f(x)在(0,3)上既有极大值又有极小值,则说明导函数有由两个零点,列出不等式组求解即可.。
浙江省2020年高考数学压轴卷(含解析)
2
1
1 1
SA SB SC
SA SC sin ASC SB sin
3 2
,证毕.
PE
PF
1
x,
y VP ABCD 22 3 4
PD
3
四棱锥 P ABCD 中,设 PB
,
VP AEMF VP AEF VP MEF VP AEF
8选项,取 a 1 , b 1 ,则 a b 成立,但 a b ,A 选项错误;
对于 B 选项,取 a , b 0 ,则 a b 成立,但 sin sin 0 ,即 sin a sin b ,B 选项
错误;
x
a
b
1
1 1
.
的单调递增区间;
x ,
6 4 时,求 f x 的值域.
(2)当
19.如图,四棱柱
A1O
ABCD A1 B1C1 D1
底面 ABCD ,
(1)求证:平面
AA1 AB 2
A1CO
平面
的底面 ABCD 是菱形 AC BD O ,
.
BB1 D1 D
C
7.【答案】A
【解析】
∵f(﹣x)
e x 1
1 ex
ex 1
x 1 e x
x ex 1
x 1 ex
f(x),
∴f(x)是偶函数,故 f(x)图形关于 y 轴对称,排除 C,D;
又 x=1 时,
∴排除 B,
f 1
e 1
2020年浙江省高考数学压轴试卷(含答案解析)
2020年浙江省高考数学压轴试卷一、选择题(本大题共10小题,共40.0分)1.已知集合,集合0,1,2,,则A. B. 1, C. 0, D. 0,1,2.复数的共轭复数是A. B. C. D.3.记为等差数列的前n项和.若,,则的公差为A. 1B. 2C. 4D. 84.底面是正方形且侧棱长都相等的四棱锥的三视图如图所示,则该四棱锥的体积是A.B. 8C.D.5.若实数x,y满足不等式组,则A. 有最大值,最小值B. 有最大值,最小值2C. 有最大值2,无最小值D. 有最小值,无最大值6.“”是“直线和直线互相垂直”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件7.函数其中e为自然对数的底数的图象大致为A. B.C. D.8.已知a,,且,则A. B. C. D.9.设是一个高为3,底面边长为2的正四棱锥,M为PC中点,过AM作平面AEMF与线段PB,PD分别交于点E,可以是线段端点,则四棱锥的体积的取值范围为A. B. C. D.10.若对圆上任意一点,的取值与x,y无关,则实数a的取值范围是A. B.C. 或D.二、填空题(本大题共7小题,共36.0分)11.九章算术中有一题:“今有女子善织,日自倍,五日织五尺.”该女子第二日织______尺,若女子坚持日日织,十日能织______尺.12.二项式的展开式中常数项为______所有项的系数和为______.13.设双曲线的半焦距为c,直线l过,两点,已知原点到直线l的距离为,则双曲线的离心率为______;渐近线方程为______.14.已知函数,若,则实数______;若存在最小值,则实数a的取值范围为______.15.设向量,,满足,,,若,则的最大值是______.16.某班同学准备参加学校在假期里组织的“社区服务”、“进敬老院”、“参观工厂”、“民俗调查”、“环保宣传”五个项目的社会实践活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂”与“环保宣讲”两项活动必须安排在相邻两天,“民俗调查”活动不能安排在周一.则不同安排方法的种数是______.17.已知函数,若在区间上方程只有一个解,则实数m的取值范围为______.三、解答题(本大题共5小题,共74.0分)18.已知函数.求的单调递增区间;当时,求的值域.19.如图,四棱柱的底面ABCD是菱形,,底面ABCD,.求证:平面平面;若,求OB与平面所成角的正弦值.20.等比数列的各项均为正数,且,.求数列的通项公式;设,求数列的前n项和.21.已知抛物线上的两个动点和,焦点为线段AB的中点为,且A,B两点到抛物线的焦点F的距离之和为8.求抛物线的标准方程;若线段AB的垂直平分线与x轴交于点C,求面积的最大值.22.已知函数.Ⅰ若函数在上单调递增,求实数a的取值范围;Ⅱ若函数有两个不同的零点,,求实数a的取值范围;求证:其中为的极小值点-------- 答案与解析 --------1.答案:C解析:【分析】本题考查交集的求法,解题时要认真审题,注意交集定义的合理运用,属基础题.先求出集合A和B,由此利用交集的定义能求出.【解答】解:集合,0,1,2,,0,.故选C.2.答案:A解析:解:复数的共轭复数.故选:A.利用复数的运算法则、共轭复数的定义即可得出.本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.