oracle子查询的优化总结

合集下载

Oracle 查询慢的原因总结

Oracle 查询慢的原因总结

Oracle查询慢的原因总结查询速度慢的原因很多,常见如下几种:1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)2、I/O吞吐量小,形成了瓶颈效应。

3、没有创建计算列导致查询不优化。

4、内存不足5、网络速度慢6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。

9、返回了不必要的行和列10、查询语句不好,没有优化可以通过如下方法来优化查询:1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。

数据量(尺寸)越大,提高I/O越重要。

2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)3、升级硬件4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。

注意填充因子要适当(最好是使用默认值0)。

索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段5、提高网速;6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。

配臵虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配臵。

运行 Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设臵为计算机中安装的物理内存的 1.5 倍。

如果另外安装了全文检索功能,并打算运行Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配臵为至少是计算机中安装的物理内存的 3 倍。

将 SQL Server max server memory 服务器配臵选项配臵为物理内存的 1.5 倍(虚拟内存大小设臵的一半)。

7、增加服务器 CPU个数;但是必须明白并行处理串行处理更需要资源例如内存。

Oracle数据库参数优化

Oracle数据库参数优化

Oracle数据库参数优化
参数优化对于Oracle数据库来说非常重要,因为它可以有效提高数据库的性能,并提供良好的可用性。

参数优化可令数据库更加稳定和高效地运行。

但是,在参数优化方面,很多初学者犯了不少错误,有些甚至会影响数据库的性能,甚至可能导致数据库出现问题。

因此,在优化参数方面,必须慎重、细心、谨慎。

首先,在参数优化之前,必须对当前参数进行全面的测试,找出需要优化的参数。

一般来说,优化可以采用两种方法,一种是优化全局参数,另一种是优化实例参数。

如果参数设置过高或者过低,可能会影响数据库的性能,因此,在参数优化时,必须按照Oracle数据库提供的最佳实践去设置参数。

最后,应该强调的是,在参数优化时,不要增加参数或者设置参数太高,并且要确保参数优化后,数据库在重要的方面有所改善,比如。

oracle优化方法总结

oracle优化方法总结

千里之行,始于足下。

oracle优化方法总结Oracle优化是提高数据库性能和响应能力的重要步骤。

本文总结了一些常见的Oracle优化方法。

1. 使用索引:索引是提高查询性能的主要方法。

通过在表中创建适当的索引,可以加快查询速度,并减少数据访问的开销。

但是要注意不要过度使用索引,因为过多的索引会增加写操作的开销。

2. 优化查询语句:查询语句的效率直接影响数据库的性能。

可以通过合理地编写查询语句来提高性能。

例如,使用JOIN来替代子查询,尽量避免使用通配符查询,使用LIMIT来限制结果集的大小等。

3. 优化表结构:表的设计和结构对数据库的性能也有很大的影响。

合理的表设计可以减少数据冗余和不必要的数据存储,提高查询速度。

例如,适当地使用主键、外键和约束,避免过多的数据类型和字段等。

4. 优化数据库参数设置:Oracle有很多参数可以用来调整数据库的性能。

根据具体的应用场景和需求,可以根据情况调整参数的值。

例如,调整SGA和PGA的大小,设置合适的缓冲区大小,调整日志写入方式等。

5. 使用分区表:当表的数据量很大时,可以考虑将表分成多个分区。

分区表可以加速查询和维护操作,提高数据库的性能。

可以按照时间、地域、业务等来进行分区。

6. 优化存储管理:Oracle提供了多种存储管理选项,如表空间和数据文件管理。

合理地分配存储空间和管理数据文件可以提高数据库的性能。

