时间相干性
《时间相干性》课件

CHAPTER
时间相干性的未来发展
时间相干性与量子信息处理
研究时间相干性在量子信息处理中的影响和应用,如量子纠缠、量子计算等。
03
时间相干性在图像信号处理中的应用
研究如何利用时间相干性提高图像的清晰度和稳定性。
01
时间相干性在雷达信号处理中的应用
研究如何利用时间相干性提高雷达信号的检测和跟踪精度。
距离分辨率
语音识别
音频信号的时间相干性对于语音识别的准确性至关重要。通过对语音信号的时间相干性进行分析,可以提取出更准确的语音特征,提高语音识别的准确率。
音乐分析
音乐信号的时间相干性对于音乐分析也具有重要意义。通过对音乐信号的时间相干性进行分析,可以深入理解音乐的节奏、旋律和和声等特性。
VS
时间相干性分析有助于提高图像处理的稳定性。通过对连续帧图像的时间相干性进行分析,可以去除图像中的噪声和抖动,提高图像的清晰度和稳定性。
自相关函数法
利用互信息函数来度量两个信号之间的相似性,从而判断时间相干性。
互信息法
通过对信号进行傅里叶变换,得到其频谱图,观察频谱图的连续性和尖锐性,判断时间相干性。
周期图法
通过计算两个信号的相关系数,判断其时间相干性。相关系数越接近1,时间相干性越好。
相关系数法
通过对信号进行傅里叶变换,得到其功率谱密度,观察功率谱密度的集中程度和尖锐性,判断时间相干性。
在通信、雷达、声呐等领域,时间相干性对于信号处理和目标识别具有重要意义。
频率相干性是指信号在频率域上的相干性,即信号在不同频率分量之间的相关性。
但对于非周期性信号,时间相干性和频率相干性之间的关系可能较为复杂,需要通过具体分析来确定。
02
CHAPTER
论述光的空间相干性和时间相干性

1 概述 2 空间相干性 3 时间相干性 4 总结
概述
光的干涉:干涉现象是波动独有的特征,光也是波, 就必然会观察到光的干涉现象。两列或几列光波在空间相 遇时相互叠加,在某些区域始终加强,在另一些区域则始 终削弱,形成稳定的强弱分布的现象。
光的相干性:两束光在某一点相遇产生干涉的条件是: 频率相同、振动方向相同、位相差恒定。简单地可以分为 相干光和非相干光。
时间相干性
下面介绍光的相干时间的两个度量:相干长度和相干
时间。
相干长度:
Lc
ct
c
2
相干时间: c
Lc c
c
c
1
或
c
2 c
2 c
由以上两式可以得出相干性反比公式: 1
时间相干性
由时间相干性的反比公式可以得出:当Δν越小 (即光源单色性越好)时,则相干时间越大,继而相 干长度越大。
空间相干性
杨氏双缝干涉实验装置
x
z y
空间相干性
双缝间距为d,两个屏间距为r,光波的波长为 λ,光源在x方向上的线度为Δx。有下式满足时, 可以出现干涉现象:d<rλ/ Δx。
如果光源在y方向上的线度为Δy,则光源的发 光面积为ΔA= Δx×Δy。在光场中与光源相距r处 的空间有一块垂直于光传播方向的面积
综上可知,发光持续时间τ,可以作为能否产生 干涉现象的一个界定量,称之为相干时间。
相应地,波列长度LC(即两列相干波到达观察点的 最大光程差),称为相干长度。
τ或LC越大,时间相干性越好,反之就越差。
结语
通过以上关于光的空间相干性和时间性的一些介绍,我们现 在简单地进行一下归纳总结,分别从以下几个方面讨论一下光的 空间相干性和时间相干性的区别。
光源的相干性一

二、空间相干性
3 综合空间相干性 为了综合描述纵向空间相干性和横向空间相干性,将相
干长度和相干面积的乘积定义为一个新的物理量—相干
体积。
V =LA
c c
c
3 c c 2 c ( ) ( )2 2 ( ) 2
c
物理意义:如果要求传播方向上 角之内并具有频带宽
Δθ
二、空间相干性
2 横向空间相干性 在杨氏双缝干涉实验中,宽度为Δx 的光源(A)照 射两对称小孔 S1 、 S2 后,光波场具有明显相干
性的条件为:
x
该式称为空间相干性反比公式,即光源的线度与相
干孔径角的乘积为常数。
二、空间相干性
2 横向空间相干性 得出
2 Ac (x) ( )
根据相干时间tc的定义:在光传播方向上,两个光 波场之间能够相遇的最大时间间隔也就是每列光波 经过P点的持续时间。