答案:C解析:【分析】本题主要考查等差数列通项公式及等差数列求和的基本量运算,属于简单题.利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出的公差.【解答】解:为等差数列的前n项和,设公差为d,,,解得,,的公差为4.故选C.4.答案:C解析:解:根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2;画出图形,如图所示;所以该四棱锥的底面积为,高为;所以该四棱锥的体积是.故选:C.根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2;求出四棱锥的底面积和高,计算它的体积.本题考查了利用三视图求几何体体积的问题,是基础题.5.答案:C解析:解:画出不等式组表示的平面区域,如图阴影所示;设,则直线是一组平行线;当直线过点A时,z有最大值,由,得;所以z的最大值为,且z无最小值.故选:C.画出不等式组表示的平面区域,设,则直线是一组平行线,找出最优解,求出z有最大值,且z无最小值.本题考查了简单的线性规划应用问题,也考查了数形结合思想,是基础题.6.答案:C解析:解:“”时,直线为,和互相垂直,充分条件成立;“直线和直线互相垂直”,两线斜率乘积为,,所以“”,必要条件成立,因而是充分必要条件.故选:C.验证比较易,对于只须两线斜率乘积为即可.本题主要考查直线与直线垂直的判定,以及充要条件,是基础题目.7.答案:A解析:【分析】本题主要考查函数图象的识别和判断,利用特殊值法进行排除是解决本题的关键,属于基础题.根据函数值的符号是否对应,利用排除法进行求解即可.【解答】解:当时,,则;当时,,则,所以的图象恒在x轴下方,排除B,C,D,故选A.8.答案:C解析:解:设,由指数函数的性质知,函数为R上的减函数,又,故.故选:C.由不等式的性质及指数函数的图象及性质直接判断得解.本题考查不等式的性质及指数函数的图象及性质,属于基础题.9.答案:B解析:解:为了建立四棱锥的体积与原三棱锥的体积的关系,我们先引用下面的事实,如图设,,分别在三棱锥的侧棱SA,SB,SC上,又与的体积分别为和V,则事实上,设C,在平面SAB的射影分别为H,,则又所以下面回到原题:设,的体积,于是由上面的事实有:,得:,于是,而由,,得,则,又得,所以,当时,,V为减函数,当时,,V为增函数所以得:,又,得,故答案为,故选:B.由三棱锥被截四面体的体积与原四棱锥的体积的结论,转化到本题中,进而转化成函数求最值问题,求导分析单调性后即可求得最值,本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度较大10.答案:D解析:【分析】本题考查了直线和圆的位置关系,以及点到直线的距离公式,属于中档题.由题意可得可以看作点P到直线m:与直线l:距离之和的5倍,,根据点到直线的距离公式解得即可.【解答】解:设,故可以看作点P到直线m:与直线l:距离之和的5倍,取值与x,y无关,这个距离之和与P无关,如图所示:当圆在两直线之间时,P点与直线m,l的距离之和均为m,l的距离,此时与x,y的值无关,当直线m与圆相切时,,化简得,解得或舍去,.故选:D.11.答案:165解析:解:设该女子每天的织布数量为,由题可知数列为公比为2的等比数列,设数列的前n项和为,则,解得,所以,.故答案为:,165.设该女子每天的织布数量为,由题可知数列为公比为2的等比数列,再利用等比数列的通项公式以及前n项和公式即可求解.本题考查了等比数列的应用,关键是对于题目条件的转化,属于基础题.12.答案:5 32解析:解:展开式的通项为:,令,解得,所以展开式中的常数项为:.令,得到所有项的系数和为.故答案为:5,32.利用展开式的通项公式可得展开式中的常数项;令,得到所有项的系数和.本题考查了二项式的展开式的通项公式及其性质、方程的解法、转化法,考查了推理能力与计算能力,属于基础题.13.答案:2解析:解:由题可设直线l方程为:,即,则原点到直线的距离,解得,两式同时平方可得,又,代换可得,展开得:,同时除以得:,整理得,解得或4,又,所以,所以;,所以渐近线方程为:.故答案为:2;.利用已知条件结合点到直线的距离,求出a,b,c关系,然后求解离心率,然后求解渐近线方程.本题考查双曲线的简单性质的应用,是基本知识的考查,考查计算能力.14.答案:解析:解:,,,.易知时,;又时,递增,故,要使函数存在最小值,只需,解得:.故答案为:,.根据题意列出关于a的方程即可;在每一段上求出其函数值域,然后小中取小,能取到即可.本题考查分段函数的值域的求法.分段函数问题本着先分段研究,再综合的原则解决问题,属于基础题.15.答案:解析:解:,,,,不妨设,,,,,,表示线段上的点到圆的距离,在直角坐标系中画出线段线段和圆,如下:由图象知当.故答案为:.不妨设,,,则,表示线段上的点到圆的距离,然后求出最大距离即可.