1电路基本概念和定律(1-3)2016
电路的基本概念和基本定律

总而言之,虽然实际电路种类繁多,但从本质上 来说,都是由电源、负载和中间环节三部分组成,因 此又称为组成电路的三要素。
1.1.2 电路模型
实际中的电路种类很多,较复杂的电路中有成千上万个元 器件,所以用实物画出的电路元器件让人们直观就认出来是什 么肯定是不现实的,例如图1.1所描述的手电筒电路是最简单的 电路,虽然人们一眼就能认出哪个是电池、哪个是开关、哪个 是灯泡,但画起来很烦,就不要说更复杂的电路了,所以人们 把组成电路的实际元器件加以理想化。采用足以反映实物主要 性质的一些符号来近似代替所用的元器件,这些符号就称为元 件的模型,用这些符号画出的电路图就称为电路模型。这里给 出电路中最基本的三种元器件,理想电阻、电容、电感的元件 模型,分别如图1.2(a)、(b)、(c)所示。
图1.2 理想化电路元件模型
关于理想化,这里还要强调一下:所谓“理想”,是指对 某一个元件仅仅是近似它的主要功能,而有些影响在某种条件 下是可以忽略不计的,例如一个电感元件是用漆包铜线绕制而 成,那么用的这一段铜线就会存在一些电阻,而所绕的电感元 件的线圈之间也会存在一些分布电容,在理想电感中把存在的 微量电阻和电容都忽略不计了。所以说,真正理想电路元件在 实际中并不存在,但又源于实际电路中,这种只抓主要矛盾的 方法在电路分析中起到重要作用。
(1) 电源:它是向电路提供电能的装置,其作用是可以 将其他形式的能量,如化学能、光能、热能、机械能 等非电能转换为电能。
(2) 负载:它是电路中的用电器,各种负载进行能量转 换的形式各有不同,如电灯是将电能转变成热能和光 能。
(3) 中间环节:它是利用各种元部件将电源和负载连接 起来构成闭合电路,并对整个电路起着传输和分配能 量、控制、保护和测量的作用。
于很小的电流可用毫安(mA)、微安(μA)甚至用纳安(nA),它们 之间的换算关系为
《电工学》电路的基本概念与基本定律

(2) 说明功率的平衡关系。
I
解:(1) 对于电源
+++
U= E1 U1= E1 IR01
E1
–
即 E1= U + IR01 = 220 +50.6 = 223V R01
U = E2 + U2 = E2 + IR02
U
–
–E2
R02
即 E2= UIR02 = 220 50.6 = 217V
(2) 功率的平衡关系 E1 = E2 + IR01 + IR02
+ (d)
解: (a) 电流从“+”流出,故为电源;
(b) 电流从“+”流入,故为负载;
(c) 电流从“+”流入,故为负载 ;
(d) 电流从“+”流出,故为电源。
例2:已知:U1 = 9V,I = -1A,R = 3Ω
求:元件1、2分别是电源还是负载,并验证
电路功率是否平衡? I R
解:因为U2 = -RI + U1 = 12V
I1 a I2
对回路1:E1 = I1 R1 +I3 R3
R1
R2
或 I1 R1 +I3 R3 –E1 = 0
E1 1 I3 R3 2 E2 对回路2:E2= I2 R2+I3 R3
b
或 I2 R2+I3 R3 –E2 = 0
基尔霍夫电压定律(KVL) 反映了电路中任一
回路中各段电压间相互制约的关系。
所以电流从元件1的“+” 流入,从元件2的“+”流
1 U1
U2 2
出,
故元件1为负载,元件2为电源。 电源产生功率: P2 =︱U2I︱= 12W
电路的基本概念和定律、定理

基尔霍夫电流定律
总结词
基尔霍夫电流定律也称为节点电流定 律,它指出在电路中,流入一个节点 的电流总和等于流出该节点的电流总 和。
详细描述
这意味着对于任意一个封闭的电路或 节点,所有流入的电流必须等于所有 流出的电流。这个定律是电路分析中 的一个基本原则,适用于任何电路中 的节点。
基尔霍夫电压定律
对于高频交流信号,诺顿定理可能不适用, 因为电路的分布参数效应需要考虑。
THANKS
感谢观看
05
CATALOGUE
诺顿定理
诺顿定理的定义
01
诺顿定理:在任何线性无源二端 网络中,对其外部任一节点,流 入该节点的电流代数和等于零。