P t
一、时间相干性
P ∆t t
P
t ∆t
P
t
∆t
∆t>t,两列光波在传播方向上没有交叠区域; ∆t=t,两列光波在传播方向上首尾相连;
∆t<t,两列光波在传播方向上有交叠区域;
相干时间tc=每列光波经过P点的持续时间
1 纵向空间相干性 根据光谱学中光源单色性参数R的定义:
R
0
1 tc 0
0
得到
R
0
Lc
该式进一步说明了相干时间 t c 和相干长度 Lc 是反映光源单色性物理量。
二、空间相干性
2 横向空间相干性 定义:在与光传播方向垂直的平面上,任意两个 不同点 S1 、 S2 处光波可具有相干性的最大面积, 常用相干面积Ac来进行描述。
介绍光的极化和相干性现象

介绍光的极化和相干性现象光是一种波动现象,它在传播过程中常常会发生极化和相干性现象。
在这篇文章里,我将会向大家介绍一下关于光的极化和相干性的相关概念以及它们在实际应用中的作用。
一. 光的极化现象极化是指光波中的电磁波在某一特定方向上产生振动的现象。
当光在通过某些介质时,会发生极化现象。
这种现象可根据电磁波振动的方向进行分类。
一般来说,有两种主要的极化方式:线性极化和圆极化。
1. 线性极化线性极化是指电磁波振动沿着一个特定方向上的极化。
这个方向可以是任何方向。
当光通过一个线性极化器时,只有与它的方向成90度角的方向才能够透过去。
这种现象在太阳眼镜和3D电影中经常表现出来。
2. 圆极化圆极化是一种较为有趣的现象,它指的是电磁波沿着一个特定方向振动,成像一个螺旋状。
这种现象可以分为左旋和右旋。
这种现象在医学成像和光学工业中都有广泛的应用。
二. 光的相干性现象相干性是一种关于光波的强度和频率的概念。
当两个光波是相干的时,它们的波峰和波谷会以完美的对齐方式出现,形成一个稳定的波形。
这种现象在光学测量中常常被用来精确测量长度和重量。
1. 空间相干性空间相干性是指两个垂直放置的光源所产生的光波之间的相干性。
当这些光波相遇时,它们相互干涉,形成新的光相干波。
这种现象经常用于干涉测量和激光器的制造工业。
2. 时间相干性时间相干性是指同一个光源发射出的两个光波之间的相干性。
当这些光波相遇时,它们也会相互干涉,形成新的光相干波。
这种现象在数字通信和激光干涉仪等领域有着很广泛的应用。
总之,光的极化和相干性现象对于现代科技的发展和应用有着重要的作用。
通过深入了解其中的原理和特点,在实际工作中才能更好地应用这些现象,创造更多的新技术和新应用。
激光原理课后习题-陈鹤鸣-赵新彦精选全文完整版

1.3 什么是时间相干性和空间相干性?怎样定义相干时间和相干长度?时间相干性:光场中同一空间点在不同时刻光波场之间的相干性,描述的是光束传播方向上的各点的相位关系,与光束单色性密切相关。
空间相干性:光场中不同的空间点在同一时刻的光场的相干性,描述的是垂直于光束传播方向的平面上各点之间的相位关系,与光束方向性密切相关。
相干时间t c,即光传播方向上某点处可以使不时刻光波场之间有相干性的最大时间间隔。
相干长度L c指的是可以使光传播方向上两个不同点处的光波场具有相干性的最大空间间隔。
二者实质上是相同的。
L c=t c∙c=C∆ν1.4 为使He-Ne激光器的相干长度达到1Km,它的单色性∆λ/λ0应是多少?L c=C∆ν⁄=1Km ∆ν=3×105Hz∆λλ0=∆νν0=∆νc∙λ0=6.328×10−112.3 如果激光器和微波激射器分别在λ=10μm、λ=500nm和ν=3000MHz输出1W连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?W=Pt=nhν当λ=10μm时, ν=cλ=3×1013Hz n=5.03×1019当λ=500nm时,ν=cλ=6×1014Hz n=2.51×1018当ν=3000MHz时,n=5.03×10232.4 设一对激光能级为E2和E1(f2=f1),相应频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求:(1)当ν=3000MHz,T=300K时n2n1⁄=?(2)当λ=1μm,T=300K时n2n1⁄=?(3)当λ=1μm,n2n1⁄=0.1时,温度T=?(1)E2−E1=hν=1.99×10−24 J k b=1.38×10−23J K⁄n2 n1=f2f1e−(E2−E1)k b T=0.9995(2)同理得n2n1⁄=1.4×10−21(3)同理得T =6.26×103K2.10 激光在0.2m 长的增益介质中往复运动的过程中,其强度增加了30%。