本题考查了平面向量的坐标运算和向量模的几何意义,考查了转化思想与数形结合思想,属中档题.16.答案:36解析:解:把“参观工厂”与“环保宣讲”这两个项目当做一个整体,共有种方法,其中,把“民俗调查”安排在周一,有种方法,满足条件的不同安排方法的种数为,故答案为:36.利用“捆绑法”、“间接法”及排列组合的计算公式即可得出结果.本题主要考查排列组合、两个基本原理的应用,熟练掌握排列组合的意义及其计算公式是解题的关键.对于相邻问题经常使用“捆绑法”对于排除不符合条件的选法可用排除法,属于中档题.17.答案:或解析:解:当时,由,得到,即:,当时,由,得到:,令函数,转换为:与函数的图象在区间上有且只有一个交点.在同一坐标系内画出,与函数的图象,结合函数的图象,即,由于函数的图象只有一个交点,如图所示:故:,解得:.故函数有一个交点,则:m的取值范围是:或故答案为:或利用分类讨论思想对函数的关系式进行应用,进一步利用函数的图象的应用求出参数的取值范围.本题考查的知识要点:函数的图象的应用,函数的图象的交点的应用,主要考察学生的运算能力和转换能力,属于基础题型.18.答案:解:函数,令,求得,故函数的增区间为;若,则,故当时,函数取得最小值为;当时,函数取得最大值为,所以函数的值域为.解析:直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出结果.利用函数的定义域的应用求出函数的值域.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.答案:证明:由底面ABCD可得,又底面ABCD是菱形,所以,因为,所以平面,因为平面,所以平面平面D.解:因为底面ABCD,以O为原点,,,为x,y,z轴建立如图所示空间直角坐标系,则0,,,,0,,,,设平面的一个法向量为,由,即,取得,又,所以,所以OB与平面所成角的正弦值为.解析:证明,,推出平面,然后证明平面平面D.以O为原点,,,为x,y,z轴建立如图所示空间直角坐标系,求出平面的一个法向量,结合,利用空间向量的数量积求解OB与平面所成角的正弦值即可.本题考查直线与平面垂直,平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力,是中档题.20.答案:解:设数列的公比为q,由.得.所以.由条件可知,故.由,得,所以.故数列的通项式为..故,数列的前n项和:.所以数列的前n项和为:.解析:本题考查数列求和以及通项公式的求法,考查转化思想以及计算能力,为中档题.利用已知条件求出数列的公比与首项,然后求数列的通项公式.利用对数运算法则化简,然后化简数列的通项公式,利用裂项相消法求和即可.21.答案:解:由题意可知,则,,抛物线的标准方程为:;设直线AB的方程为:,联立方程,消去x得:,,,即,即,,设AB的中垂线方程方程为:,即,可得点C的坐标为,直线AB的方程为:,即,点C到直线AB的距离,,令,则,,令,,令得,,在上,,函数单调递增;在上,,函数单调递减,当,即时,.解析:利用抛物线的定义可得,求出p的值,从而得到抛物线的方程;设直线AB的方程为:,与抛物线方程联立,利用韦达定理和弦长公式可得,利用AB的中垂线方程可得点C的坐标,再利用点到直线距离公式求出点C到直线AB的距离d,所以,令,则,利用导数得到当,即时,.本题主要考查了抛物线的定义,以及直线与抛物线的位置关系,是中档题.22.答案:解:Ⅰ由,得,设,;则;由,解得,所以在上单调递减,在上单调递增,所以函数在上单调递增,,所以;所以,实数a的取值范围是:Ⅱ因为函数有两个不同的零点,不单调,所以.因此有两个根,设为,,且,所以在上单调递增,在上单调递减,在上单调递增;又,,当x充分大时,取值为正,因此要使得有两个不同的零点,则必须有,即;又因为;所以:,解得,所以;因此当函数有两个不同的零点时,实数a的取值范围是.先证明不等式,若,,,则.证明:不妨设,即证,设,,只需证且;因为,,所以在上单调递减,在上单调递增,所以,,从而不等式得证.再证原命题.由得;所以,两边取对数得:;即.因为,所以,因此,要证.只需证;因为在上单调递增,,所以只需证,只需证,即证,其中;设,,只需证;计算得;.由在上单调递增,得,所以;即在上单调递减,所以:;即在上单调递增,所以成立,即原命题得证.解析:Ⅰ先求其导函数,转化为,即求的最小值即可;Ⅱ结合第一问的结论得不单调,故;设有两个根,设为,,且,可得原函数的单调性,把问题转化为,即可求解结论.转化为先证明不等式,若,,,则再把原结论成立转化为证;构造函数一步步推其成立即可.本题考查了导数的综合应用,同时考查了不等式的证明,是对导数知识的综合考查,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2020年高考数学压轴卷(含解析)一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =I A .