激光的单色性和时间相干性_图文

合集下载

激光原理及应用PPT课件

激光原理及应用PPT课件

激光治疗
通过激光照射病变组织,达到治 疗目的,如激光治疗近视、祛斑
等。
激光手术
利用激光进行微创手术,具有出 血少、恢复快、精度高等优点, 如激光心脏手术、激光眼科手术
等。
激光诊断
利用激光光谱技术对人体组织进 行检测和分析,为疾病诊断提供
依据。
军事国防领域应用
激光雷达
利用激光雷达进行目标探测、识别和跟踪,具有高分辨率、抗干 扰能力强等特点。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
新型激光技术
研究新型激光技术,如光纤激光器、化学激光器等,拓展激光器的 应用领域。
高功率、高效率、高稳定性挑战
高功率激光器
提高激光器的输出功率,满足高能激光武器、激光聚变等领域的 需求。
高效率激光器
优化激光器的能量转换效率,降低能耗,提高激光器的实用性。
02
03
工作原理
通过激励固体增益介质 (如晶体、玻璃等)中的 粒子,实现粒子数反转并 产生激光。
特点
结构紧凑、效率高、光束 质量好。
应用领域
工业加工、医疗、科研等。
气体激光器
工作原理
利用气体放电激励气体分子或原子, 使其产生能级跃迁并辐射出激光。
特点
应用领域
激光切割、焊接、打孔等工业应用。
输出功率大、光束质量好、效率高。
激光原理及应用PPT课 件
contents
目录
• 激光原理基本概念 • 激光技术发展历程及现状 • 激光器类型及其特点分析 • 激光在各领域应用案例分析 • 激光安全问题及防护措施探讨 • 未来发展趋势预测与挑战分析
激光原理基本概念

激光特性

激光特性

激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度高)。

1 单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。

而激光发射的各个光子频率相同,因此激光是最好的单色光源。

由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。

此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。

2 相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。

激光为我们提供了最好的相干光源。

正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。

3 方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到月球上形成的光斑直径仅有1公里左右。

而普通光源发出的光射向四面八方,为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯,如将其光投射到月球上,光斑直径将扩大到1 000公里以上。

激光束的方向性好这一特性在医学上的应用主要是激光能量能在空间高度集中,从而可将激光束制成激光手术刀。

另外,由几何光学可知,平行性越好的光束经聚焦得到的焦斑尺寸越小,再加之激光单色性好,经聚焦后无色散像差,使光斑尺寸进一步缩小,可达微米级以下,甚至可用作切割细胞或分子的精细的“手术刀”。

4 亮度高:激光的亮度可比普通光源高出1012-1019倍,是目前最亮的光源,强激光甚至可产生上亿度的高温。

激光的高能量是保证激光临床治疗有效的最可贵的基本特性之一。

利用激光的高能量还可使激光应用于激光加工工业及国防事业等。

切换到宽屏19362超声波探伤编辑超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。

激光的单色性

激光的单色性
图(a):不选模时有5个纵模,二 模之间的间距为激光器的纵模间隔 (b):标准具的透射曲线,在 νk 1 ,νk ,νk +1 有高透射率,且间距大 于激光器的纵模间隔。 (c):5个纵模中只有一个能通过标准具, 因而形成振荡输出激光的只有一个纵模频率。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 3. 激光的单色性 (Monochromaticity of laser) 工作物质(如气体放电管)有一定的频率范围。 把工作物质放在光学谐振腔内,只有 (1)既是工作物质的谱线宽度内的 (2)又是满足谐振腔共振条件 这时的频率,才能形成激光输出。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 1. 谱线宽度 (breadth of spectral line)

原子发光时间 t 和频率宽度 ν成反比,
t =1/ ν
理想的单色光:频率宽度 ν → 0 ,这就要求 发光时间 t →∞ 任何光源,t和 ν 都有一定大小。即有一定 大小的谱线宽度 λ 叫自然宽度。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 3. 激光的单色性 (Monochromaticity of laser) 从谐振腔发射出来的光波频率数为 ν / ν '= 10 如果要求谐振腔只发射一个频率,则取氖 放电管长为10 cm 即可。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 3. 激光的单色性 (Monochromaticity of laser)

第一章 激光的基本原理及其特性

第一章 激光的基本原理及其特性

1913年波尔提出了原子中电子运动状态量子化假设。
1917年爱因斯坦从光量子概念出发,重新推导了黑体
辐射的普朗克公式,在推导中提出了两个极为重要地概
念:受激辐射和自发辐射。
(第一章)
物理与电子工程学院
《激光原理与技术》
原子的能级
• 基态