02
诺顿定理是电路分析中的重要定 理之一,它与基尔霍夫电流定律 (KCL)相似,但适用于更广泛 的电路情况。
诺顿定理的应用
01
02
03
验证电路的正确性
通过应用诺顿定理,可以 验证电路中电流的正确性 ,确保电路设计无误。
电路的组成
总结词
电路的组成包括电源、负载、开关、导线等部分。
详细描述
电源是电路中提供电能的设备,如电池、发电机等;负载是电路中消耗电能的 设备,如灯泡、电机等;开关用于控制电路的通断;导线用于连接各元件,形 成电流的通路。
电路的状态
总结词
电路的状态分为开路、短路和闭路三种。
详细描述
开路是指电路中无电流通过的状态,通常是由于开关未闭合或导线断开等原因造成的;短路是指电流不经过负载 直接由电源正负极流过的状态,会导致电流过大、发热甚至烧毁电源;闭路是指电路中电流正常流通的状态,负 载正常工作。
总结词
基尔霍夫电压定律也称为回路电压定律,它指出在电路中,沿着任意闭合回路的电压降总和等于零。
1电路基本概念和基本定律

1电路基本概念和基本定律知识要点·了解电路和电路模型的概念;·理解电流、电压和电功率;理解和掌握电路基本元件的特性;·掌握电位和电功率的计算;会应用基尓霍夫定律分析电路。
随着科学技术的飞速发展,现代电工电子设备种类日益繁多,规模和结构更是日新月异,但无论怎样设计和制造,几乎都是由各种基本电路组成的。
所以,学习电路的基础知识,掌握分析电路的规律与方法,是学习电工学的重要内容,也是进一步学习电机、电器和电子技术的基础。
本章的重点阐明有关电路的基本概念、基本元件特性和电路基本定律。
1.1电路和电路模型1.1.1 电路的概念1. 电路及其组成简单地讲,电路是电流通过的路径。
实际电路通常由各种电路实体部件(如电源、电阻器、电感线圈、电容器、变压器、仪表、二极管、三极管等)组成。
每一种电路实体部件具有各自不同的电磁特性和功能,按照人们的需要,把相关电路实体部件按一定方式进行组合,就构成了一个个电路。
如果某个电路元器件数很多且电路结构较为复杂时,通常又把这些电路称为电网络。
手电筒电路、单个照明灯电路是实际应用中的较为简单的电路,而电动机电路、雷达导航设备电路、计算机电路,电视机电路是较为复杂的电路,但不管简单还是复杂,电路的基本组成部分都离不开三个基本环节:电源、负载和中间环节。
电源是向电路提供电能的装置。
它可以将其他形式的能量,如化学能、热能、机械能、原子能等转换为电能。
在电路中,电源是激励,是激发和产生电流的因素。
负载是取用电能的装置,其作用是把电能转换为其他形式的能(如:机械能、热能、光能等)。
通常在生产与生活中经常用到的电灯、电动机、电炉、扬声器等用电设备,都是电路中的负载。
中间环节在电路中起着传递电能、分配电能和控制整个电路的作用。
最简单的中间环节即开关和联接导线;一个实用电路的中间环节通常还有一些保护和检测装置。
复杂的中间环节可以是由许多电路元件组成的网络系统。
图1-1所示的手电筒照明电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
电工基础——电路的基本概念和定律

教学方法
通过自学的方法引入参考方向的定义
思考题
1. 为什么要在电路图上规定电流的参考方向? 请说明参考方向与实际方向的关系?
2.电压参考方向都有哪些表示方法?
1.3 电功率和电能
目的与要求
或
i Gu
5.功率
在电流和电压关联参考方向下, 任何瞬
时线性电阻元件接受的电功率为
u 2 p ui Ri Gu R
2
2
线性电阻元件是耗能元件。
6.焦耳定律
如果电阻元件把接受的电能转换成热能, 则从 t0到t时间内。电阻元件的热[量] Q, 也就是 这段时间内接受的电能W为
Q W
负, 故 P=16+32-24=24W
Ⅳ、教学方法
讲授法
Ⅴ、思考题
1.当元件电流,电压选择关联参考方向时,什么情 况下元件接受功率?什么情况下元件发出功率?
2.有两个电源,一个发出的电能为1000kW.h,另一 个发出的电能为500kW.h。是否可认为前一个电源 的功率大,后一个电源的功率小?