{0,1} B .{0,1,2} C .{1,0,1}- D .{1,0,1,2}-2.复数(为虚数单位)的共轭复数是( ) A .B .C .D .3.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4D .84.底面是正方形且侧棱长都相等的四棱锥的三视图如图所示,则该四棱锥的体积是( )A .43B .8C .433D .835.若实数,x y 满足不等式组02222y x y x y ⎧⎪-⎨⎪-⎩…„…,则3x y -( )A .有最大值2-,最小值83- B .有最大值83,最小值2 C .有最大值2,无最小值D .有最小值2-,无最大值6.“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.函数()()11x xe f x x e +=-(其中e 为自然对数的底数)的图象大致为( )A .B .C .D .8.已知a 、b R ∈,且a b >,则( )A .11a b<B .sin sin a b >C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22a b >9.设P ABCD -是一个高为3,底面边长为2的正四棱锥,M 为PC 中点,过AM 作平面AEMF 与线段PB ,PD 分别交于点E ,F (可以是线段端点),则四棱锥P AEMF -的体积的取值范围为( )A .4,23⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .31,2⎡⎤⎢⎥⎣⎦D .[]1,210若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,34349x y a x y -++--的取值与x ,y 无关, 则实数a 的取值范围是( ) A .4a ≤ B .46a -≤≤C .4a ≤或6a ≥D .6a ≥第II 卷(非选择题)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分11.《九章算术》中有一题:“今有女子善织,日自倍,五日织五尺.”该女子第二日织______尺,若女子坚持日日织,十日能织______尺. 12.二项式521()x x的展开式中常数项为__________.所有项的系数和为__________.13.设双曲线()222210x y b a a b-=>>的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线l 3,则双曲线的离心率为____;渐近线方程为_________.14.已知函数22,0()log (),0x x f x x a x ⎧<=⎨-≥⎩,若(1)(1)f f -=,则实数a =_____;若()y f x =存在最小值,则实数a 的取值范围为_____.15.设向量,,a b c v v v 满足1a =v ,||2b =v ,3c =v,0b c ⋅=v v .若12λ-≤≤,则(1)a b c λλ++-v v v的最大值是________.16.某班同学准备参加学校在假期里组织的“社区服务”、“进敬老院”、“参观工厂”、“民俗调查”、“环保宣传”五个项目的社会实践活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂”与“环保宣讲”两项活动必须安排在相邻两天,“民俗调查”活动不能安排在周一.则不同安排方法的种数是________.17.已知函数()2122,01()2,10x x x m x f x x m x +⎧+≤≤⎪=⎨---≤<⎪⎩若在区间[1,1]-上方程()1f x =只有一个解,则实数m 的取值范围为______.三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤。 18.已知函数()()23sin 22cos 1x R f x x x =-+∈.(1)求()f x 的单调递增区间; (2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域. 19.如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形AC BD O =I ,1A O ⊥底面ABCD ,12AA AB ==.(1)求证:平面1ACO ⊥平面11BB D D ; (2)若60BAD ∠=︒,求OB 与平面11A B C 所成角的正弦值.20.等比数列{}a 的各项均为正数,且2231,9a a a a a +==.