激发态
电子只能处于分立的能级,电磁辐射与物质的相互作用将 导致物质中电子能级的变化,当吸收或辐射能量时,可在 特 定的能级间跃迁;该能量为这两个能级的能量差,并且 该能量差唯一地决定了电磁辐射的频率: ∆Ed t 0
受激跃迁几 率
(第一章)
物理与电子工程学院
《激光原理与技术》
受激吸收的特点
原子的受激吸收几率与外界辐射场的频率有关 原子的受激吸收几率与受激爱因斯坦系数有关 原子的受激吸收几率与外来光辐射能量密度有关
(第一章)
物理与电子工程学院
《激光原理与技术》
光的受激辐射
入射光
h E 2 E 1
(t ) N u 0 e 1 Au 1 1
N u 0e

t
u
u u

Au i
物理与电子工程学院
《激光原理与技术》
自发辐射的特点
原子的自发辐射与原子的本身性质有关,与外界 辐射场无关 自发辐射的随机性,自发辐射光的相位、偏振态 和传播方向杂乱无章
光源发出的光的单色性、定向性很差。没有确定 的偏振状态。
原子数按能级分布
热平衡时,单位体积内处于各个能级上的原子数分布
玻尔兹曼分布律:
N2 N1
e
( E 2 E1 ) kT
高 能 级 低 能 级
物理与电子工程学院

激光原理与技术--第五章 激光的特性

激光原理与技术--第五章 激光的特性
入式、电子束激发、光激发、雪崩式击穿等。
它体积小重量轻,寿命长,结构简单而坚固,特别 适于飞机、车辆、宇宙飞船之用。现在的光驱、VCD、 DVD的激光头都是一个小型半导体激光发射器。
4. 液体激光器 常用有机染料作工作物质,大多数情况是把有机染 料溶于乙醇、丙酮、水等,也有以蒸汽状工作的。液体 激光器的工作原理比较复杂,但输出的波长连续可调, 且覆盖面宽。
其它还有光纤激光器、化学激光器、单原子激光
器、X射线激光器等。 二.按运转方式分类 可分为连续激光器、单次脉冲激光器、重复脉冲激
光器,调Q激光器、锁模激光器、单模和稳频激光器、 可调谐激光器等等。
三.按激励方式分类 可分为光激励、电激励、热激励、化学激励和核激 励激光器等。
四.按输出激光的波段范围分类 可分为远红外激光器、中红外激光器、近红外激光 器、可见激光器、近紫外激光器、真空紫外激光器、X 射线激光器等。
二、气体激光器
用气体作为激光器的工作物质。其特 点是能以脉冲和连续两种方式工作。
外腔式气体激光器示意图
气体激光器
气体激光器 —— 原子激光器, 分子激光器,离子激 光器,准分 子激光器。
1原子激光器:以氦—氖激光
器为代表,这种激光器大都是连 续工作方式,输出功率在100毫瓦 以下,多用于检测和干涉计量。
一般讲解中,都按照激光工作 物质将激光器进行分类。
一、固体激光器。
用固体材料作为激光器的工作物质。这类 激光器的特点是小而坚固,功率较高。
固体激光器
1960-5-17,Ted Maiman 发明第一台激光器
固体激光器
工作物质-各种激光晶体和玻璃 输出波长-由工作物质中激活元素决定。 输出方式-连续灯泵浦——连续光
脉冲输出~几万焦耳

激光的特性

激光的特性

衍射的结果: 1、当光束通过一系列光阑后,其振幅和相位 的空间分布不可避免地逐次发生畸变,并 于最后趋向一定的稳定分我们用符号TEMmn来表示各种横向模式。 m,n均为非负整数,分别表示在x轴和y轴 方向上光强为零的那些零点的序数,称为 模式序数
3、激光的衍射损耗 N=a2/λl,称为菲涅尔数。N越大,则表示 衍射损耗越小。 衍射损耗除了与菲涅 尔数N有关外,还与谐 振腔的振荡模式有关, 不同模式的衍射损耗 是不同的。
衍射损失了激光的能量,却使激光具备了空 间相干性
(2)普通光源的相干性:

普通光源的相干性很差。在普通光源中, 受激辐射过程总是小于自发辐射过程。由 于后者总是占主导地位,所以普通光源所 发射的光相干性很差。
1、工业方面 2、医学方面 3、生活方面 4、军事方面 5、科学研究
激光在工业上,应用极为广泛,因为 激光在激光束聚焦在材料表面的时候能够 使材料熔化,使激光束与材料沿一定轨迹 作相对运动,从而形成一定形状的切缝。
激光切割机
激光在医学上的应用主要分三类: 激光生命科学研究、激光诊断、激 光治疗,其中激光治疗又分为:激 光手术治疗、弱激光生物刺激作用 的非手术治疗和激光的光动力治疗。
用单色仪分光后,通过狭缝可以得到时间 相干性比较好的光 用杨氏实验装置则可以得到空间相干性很 好的光


在迈克尔逊干涉仪 中,讨论的是两束 光的时间相干性
在杨氏实验中,讨 论的是两束光的空 间相干性
(3) 激光的相干性: I.时间相干性: 已知∆v=1/∆t,由于激光的单色性很好,所 以激光的相干时间很大,即激光的时间相 干性是很好的 II.空间相干性:光的衍射扩散使得光束截面 上的各点相互混合,相互关联,建立了空 间相干性。

激光原理第一章1.5

激光原理第一章1.5
太原理工大学物理与光电工程学院
四、激光的时间相干性和单色性
1、时间相干性描述复习 相干时间 c 相干长度 Lc 线宽 (单色性)
1 Lc c c c 来自2、关系:单色性越好,则时间相干性越好。 3、单色性、时间相干性与激光模式的关系 (1)对单横模TEM00工作的激光器,激光的单色性和 时间相干性取决于纵模结构和模式的频带宽度。 纵模数越少,单模线宽越窄,则单色性和时间相 干性越好。
太原理工大学物理与光电工程学院
TEM 00
基横模
三、激光的空间相干性和方向性
1、关系:方向性越好,则光束的空间相干性越好 。
方向性描述:用光束发散角。发散角越小,光束 方向性越好。 ①对普通光:只有当光束发散角小于某一限宽即:
x
时,光束才具有明显的空间相干性。
②对理想的平面波: 0 ,故具有完全的空间 相干性。 2、影响激光空间相干性和方向性的因素
B
2h

2
n
光源的单色亮度正比于光子简并度,而激光 具有极高的光子简并度。
太原理工大学物理与光电工程学院
太原理工大学物理与光电工程学院
太原理工大学物理与光电工程学院
⑴横模的影响 ①基横模TEM00的发散角小,方向性好。高次横模 的发散角大,方向性差。 ②工作在单横模,则方向性好,同时,同一模式内 的光波场是空间相干的;工作在多横模,则方向性 差,同时,不同模式内的光波场是空间非相干的。 ⑵工作物质的均匀程度、光腔类型、腔长、激励方 式、激光器的工作状态的影响 ⑶光衍射效应的影响 激光所能达到的最小光束发 散角不能小于激光通过输出 孔径时的衍射极限角。
1.22 m 2a 2a
2a:光腔输出孔径
太原理工大学物理与光电工程学院

激光原理与应用:相干性和单色性

激光原理与应用:相干性和单色性

PART FOUR
激光具有高相干性,能够实现精确的干涉和测量 激光具有单色性,能够提供单一波长的光束,适合于各种光谱分析和科学研究 激光具有高亮度,能够实现远距离的传输和聚焦 激光具有高方向性,能够实现定向照射和精确控制光束的传播方向
成本高昂:激光器及其配件价格昂贵,增加了使用成本 稳定性问题:激光的相干性和单色性可能导致稳定性问题,需要精密的调整和维护 安全性问题:激光的强能量和高亮度可能对眼睛和皮肤造成伤害,需要采取安全措施 应用范围有限:虽然激光在某些领域具有广泛的应用,但在其他领域的应用仍然有限
汇报人:XXX
相干性的应用:在光学干涉测量、光学显微镜、全息成像等领域有广泛应用
定义:激光的单色性是指激光的频率宽度极窄,具有高度单一的波长。
产生原因:由于激光的谐振腔对不同波长的光具有不同的反射系数,使得只有某一特定波长 的光能够通过谐振腔并被放大,从而实现单色性。
应用:单色性使得激光在光谱分析、光学通信、医学诊断等领域具有广泛的应用。
XXX,a click to unlimited possibilities
汇报人:XXX
CONTENTS
PART ONE
PART TWO
相干性定义:描述光波在空间不同点上相位关系是否一致的物理量
相干性与干涉现象:相干性好的光波能够产生明显的干涉现象,相干性差的光波则难以观察到干涉现象 激光的相干性:由于激光的相干性好,因此能够产生明显的干涉现象,这是激光的一个重要特性
优势:单色性好,能够实现高精度、高分辨率的测量和成像。
PART 表面形貌等 光学通信:利用相干光进行信息传输,提高通信质量和稳定性 光学雷达:利用相干激光雷达进行距离、速度、角度等测量 光学成像:利用相干激光进行高分辨率、高对比度成像
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讨论狭缝宽度对干涉的影响
当2l逐渐增大时,可以看到屏 上的明暗条纹逐渐模糊起来
当2l增大到一定程度时,屏上 的明暗条纹将模糊到完全分不清 了。即观察不到干涉现象。
当狭缝宽度2l较大时,应分别 考虑从下分中央s0到至边缘各点 各自发出的光线。
每一点发出的光都会在屏幕上因干涉形成一套明暗条纹 如果各套明暗条纹相互错开,将由于相互重叠以至于变成模 糊一片,即观察不到干涉现象。
相干长度和相干时间
进一步讨论最大光程差max的物理意义
在迈克尔逊干涉仪中,当光程差一旦超过max,这两光
束就不再相干了
因此,max也称为相干长度,记为max=Lc 光通过相干长度所需要的时间称为相干时间,记c
因为