A B A B
+
u
-
u
(a)
(b)
图1.3 电压的参考方向
1.2.2 电压及其参考方向(四)
4.若电压的参考方向与实际方向一致,电压为正。
若电压的参考方向与实际方向相反,电压为负。
5.分析电路时,首先应该规定电流电压的参考方 向。
1.2.2 电压及其参考方向(五)
6.元件的电压参考方向与电流参考方向是一致的, 称为关联参考方向。
1.1.1 电路(一)
1. 电路是电流的流通路径, 它是由一些电气设 备 和元器件按一定方式连接而成的。复杂的 电路呈网状, 又称网络。 电路和网络这两个术 语是通用的。
电路的基本概念及定律

电路的根本概念及定律什么是电路?电路是由电流源、电阻、电容、电感等元件构成的系统,它能够为电子设备提供所需的电力。
电路是现代科技中非常重要的一局部,无论是家庭用电还是电子产品,都离不开电路的支持。
电路的根本元件电路中的根本元件有三种:电源、电阻和导线。
其中,电源产生电流,电阻控制电流的流动,而导线将电流从电源传输到电阻上。
电源电源是电路中产生电流的局部。
常见的电源有直流电源和交流电源。
直流电源的电压极性不变,而交流电源的电压周期性地正负交替变化。
电阻电阻是电路中的一种被动元件,它对电流有阻碍作用,限制电流的流动。
电阻的单位是欧姆〔Ω〕。
电阻是通过材料的电阻率和截面积、长度来计算的。
较长的电阻材料和较小的截面积会产生较大的电阻。
导线导线是将电路中的电流从电源传输到电阻上的局部。
良好的导线应该具有低电阻、高导电性和良好的导热性。
常见的导线材料有铜和铝。
电路中的根本定律电路中有几个根本的定律,它们是描述电流、电压和电阻之间关系的数学公式。
下面介绍三个常见的电路定律。
基尔霍夫电流定律〔KCL〕基尔霍夫电流定律,又称为节点定理,是由物理学家基尔霍夫提出的。
它规定在一个封闭的电路中,所有流入节点的电流之和等于所有流出节点的电流之和。
这一定律可以用以下公式表示:基尔霍夫电流定律基尔霍夫电流定律基尔霍夫电压定律〔KVL〕基尔霍夫电压定律,又称为环路定理,也是由基尔霍夫提出的。
它规定在一个闭合回路中,电路中所有电压的代数和等于零。
这一定律可以用以下公式表示:基尔霍夫电压定律基尔霍夫电压定律欧姆定律〔Ohm’s Law〕欧姆定律是电路中最根本的定律之一,它规定电流、电压和电阻之间的关系。
欧姆定律说明,在一条导体上,通过的电流与电压成正比,与电阻成反比。
这一定律可以用以下公式表示:欧姆定律欧姆定律根据欧姆定律,我们可以计算电路中的电流、电压或电阻,只要其中两个数值。
总结电路是由电源、电阻和导线构成的系统,它能够为电子设备提供所需的电力。
电路的基本概念和定律
电路的根本概念和定律
电流流过的回路叫做电路,又称导电回路。
最简洁的电路,是由电源,用电器〔负载〕,导线,开关等元器件组成。
电路重要定律:欧姆定律、诺顿定理、戴维宁定理。
1什么是电路
由金属导线和电气、电子部件组成的导电回路,称为电路。
在电路输入端加上电源使输入端产生电势差,电路连通时即可工作。
电流的存在可以通过一些仪器测试出来,如电压表或电流表偏转、灯泡发光等;依据流过的电流性质,一般把它分为两种:直流电通过的电路称为"直流电路',沟通电通过的电路称为"沟通电路'。
2电路重要定律
欧姆定律:在同一电路中,导体中的电流跟导体两端的电压成正比,跟导体的电阻阻值成反比,根本公式是I=U/R〔电流=电压/电阻〕
诺顿定理:任何由电压源与电阻构成的两端网络, 总可以等效为一个抱负电流源与一个电阻的并联网络。
戴维宁定理:任何由电压源与电阻构成的两端网络, 总可以等效
为一个抱负电压源与一个电阻的串联网络。
3根本概念和定律
1、抱负元件和电路模型;
2、电路根本变量〔电流、电压〕及其参考方向,同时关注关联参考方向;功率
3、元件的伏安关系;
4、基尔霍夫定律〔含电压定律和电流定律〕
:
高考物理学问点汇总
功和热是状态函数吗?