(1)求数列{}n a 的通项公式; (2)设 31323log log ......log nn b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .21.已知抛物线22y px =(0p >)上的两个动点()11,Ax y 和()22,B x y ,焦点为F.线段AB 的中点为()03,M y ,且点到抛物线的焦点F 的距离之和为8(1)求抛物线的标准方程;(2)若线段AE 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.22.已知函数2()(1)(0)xf x x e ax x =+->.(1)若函数()f x 在(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个不同的零点12,x x . (ⅰ)求实数a 的取值范围;(ⅱ)求证:12011111x x t +->+.(其中0t 为()f x 的极小值点)参考答案及解析1.【答案】C【解析】由,得,选C.2.【答案】C【解析】因为,所以其共轭复数是,选C.【点睛】本题考查共轭复数概念,考查基本分析求解能力,属基本题.3.【答案】C【解析】设公差为d,45111342724a a a d a d a d+=+++=+=,611656615482S a d a d⨯=+=+=,联立112724,61548a da d+=⎧⎨+=⎩解得4d=,故选C.点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a为等差数列,若m n p q+=+,则m n p qa a a a+=+.4.【答案】C【解析】根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2,画出图形,如图所示;所以该四棱锥的底面积为224S==,高为22213h-=;所以该四棱锥的体积是114343333V Sh==⨯=.故选:C.【点睛】本题考查了利用三视图求几何体体积的问题,属于中档题.5.【答案】C【解析】画出不等式组2222yx yx y⎧⎪-⎨⎪-≥⎩…„表示的平面区域,如图阴影所示;设3z x y=-,则直线30x y z--=是一组平行线;当直线过点A时,z有最大值,由22yx y=⎧⎨-=⎩,得(2,0)A;所以z的最大值为3202x y-=-=,且z无最小值.故选:C.6.【答案】C【解析】直线0x y+=和直线0x ay-=互相垂直的充要条件是1()110a⨯-+⨯=,即1a=,故选C7.【答案】A【解析】∵f(﹣x)()()()111111x x xx x xe e ex e x e x e--+++====-----f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除C,D;又x=1时,()e111ef+=-<0,∴排除B,故选A.8.【答案】C【解析】对于A 选项,取1a =,1b =-,则a b >成立,但11a b>,A 选项错误; 对于B 选项,取a π=,0b =,则a b >成立,但sin sin0π=,即sin sin a b =,B 选项错误;对于C 选项,由于指数函数13x y ⎛⎫= ⎪⎝⎭在R 上单调递减,若a b >,则1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,C 选项正确;对于D 选项,取1a =,2b =-,则a b >,但22a b <,D 选项错误. 故选:C. 9. 【答案】D 【解析】依题意343493434955x y ax y x y a x y -+---++--=+表示(),P x y 到两条平行直线340x y a -+=和3490x y --=的距离之和与,x y 无关,故两条平行直线340x y a -+=和3490x y --=在圆22(1)(1)1x y -+-=的两侧,画出图像如下图所示,故圆心()1,1到直线340x y a -+=的距离3415ad -+=≥,解得6a ≥或4a ≤-(舍去) 故选:D. 10.【答案】B【解析】首先证明一个结论:在三棱锥S ABC -中,棱,,SA SB SC 上取点111,,A B C则111111S A B C S ABCV SA SB SC V SA SB SC--⋅⋅=⋅⋅,设SB 与平面SAC 所成角θ,11111111111111sin sin 3211sin sin 32S A B C B SA C S ABC B SAC SA SC ASC SB V V SA SB SC V V SA SB SC SA SC ASC SB θθ----⨯⋅⋅∠⋅⋅⋅⋅===⋅⋅⨯⋅⋅∠⋅⋅,证毕.