干涉条纹的可见度 光波的时间相干性

r0 y j ( ) j d
合成光强
- (/2) + (/2)
0 0 11 2 2 3 3 4 45 56
j 1 j
j
干涉条纹的可见度V→0
x
与此干涉级 j 对应的光程差是实现相干叠加的最大光程差:
2 max j , 定义:由光的单色性所决定的能产生干涉条纹的最大光程差
z
Ap 2
Ap 2
2 sin i2 cos i1 Ap1 sin( i1 i2 ) cos(i1 i2 )
二. 半波损失的解释
1. 劳埃德镜实验中 的半波损失
As1 sin( i1 i2 ) As1 sin( i1 i2 )
2. 维纳驻波实验中的半波I A12 A2 2 A1 A2 cos
2 A1 A2 ( A1 A2 ) ,V 2 2 A1 A2
2
I1 I 2 ( I1 I 2 )V cos
令I1 I 2 I 0
I 0 (1 V cos ) ——双光束干 涉光强分布表达式
§1-4 干涉条纹的可见度 *时间相干性和空间 相干性
一、干涉条纹的可见度(对比度或反衬度)
1. 定义: 2. 讨论:
I max I min V I max I min
当Imin=0时(暗纹全黑),V=1,最清晰;
当Imax=Imin时,V=0,不可辨认;
两列光相干叠加时, I max ( A1 A2 ) , I min
As1
As1
Ap1
i1 i1
A 1 p
n1
x
n2
i2 A s2
时间空间相干性

•
波传播时间差有关的,不确定的位相差导致的,只有传播时间差在 一定范围内的波才具有相对固定的位相差从而相干的特性叫波的时间 相干性。 • 时间相干性的产生 • 时间相干性与源的单色性直接相关。例如光波,假设光源发出的 波频率在ω1-ω2的范围内。由不同传播路径传播至同一点的两路光波 具有与频率有关的相位差。在无色散的情况下,不同频率的光波的光 程差L是一定的,而位相差等于2πL/λ。只有L=0,也就是无光程差为 零的时候,位相差才与波长或者说频率没有关系。频率为ω1的光波 的位相差与频率为ω2的位相差之差为2πL/λ1-2πL/λ2=2πL∆λ/λ^2。而 频率在此之间的光波的位相差之差在0到这个值之间。最终的光场是 各频率光各自的相干结果的非相干叠加。当2πL∆λ/λ^2远远大于1时, 非相干叠加就会使得干涉条纹消失。
• 波在空间不同区域可能具有不固定的相位 差,只有在一定空间范围内的光波才有相 对固定的位相差,使得只有一定空间内的 光波才是相干的。这种特性叫做波的空间 相干性。
• 扩展光源的空间相干性 如图,设扩展光源上不同的点发出的光是不相干的。扩展光源上不同的 两点a和b发出的光波在距离为z处的两个点A,B处的位相差是不一样的, 相差2πdD/λz。a,b之间发出的光波在A,B两个点的位相差与a点发出 的光在A,B的位相差之差在0到2πdD/λz之间。由AB两处的光波作为次 波源相干而成的光相当于由光源S上不同点的发出光在AB两处的光场 产生的干涉光的非相干叠加。如果dD/λz远大于1,那么非相干叠加就 会使得每个干涉光产生的条纹完全抵消,最终看不见干涉条纹。对于 已知形状的均匀光源,可以严格积分出抵消程度与dD/λz的关系。因 此,空间相干性又可以用于测量光源大小。
相干叠加的两光波必须满足的条件

相干叠加的两光波必须满足的条件相干叠加是指两个或多个具有一致性相位关系的光波相互叠加产生新的光波。
相干叠加可以导致干涉现象的发生,从而产生许多重要的光学效应。
这里我们将讨论相干叠加的必要条件。
两个光波相干叠加的必要条件可以从两个方面来讨论,即时间相干性和空间相干性。
首先,我们来讨论时间相干性的条件。
时间相干性是指两个光波在时间上存在一致的相位关系。