最新高考资讯、高考政策、考前预备、志愿填报、录用分数线等
高考时间线的全部重要节点
尽在高考网微信公众号。
电路的基本概念和基本定律
R
R C
R
L
L
直流状态,仅 消耗能量
交流低频状 态,消能,储能
交流高频状态,消 耗能量,储磁场能 量和电场能量
{end}
1.2 电路变量及电流和电压的参考方向
1.2.1 电路变量 在电路理论中涉及的变量主要有电流、电压、电位、电荷、磁 通、磁通链、功率和能量。其中电流、电压、电位、能量和功率最 为常用。
+
–u(–u/ R) = u2/ R
能量:可用功表示。从t0 到 t电阻消耗的能量
WR pdξ ui dξ
t t t0 t0
1.3 电路元件及其伏安特性关系 1.3.2 电容元件 定义: 一个二端元件,其电荷q(t)和电压u(t)之间的 关系,可以用q-u平面上的一条曲线来确定,则 称为电容元件。 q 对于线性电容,有 q =Cu
第1章 电路的基本概念和基本定律
1.1 电路及其理论模型 1.2 电路变量及电流和电压的参考方向
1.3 电路元件及其伏安特性关系
1.4 基尔霍夫定律 1.5 电压和电位的区别
{end}
第1章 电路的基本概念和基本定律
重点:
1. 电压、电流的参考方向
2. 电路元件特性 (电阻、电源、受控源) 电路分析的基础 3. 基尔霍夫定律
+
U
I 关联参考方向
+
U
I 非关联参考方向
1.2 电路变量及电流和电压的参考方向
功率的计算
(1) u, i 取关联参考方向 (2) u, i 取非关联参考方向
+
i
u
+
u
i
p=ui
功率的判断
p=-ui
第1章 电路的基本概念与基本定律
1第1章电路的基本概念与基本定律1.11.1电路和电路模型电路和电路模型1.21.2电路中的基本物理量电路中的基本物理量 1.3 1.3 电阻电阻电阻、、电感电感、、电容元件 1.4 1.4 电压源和电流源电压源和电流源 1.5 1.5 基尔霍夫定律基尔霍夫定律2实际电路是实际电路是为实现某种应用目的由若干电器设备或器件按一定方式用导线连接而成的电流通路成的电流通路。
实现电能的传输和转换 电力电路或强电电路实现信号的传递和处理 电子电路或弱电电路1.1 电路和电路模型一、电路的定义3负载电源电源((或信号源或信号源):):):提供电能提供电能提供电能((或信号源或信号源))的部分的部分。
负载负载::吸收或转换电能的部分吸收或转换电能的部分。
中间环节中间环节::连接和控制它们的部分连接和控制它们的部分。
电路的组成中间环节4电路在工作时电路在工作时,,对电源来说对电源来说,,通常处于下列三种方式之一种方式之一::负载负载、、空载和短路。
负载与电源接通负载与电源接通,,负载中有电流通过有电流通过,,负载电流的大小与负载电阻有关与负载电阻有关。
负载都是并联负载都是并联。
因此当负,负载电阻减小负载电阻减小,,负,即功率增大即功率增大。
一般所说的负载的大小一般所说的负载的大小,,指的是负载电流或功率的大小的是负载电流或功率的大小,,而不是指负载电阻的大小不是指负载电阻的大小。
负载工作方式:5空载开路这时电源两端的外电阻等于零,电源输出的电流仅由电源内阻限制限制,,此电流称为短路电流此电流称为短路电流。
6为了保证电器设备和器件为了保证电器设备和器件((包括电线包括电线、、电缆电缆))可以安全、可靠和经济地工作可靠和经济地工作,,每种电器设备每种电器设备、、器件在设计时都对其规定了工作时允许的最大电流对其规定了工作时允许的最大电流、、最高电压和最大功率等参数值等参数值,,这些数值统称为额定值这些数值统称为额定值。
电路的基本概念与基本定律
P 1P 216824W
根据电路的功率平衡电关路系中,元整件个发电出路的尚功需率从为外部P3吸收12的W功率为
P2 4 1 21 2 W
上一页
下一页
1.3 电阻元件和欧姆定律
1、电阻元件
电阻元件是反映电路器件消耗电能的物理性 能的一种理想的二端元件。
返回首页
第一、第二道各代表一位数字,第三道代表零的 个数。 例如,某色环电阻第一道为蓝色,第二道为灰色, 第三道为橙色, 该电阻器的电阻值为 68K 。
电阻器的额定功率是指在规定的气压、温度条件 下,电阻器长期工作所允许承受的最大电功率。一般 情况下,所选用的电阻器的额定功率应大于其实际消 耗的最大功率,否则,电阻器可能因温度过高而烧毁。
上一页
返回首页 下一页
第一章 电路的基本概念和基本定律