四棱锥P ABCD -中,设,PE PF x y PB PD ==,212343P ABCD V -=⨯⨯=12222P AEMF P AEF P MEF P AEF P MEF P AEF P MEFP ABCD P ABD P ABD P DBC P ABD P DBCV V V V V VV V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭111222PA PE PF PE PM PF xy xy PA PB PD PB PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以3P AEMF V xy -=又12222P AEMF P AEM P MAF P AEM P MAF P AEM P MAFP ABCD P ABC P ABC P DAC P ABC P DACV V V V V VV V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭11112222PA PE PM PA PM PF x y PA PB PC PA PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以P AEMF V x y -=+ 即3,31x x y xy y x +==-,又01,0131xx y x ≤≤≤=≤-, 解得112x ≤≤ 所以体积2313,[,1]312x V xy x x ==∈-,令131,[,2]2t x t =-∈ 2(1)111()(2),[,2]332t V t t t t t +==++∈根据对勾函数性质,()V t 在1[,1]2t ∈递减,在[1,2]t ∈递增所以函数()V t 最小值4(1)3V =,最大值13(2)()22V V ==, 四棱锥P AEMF -的体积的取值范围为43,32⎡⎤⎢⎥⎣⎦故选:B 11.【答案】1031165 【解析】设该女子每天的织布数量为n a ,由题可知数列{}n a 为公比为2的等比数列, 设数列{}n a 的前n 项和为n S ,则()51512512a S -==-,解得1531a =, 所以2110231a a ==,()10105123116512S -==-. 故答案为:1031,165. 【点睛】本题考查了等比数列的应用,关键是对于题目条件的转化,属于基础题. 12.【答案】5 32【解析】展开式的通项为5552215521()r rrr r r T C C xx--+==, 令55022r -=,解得1r =, 所以展开式中的常数项为1255T C ==,令1x =,得到所有项的系数和为5232=,得到结果.点睛:该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中的特定项以及展开式中的系数和,所用到的方法就是先写出展开式的通项,令其幂指数等于相应的值,求得r ,代入求得结果,对于求系数和,应用赋值法即可求得结果. 13.【答案】2 y =【解析】由题可设直线l 方程为:1x ya b+=,即0bx ay ab --=,则原点到直线的距离ab d c ===,解得24ab =,两式同时平方可得224163a b c =,又222b c a =-,代换可得()2224163a c a c -=,展开得:224416162a c a c -=,同时除以4a 得:2416163e e -=,整理得()()223440e e --=,解得243e =或4,又0b a >>,所以2222222222b a c a a c a e >⇒->⇒>⇒>,所以24,2ce e a===;b a a a===b y x a =±= 故答案为:2;y =14.【答案】1[1,0)-【解析】(1)(1)f f -=Q ,122log (1)a -∴=-,1212a ∴-=,1a ∴=-易知0x <时,()2(0,1)xf x =∈;又0x …时,2()log ()f x x a =-递增,故2()(0)log ()f x f a =-…, 要使函数()f x 存在最小值,只需2()0a log a ->⎧⎨-⎩„,解得:10a -<„.故答案为:1-[1,0)-. 15.【答案】1【解析】令()1n b c λλ=+-v v v ,则n ==v 12λ-≤≤,所以当1λ=-,max n ==vn r 与a r 同向时a n +v v 的模最大,max 2101a n a n +=+=+v v v v16.【答案】36【解析】把“参观工厂”与“环保宣讲”当做一个整体,共有4242A A 48=种,把“民俗调查”安排在周一,有3232A A 12⋅=,∴满足条件的不同安排方法的种数为481236-=, 故答案为:36.17.【答案】1|12m m ⎧-≤<-⎨⎩或1}m = 【解析】当01x ≤≤时,由()1f x =,得()221xx m +=,即212xx m ⎛⎫=+ ⎪⎝⎭;当10x -≤<时,由()1f x =,得1221x x m +--=,即1221x x m +-=+.