表明,光谱线的频率宽度越窄,相干时间就越长
在迈克尔孙干涉仪中,两束光线的光程差为,这相当于两 光束是由同一光源在不同时刻t1和t2先后发出的

改写为
并记
则有
(本教材直接给出的条件)
如果记
由于2很小,有
代入

此式表明,入射光一定时
若张角2=d/R固定,则狭缝宽度2l必小于/2,才能在屏处
观察到干涉条纹
若缝宽2l固定,则张角2必小于/2l,才能在屏处观察到干
涉条纹
光的这种相干性,称为空间相干性
相干面积
当满足 在屏上才能产生干涉条纹 将该装置绕z轴旋转90,实验结果不变
激光的单色性和时间相干性_图文.ppt
光谱线的频率宽度
越窄,光的单色性就越好 普通光源中,氪同位素86(Kr86)灯发出波长=605.7nm的 光谱线的单色性最好 单模稳频氦氖激光器发出=632.8nm的光谱线 二、激光的时间相干性 若同一光源在不同时刻发出的光在空间会合后能发生干涉,
则称这两部分光具有时间相干性,这两时刻之差c称相干时间
下面做定量分析计算
只分别考虑从中央s0和边缘处 s01各自发出的光线在P点的光程差
由几何关系,有
二式相减,得
所以

由于01比0多了一个恒定的光程差,所以从这两点发出的
光在屏上的条纹相互错开
可以看出,当满足 这两套条纹才不至于明暗重叠 换句话说,当狭缝的宽度2l曾大到
时,屏上将变成一片模糊
发出的光,才能保证在 内的光
可引入相干面积各点所发出的光,经过与光源相距R后,并于光 源垂直的两点,如果这两点在Ac内,则通过这两点的光是想干的
光的空间相干性:指的是垂直光传播方向的截面上的空间相干 性,是由相干面积来描述的
在本教材中
只有从光源面积小于 线具有相干性 光源的相干体积Vcs
光子观点
的第K+1个强度峰值与波长为
个强度峰值将重叠在一起
的第K
从此以后,光程差再增加屏幕处则不能观察到合成强度的明暗 交替现象了。
因此,波长宽度为的光能够在屏幕形成合成强度明暗交 替的条件是:
称为最大光程差
因为
由上式得
可见,光谱线波长一定时,其越窄,max越长
对Kr86
对HeNe Laser
若 Lc,则 t2 - t1 c ,这两束光就是相干的。
所以,由同一个光源在相干时间c内不同时刻发出的光,经
过不同的路程相遇,将能产生干涉。
光的这种相干性,称为时间相干性
三、激光的空间相干性 从面积为A的光源发出的,并且通过与光源相距R且与传播
方向垂直的面上相距不超过d的两点的光,在空间再度会合时, 如能发生干涉,则称空间这两点的光具有空间相干性
结合迈克尔逊干涉仪分析
M2 反射镜 1 M1
单 色
G1 G2


M2
反 射 镜
2
若是理想单色光 M2移动半个波长,屏幕光强交替变化一次
当光谱线有一定宽度时(),会有什么影响呢?
考虑从

的每一波长的情况
画出边缘两波长的光在屏幕出的亮度随光程差的变化情况
当光程差达到某个数值max时,
波长为
相关文档
最新文档