1.1 电路和电路模型 1.2 电路的基本物理量 1.3 电阻元件和欧姆定律 1.4 电压源和电流源 1.5 工程中的电阻、电源与电路状态 1.6 基尔霍夫定律
返回首页
上一页
下一页
第一章 电路的基本概念和基本定律
1.1 电路和电路模型
1.1.1 电路电路又称网络,是各种电器设备按
若电压有的千实伏际(方k向V)与、参毫考伏方(向m一V致),、则微电伏压(为μV正)值等,。若电压的
实际方向与参考方向相反,则电压为负值。
A u
BA
B
u
(a)
(b)
上一页
下一页
1.2电路的基本物理量
5、关联参考方向与非关联参考方 向①关联参考方向
电路中电流、电压的参考方向,可以分别独立地规 定,当它们一致时称为关联参考方向,简称关联方 向
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
b Uab
U ab E IR R
(3) 数值计算
U ab 3V
IR
3- 2 1A 1 1 2 1A 1
26
(实际方向与假设方向一致)
U ab 1V
IR
(实际方向与假设方向相反)
提示
(1) 方程式U/I=R 仅适用于假设正方向一致的情况。
(2) ―实际方向”是物理中规定的,而“假设正方向” 则 是人们在进行电路分析计算时,任意假设的。 (3) 在以后的解题过程中,注意一定要先假定“正方向” (即在图中表明物理量的参考方向),然后再列方程 计算。缺少“参考方向”的物理量是无意义的. (4) 为了避免列方程时出错,习惯上把 I 与 U 的方向 按相同方向假设(关联方向)。
原则:Is不能变,E 不能变。
电流源的端电压由电压源确定=E 恒压源的电流
I IS IE
恒压源与恒流源特性比较
恒压源 I 不 变 量 + _E a Uab I Uab = E (常数) Is 恒流源 a Uab b
b
I = Is (常数)
Uab的大小、方向均为恒定,
外电路负载对 Uab 无影响。
10
1-2
电路模型与理想电路元件
将实际元件理想化,由理想元件组成的 电路。 例如:
理想化 电源 理想化 导线
I
今后我们分析的都是
+
电路模型,简称电路。
_
E
R
U
理想化 元件
11
理想电路元件:
(一)无源元件(线性元件) 电阻: 电路中消耗电能的理想元件
符号:
i
R -
12
+ u
电容: 电路中储存电场能的理想元件 符号:
电 路
I
U=-10V I= 1A
U
电 路
U=10V I= 1A
P=-UI=10W>0, 消耗功率,是负载。
P=-UI=-10W<0, 发出功率,是电源。
46
二、开路
电路特征:
I=0 E R0
I=0
+ _
a
S U0
U = 0 U0 = E
PE = P = 0
R
b
U
(其中:PE = EI、P = UI) 开关S断开时,外电路的电阻无穷大, 电流为零, 电源的端电压U0等于电源电动势E。
负值
19
二、电压
电压实际方向—由高电位端指向低电位端 电压参考方向—任选一方向位为电压正方向。
电压表示方法: U
U +
a Uab b Uab = -Uba
电压与电流 关联方向:
U
I
关联 方向
U I
非关联 方向
20
三、电动势 电动势实际的方向—电位升高的方向。 电动势的参考方向—任选一方向为电动势的正方向。
扬声器 话筒 放大器
将语音转换 为电信号 (信号源)
信号转换、放 大、信号处理 (中间环节)
接受转换信 号的设备 (负载)
9
激励—推动电路工作的电源的电压或电流。
响应—由于电源或信号源的激励作用,在
电路中产生的电压与电流。 电路分析—在已知电路结构与元件参数情 况下研究电路激励与响应之间 的关系。
2
电路分析基础与其它课程关系
先修课程
后续课程
高等数学 物 理
信号与系统 电子电路
自控原理
3
电路分析基础与电子电路的关系
电路分析基础
直流电路分析方法 正弦交流电分析方法及应用
数字电子 技术
电子技术
模拟电子技术
(逻辑门电路、 数字器件) (半导体器件、 集成运放)
第 1 章 电路基本概念和定律
理想电压源(恒压源) I + E _ + U _ E RL O
U
I
外特性曲线 特点: (1) 内阻R0 = 0 (2) 输出电压是一定值,恒等于电动势。 对直流电压,有 U = E。 (3) 恒压源中的电流由外电路决定。 设 E = 10 V,接上RL 后,恒压源对外输出电流。 例 1: 当 RL= 1 时, U = 10 V,I = 10A 电压恒定,电 当 RL = 10 时, U = 10 V,I = 1A 流随负载变化