令函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,则问题转化为函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与函数()h x =2x m +的图像在区间[1,1]-上有且仅有一个交点.在同一平面直角坐标系中画出函数11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与2y x m =+在区间函数[1,1]-上的大致图象如下图所示:结合图象可知:当(0)1h =,即1m =时,两个函数的图象只有一个交点; 当(1)(1),11(1)(1)2h g m h g <⎧⇒-≤<-⎨-≥-⎩时,两个函数的图象也只有一个交点,故所求实数m 的取值范围是1|112m m m ⎧⎫-≤<-=⎨⎬⎩⎭或.18.【答案】(1),()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)⎡-⎣. 【解析】(1) 函数()222cos 122226f x x x cos x in x x s π⎛⎫ ⎪=⎝=-+-=⎭-,令222()262πππππ-≤-≤+∈k x k k Z ,求得()63k x k k Z ππππ-≤≤+∈,故函数f(x)的增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)若,64x ππ⎡⎤∈-⎢⎥⎣⎦,则2,623x πππ⎡⎤-∈-⎢⎥⎣⎦,故当262x ππ-=-时,函数f(x)取得最小值为−2;当263x ππ-=时,函数f(x),所以函数的值域为⎡-⎣. 【点睛】本题考查三角恒等变换,考查正弦型函数的性质,考查运算能力,属于常考题.19.【答案】(1)证明见解析(2 【解析】(1)证明:由1A O ⊥底面ABCD 可得1AO BD ⊥, 又底面ABCD 是菱形,所以CO BD ⊥, 因为1AO CO O ⋂=,所以BD ⊥平面1A CO , 因为BD ⊂平面11BB D D ,所以平面1ACO ⊥平面11BB D D . (2)因为1A O ⊥底面ABCD ,以O 为原点,OB uuu r ,OC u u u r ,1OA u u u r为x ,y ,z 轴建立如图所示空间直角坐标系O xyz-,则(1,0,0)B,3,0)C,(0,3,0)A,1(0,0,1)A,113,0)A B AB==u u u u r u u u r,()13,1AC=-u u u r,设平面11A B C的一个法向量为(,,)m x y z=u r,由111030030m A B xm AC z⎧⋅=⇒+=⎪⎨⋅=⇒-=⎪⎩u u u u vvu u u vv,取1x=得31,13m⎛⎫=--⎪⎝⎭u r,又(1,0,0)OB=u u u r,所以21cos,||||123OB mOB mOB m⋅===+u u u r u ru u u r u ru u u r u r所以OB与平面11A B C21.20.【答案】(1)13n na=(2)21nn-+【解析】(Ⅰ)设数列{a n}的公比为q,由23a=9a2a6得23a=924a,所以q2=19.由条件可知q>0,故q=13.由2a1+3a2=1得2a1+3a1q=1,所以a1=13.故数列{a n}的通项公式为a n=13n.(Ⅱ)b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-()21n n+.故()1211211nb n n n n⎛⎫=-=--⎪++⎝⎭.121111111122122311n n b b b n n n L L ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦ 所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+ 21.【答案】(1)24y x =(2)9【解析】(1)由题意知126x x +=,则1268AF BF x x p p +=++=+=,2p ∴=,∴抛物线的标准方程为24y x =(2)设直线AB :x my n =+(0m ≠),由24x my n y x=+⎧⎨=⎩,得2440y my n --=, 124y y m ∴+=212426x x m n ∴+=+=,即232n m =-,即()21221216304812m y y m y y m ⎧∆=->⎪⎪+=⎨⎪⋅=-⎪⎩, 12AB y y ∴=-=设AB 的中垂线方程为:()23y m m x -=--,即()5y m x =--, 可得点C 的坐标为()5,0,Q 直线AB :232x my m =+-,即2230x my m -+-=, ∴点C 到直线AB的距离d ==()21412S AB d m ∴=⋅=+令t =则223m t =-(0t <<,令()()244f t tt =-⋅,()()2443f t t '∴=-,令()0f t '∴=,则t =,在0,3⎛ ⎝⎭上()0f t '>;在3⎛⎝上()0f t '<,故()f t 在0,3⎛⎝⎭单调递增,3⎛ ⎝单调递减,∴当3t =,即3m =±时,max 9S =22.