要实现时间相干叠加,必须满足以下几个条件:1.光源的连续性:要实现相干叠加,光源必须是连续的,即光的强度在时间上是连续变化的。
如果光源是间断的或者是脉冲光源,就不能实现相干叠加。
2.光波的光谱宽度:光波的光谱宽度越窄,相干叠加的效果就越好。
这是因为光的频谱宽度越窄,相应的相位差就越小,相干叠加的条件就越容易满足。
3.光波的相干时间:光波的相干时间是指两个光波之间的相位一直保持一致的时间。
如果两个光波的相干时间越长,相干叠加的效果就越好。
相干时间可以通过光波的相干长度来衡量,相干长度越大,相干时间越长。
其次,我们来讨论空间相干性的条件。
空间相干性是指两个光波在空间上存在一致的相位关系。
要实现空间相干叠加,必须满足以下几个条件:1.频率一致性:两个光波的频率必须完全一致,即它们的波长必须相等。
如果两个光波的频率不一致,它们的相位将会随时间的变化而产生不一致的变化,无法实现一致的相位叠加。
2.方向一致性:两个光波必须具有相同的传播方向。
如果两个光波的传播方向不一致,它们的相位差将会随位置的变化而产生不一致的变化,无法实现一致的相位叠加。
3.空间相干面积:空间相干面积是指在这个面积内,两个光波之间的相位关系保持一致。
空间相干面积越大,相干叠加的效果越好。
空间相干面积与两个光波的波前的重叠程度有关,波前的重叠程度越高,空间相干面积越大。
最后,我们还可以提到一些其他的条件,如功率相干性、偏振一致性等。
总体来说,相干叠加的条件是相对严格的,需要满足许多相位关系和相干性的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算 ,取λ0=550nm
选做内容
1、 研究钠光的谱线宽度
借助He-Ne激光,调出等厚干涉直条纹并找出等光 程点,换用钠光源,测量从等光程点到钠光干涉条纹 彻底消失时对应的d值的变化量⊿d= Lm,计算钠光谱 的谱线宽度。
2、利用迈克耳孙干涉仪的白光干涉,测量透明薄片
的折射率n(已知厚度l)或厚度l(已知折射率n):只写方案 即可
原因:与光源的时间相干性有关
读数系统
粗动手轮读数 主尺
微动手轮读数
标尺(最小分度1mm)、粗动手轮(0.01mm)、 微动手轮(0.0001mm)
读数系统
粗动手轮读数窗口
主尺 微动手轮
主尺+粗动手轮读数+微调手轮读数 最后读数为:33.52246mm
实验目的
研究光拍现象,测量钠黄光两条谱线的平均波 长 、的波长差 和其不确定度 U Δλ
实验内容
1.测量钠黄光(双谱线结构光源)的平均波长:
扩展光源,定域干涉 步骤 1:利用氦氖激光发生器调节迈克耳孙干涉仪到可使用状态 (定域等倾干涉,中心圆环不随视线吞吐) 2:放置钠光灯,观察钠黄光的定域干涉现象 (与氦氖红光类似的黄色圆环,如果模糊调节薄膜厚度) 3:找到一个拍中的可以测量范围,测量平均波长 (测量起始位置最好在一个拍的开始阶段,测量方法同必做实 验)
D0 D1
D3 D4
D2
D5
δ D的平均值
d d
条纹数 条纹数 环纹向中心吞进 环纹从中心吐出
k 2d cos (2k 1) 2
(明纹) (暗纹)
每吞吐一个圆环, 相干光的光程差改变λ ,吞吐N个环纹, 光程差改变为 δΔ = 2 δd = N λ
2.扩展光源、定域干涉
在电光源后放置毛玻璃
实验内容
2.研究钠黄光(双谱线结构光源)的光拍现象:
扩展光源,定域干涉
步骤 1:利用氦氖激光发生器调节迈克耳孙干涉仪到可使用状态 (定域等倾干涉,中心圆环不随视线吞吐) 2:放置钠光灯,观察钠黄光的定域干涉现象 (黄色同心圆环不断吞吐并且可见度逐渐变化) 3:观察光拍现象,测量拍的宽度 (从消失—清晰—消失时镜子的位置变化即拍得宽度)
研究光源的时间相干性,估测白光光源的相干长 度 和谱线宽度 。 Lm 测量钠黄光的普线宽度 。 利用迈克耳孙干涉仪的白光干涉,测量透明薄片 的折射率n(已知厚度l)或厚度l(已知折射率n):只 写方案即可
若两相干光的光程差超过相干长度或相应的传 播时间之间超过相干时间,则不能产生干涉现 象,相干长度和相干时间标志着相干光的性能 ,称这一属性为光的时间相干性.