电动势的表示方法:
a.箭头 b.正负号 c.双下标
电动势和电压的关系:
E E
U 电压与电动势规定正方向相反时 E=U
U 电压与电动势规定正方向相同时 E= -U
21
由以上关系可以看出:电压源可由一个大小相等,
方向相反的外加电压表示。
例:
E
U
U
(U=E)
22
电路分析中的参考方向
问题的提出:在复杂电路中难于判断元件中物理量
当R>>R0时
IR0
U≈E 表明:内阻很 小时,端电压 变化不大,带 负载能力强
0
电源的外特性曲线
I
42
2. 功率与功率平衡 U = E – IR0 I
2
UI EI R0I P PE P
E
+ _
S
a
P----电源输出的功率
PE ----电源产生的功率
R0
R
b
U
∆P----电源内阻上消耗的功率 功率平衡方程式:
1.4.1 电压源
电压源是由电动势 E 和内阻 R0 串联的电源的 电路模型。 U 理想电压源 U0=E
电压源
I + ER0 电压源模型 +
U –
RL
由上图电路可得: U = E – IR0 若 R0 = 0 I O E 理想电压源 : U = E IS RO 若 R0<< RL ,U E , 电压源的外特性 可近似认为是理想电压源。
a U b I
R
P = -UI 0 吸收功率 (负载) P = -UI 0 发出功率 (电源)
电源有时发出功率,有时消耗功率。
当计算的电源功率PE > 0 时,则电源消耗功率,为负载; 当计算的电源功率PE < 0 时,则电源发出功率,为电源.
45
例
U
I
电 路
U=10V I= -1A
P=UI=-10W<0,发出功率,是电源。 I U
的实际方向,电路如何求解?
电流方向 AB? 电流方向 BA?
A
IR R
B
E1
E2
23
解决方法
(1) 在解题前先设定一个正方向,作为参考方向; (2) 根据电路的定律、定理,列出物理量间相互关 系的代数表达式并计算; (3) 根据计算结果确定实际方向: 若计算结果为正,则实际方向与假设方向一致; 若计算结果为负,则实际方向与假设方向相反。
27
例
a
IR UR
假设:
b
I R 与 U R 的方向一致
关联正方向
UR IR R
假设:
a
IR UR
b
I R 与 U R 的方向相反
非关联正方向
U R I R R
28
关于参考方向的 欧姆定律
• U和 I 为关联正方向时:
U R I
U • U和 I 为非关联正方向时: R I
40
E R0 Is
+ _
U0
R0 E
U0
(R0 =0)
一、电源通路
1.电压和电流
电路特征:
E R0
+ _
a S
I
I = E/(R0+R)
R
b
Uab
Uab = IR = E – IR0
上式表明:电源端电压小
于电动势,两者之差等于
电源内阻所产生的电压。
41
表示电源端电压与输出电流之间的关系 曲线,称为外特性曲线。 U = E – IR0 U E
i C -
+ u
电感: 电路中储存磁场能的理想元件
符号:
i
L +பைடு நூலகம் u -
13
(二)有源元件
1.理想电压源
(2)伏安特性与符号
U
US
(1)特点
u =u S R0=0
O
+
US
输出电压为us,由电源本身 确定,与流过电压源的电 流无关,电流由外电路确 定
I
+
I
U=定值
-
14
2.理想电流源
(2)伏安曲线与符号
24
例
a
R
IR
UR
E b Uab
已知:E=2V, R=1Ω 求: 当Uab分别为 3V 和 1V 时,IR=? 解: (1) 假定电路中物理量的参考方向如图所示; (2) 列电路方程:
Uab U R E
U R U ab E
U R U ab E IR R R
25
a
R
IR
?当理想电压源与理想电流源串联时 a Is R
Uab=?
I
_
E
+
电压源中的电流 如何决定?电流 源两端的电压等 于多少?
b
原则:Is不能变,E 不能变。
支路中的电流由电流源确定 I= IS 恒流源的端电压
U ab IR E
?当理想电压源与理想电流源并联时
R
_
I
Is
+
E
电流源两端的 电压等于多少? 电压源中的电 流如何决定?
(1)特点
i=iS R0=∞
输出电流为is,由电源本
i Is O u
身确定,与电源两端电压