【答案】(1)⎛-∞ ⎝⎭;(2)(ⅰ)12⎛⎫++∞ ⎪ ⎪⎝⎭;(ⅱ)证明见解析. 【解析】(1)由2()(1)x f x x e ax =+-,得2()2x x f x x e a x +⎛⎫'=-⎪⎝⎭,设2()x x g x e x +=⋅,(0)x >;则2222()xx x g x e x +-'=⋅;由()0g x '…,解得1x ≥-,所以()g x 在1)上单调递减,在1,)+∞上单调递增,所以1min ()1)(2==⋅g x g因为函数()f x 在(0,)+∞上单调递增,所以()0f x '…在(0,)+∞恒成立所以1(22⋅≥a ;所以,实数a 的取值范围是:⎛-∞ ⎝⎭.(2)(i )因为函数()f x 有两个不同的零点,()f x 不单调,所以a >因此()0f x '=有两个根,设为10,t t,且1001t t <<<,所以()f x 在()10,t 上单调递增,在()10,t t 上单调递减,在()0,t +∞上单调递增; 又()1(0)1f t f >=,()22()(1)(1)xxxf x x e ax a e xx a e=+-=-++-⋅,当x 充分大时,()f x 取值为正,因此要使得()f x 有两个不同的零点,则必须有()00f t <,即()200010t t e a t +-⋅<; 又因为()()0000220tf t t e at '=+-=;所以:()()000002202ttt t e t e +-⋅+<,解得0t >1122+>=a g ; 因此当函数()f x 有两个不同的零点时,实数a的取值范围是12⎛⎫++∞ ⎪⎪⎝⎭. (ⅱ)先证明不等式,若12,(0,)x x ∈+∞,12x x ≠211221112x x x xnx nx -+<<-.证明:不妨设210x x >>,即证2212211211ln 1x x x x x x x ⎛⎫-- ⎪⎝⎭<<+,设211x t x =>,()ln g t t =-2(1)()ln 1t h t t t -=-+,只需证()0g t <且()0h t >;因为2()0g t '=<,22(1)()0(1)t h t t t -'=>+, 所以()g t 在(1,)+∞上单调递减,()h t 在(1,)+∞上单调递增, 所以()(1)0g t g <=,()(1)0h t h >=,从而不等式得证.再证原命题12011111x x t +->+. 由()()1200f x f x ⎧=⎪⎨=⎪⎩得()()122112221010x x x e ax x e ax ⎧+-=⎪⎨+-=⎪⎩;所以()()2212221211x x x e x e x x ++=,两边取对数得:()()()2121212ln ln ln 1ln 1x x x x x x ⎡⎤--+-+=-⎣⎦;即()()()()()212121212ln ln ln 1ln 1111x x x x x x x x -+-+-=-+-+. 因为()()()()()()()2121212112211111121111nx nx n x n x x x x x x x -+-+-<--+-++++,所以121221112x x x x +<<+++, 因此,要证12011111x x t +->+. 只需证1202x x t +<;因为()f x 在()0,t +∞上单调递增,1020x t x <<<,所以只需证()()2022f x f t x <-, 只需证()()1012f x f t x <-,即证()()00f t x f t x +<-,其中()0,0x t ∈-; 设()()00()r x f t x f t x =+--,00t x -<<,只需证()0r x <; 计算得()()00000()224ttr x x t e x x t e x at '=++++-++--;()()2000()33t xr x e x x t e x t ''⎡⎤=-+++--⎣⎦.由()()20033xy x t ex t =+++--在()0,0t -上单调递增,得()()0003030y t e t <++--=,所以()0r x ''<;即()r x '在()0,0t -上单调递减, 所以:()0()(0)20r x r f t '''>==;即()r x 在()0,0t -上单调递增,所以()(0)0r x r <=成立,即原命题得证.。