4:计算波长差
5.计算双谱线的波长
实验内容
3.研究光源的时间相干性,估测白光光源的相干长度和谱线 宽度.
步骤: 白光光源,定域干涉 1:在氦氖激光发生器状态找到定域等倾干涉现象中两反射镜基本重 合位置(即中间圆环基本充满整个视区) 2:调节镜面微调螺丝,找到等厚干涉现象中两镜面基本相交状态. 3:放置白光光源,耐心调节微动手轮,向两个镜子相交的方向继续调 节,在两个镜子基本相交的位置会找到白光干涉出的彩色条纹. 4:反复调节微动手轮,估测白光相干长度 (彩色条纹从黑线出现在中间位置到消失时M1的移动距离至少测量 3组数据) 5:计算白光光源的谱线宽度(取
扩展光源
干涉条纹只在一定的位置上出现
钠光源产生的干涉条纹
由有两条谱线组成:589.0nm,589.6nm。其波 长差很小。 双线结构的光源,使干涉条纹的可见度随光程差的 变化作周期性改变,产生光拍现象。即条纹呈 清晰—消失—清晰—消失交替变化。 当光程差(即M1、M2到G1中心距离之差)超过一 定范围时,干涉条纹将模糊甚至消失
2 1
2 d
4、研究光源的时间相干性
借助He-Ne激光,调出等厚干涉直条纹,换上白光光 源,仔细微调 M1可观察到彩色条纹。读出中心条纹(颜 色较深)的d1值与彩色条纹刚好消失时的d2值,d2- d1即 为光源的相干长度Lm。由公式 L 2
m 0
编 号 d0 d1 d2 d3 条纹吞吐50圈 M1的位置/mm 编 号 d5 d6 d7 d8 条纹吞吐50圈 M1的位置/mm δ d/mm
d4
d9
δ d的平均值 δ d标准偏差 δ d的A类不确定度 δ d的B类不确定度 δ d的不确定度 0.00010
测量波长差 Δλ
编 号 环纹消失时 M1的位置/mm 编 号 环纹消失时 M1的位置/mm δ D/mm
1.点光源、非定域干涉
S1 2d
θ
d
S2
M M 1 2'
G1 G2
M
2
L
S
O
E
R
P
条纹特点: 在M1 、 M2到G1中心距离相 差不太大的条件下,由于是 单一波长,空间中任意点的 光强分布只随光程差而变化, 条纹的可见度不会改变
相干测长法
由S1、S2到屏上任一点P,两光线的光程差为
2d cos
相干长度:
Lo nlo
t o Lo / c Nhomakorabea相干时间:
实验内容和步骤
1.利用点光源调出等倾干涉条纹,条纹中心应处 于屏幕中央 2. 将He-Ne激光换成钠光灯,采用干涉测长法测 量钠谱线的平均波长,取⊿N=50,读取8组数 据,用逐差法处理数据。 3. 测量钠谱线的波长差⊿λ:改变动镜的位置,观 察屏幕上条纹的清晰程度,可以看到条纹会从 清晰到模糊再到清晰。测出相邻两次可见度最 小时所对应的动镜移动之距离⊿d,要求连续测 量6组数据, 求⊿d的平均值,根据公式:
=550nm) 0
实验内容
3.方案设计: 利用迈克耳孙干涉仪的白光干涉,测量透明薄 片的折射率n(已知厚度l)或厚度l(已知折射率 n):只写方案即可 可选内容: 理解内容3的相关测量方法,研究钠黄光的谱线 宽度
实验操作检查分:
第一次:观察到钠黄光定域干涉圆环 第二次:白光干涉彩色条纹
测量平均波长