例如,定期清理无用的数据文件,使用自动扩展表空间等。

第1页/共2页锲而不舍,金石可镂。

7. 数据压缩:对于大量重复数据或者冷数据,可以考虑使用Oracle的数据压缩功能。

数据压缩可以减少磁盘空间的使用,提高IO性能。

8. 使用并行处理:对于大型计算或者批处理任务,可以考虑使用Oracle的并行处理功能。

并行处理可以将任务分成多个子任务,并行执行,提高处理能力和效率。

9. 数据库分区:对于大型数据库,可以考虑将数据库分成多个独立的分区。

数据库分区可以提高数据的并行处理能力,减少锁竞争和冲突,提高数据库的性能。

oracle优化方案

oracle优化方案

千里之行,始于足下。

oracle优化方案Oracle优化方案Oracle数据库是当今企业界最受欢迎的关系型数据库管理系统之一。

但是,随着数据量的不断增加和业务需求的不断增长,数据库的性能问题也会渐渐变得突出。

因此,对Oracle数据库进行优化是提高系统性能和运行效率的关键。

本文将介绍几个常见的Oracle数据库优化方案,挂念您更好地管理和优化您的数据库环境。

1. 索引优化索引是提高查询性能的关键。

可以通过以下几个方面对索引进行优化:(1)合理选择索引类型:依据查询的特点和数据分布选择合适的索引类型,如B-tree索引、位图索引等。

(2)避开过多的索引:过多的索引会增加数据插入、更新和删除的成本,并降低查询性能。

只保留必要的索引,可以有效提高性能。

(3)定期重建和重新组织索引:定期重建和重新组织索引可以提高索引的查询效率,削减碎片和冗余。

2. SQL优化SQL语句是Oracle数据库的核心,对SQL进行优化可以显著提高数据库的性能。

以下是一些SQL优化的建议:第1页/共3页锲而不舍,金石可镂。

(1)优化查询语句:避开使用不必要的子查询,尽量使用连接查询代替子查询,削减查询次数。

同时,避开使用全表扫描,可以通过创建合适的索引来提高查询效率。

(2)避开使用不必要的OR运算符:OR运算符的查询效率较低,应尽量避开使用。

可以通过使用UNION或UNION ALL运算符代替OR运算符来提高性能。

(3)避开使用ORDER BY和GROUP BY子句:ORDER BY和GROUP BY子句会造成排序和分组操作,对于大数据集来说是格外耗时的。

假如可能,可以考虑使用其他方式来实现相同的功能。

3. 系统资源优化合理配置和管理系统资源是确保数据库运行稳定和高效的重要因素。

以下是一些建议:(1)合理安排内存:依据系统和数据库的实际需求,合理安排内存资源。

调整SGA(System Global Area)区域的大小,确保适当的内存安排给缓冲池和共享池。

Oracle数据库参数优化

Oracle数据库参数优化

千里之行,始于足下。

Oracle数据库参数优化Oracle数据库参数优化是指通过调整数据库的配置参数,提高数据库的性能和稳定性。

下面是一些常见的Oracle数据库参数优化技巧:1. SGA参数优化:- 调整sga_target参数以控制SGA的大小。

SGA包括数据库缓冲区、共享池、重做日志缓冲区等,适当调整SGA的大小可以减少IO操作,提高数据库性能。

- 调整db_cache_size参数以增大数据库缓冲区的大小,提高数据块的访问速度。

- 调整shared_pool_size参数以增大共享池的大小,提高SQL语句的解析和执行效率。

2. PGA参数优化:- 调整pga_aggregate_target参数以控制PGA的大小。

PGA是用于处理SQL查询和排序的内存区域,适当调整PGA的大小可以减少磁盘IO操作,提高查询和排序的性能。

3. Redo日志参数优化:- 调整log_buffer参数以增大重做日志缓冲区的大小,减少频繁的重做日志刷新操作,提高数据库的写入性能。

- 调整log_checkpoint_timeout参数以控制重做日志刷新的频率,避免过于频繁的刷新。

4. 并行处理参数优化:- 调整parallel_max_servers参数以增大并行处理的资源限制,提高并行查询和并行DML操作的性能。

第1页/共2页锲而不舍,金石可镂。

- 调整parallel_min_servers参数以设置最小的并行处理资源数,避免并行操作的启动延迟。

5. SQL优化:- 使用合适的索引和优化的SQL语句,优化查询的执行计划。

- 使用绑定变量而不是直接将参数传递到SQL语句中,避免SQL重解析,提高性能。

6. 服务器参数优化:- 调整processes参数以增加数据库的并发连接数。

- 调整sessions参数以控制数据库的最大会话数。

- 调整open_cursors参数以增大打开游标的数量,避免游标溢出。

以上是一些常见的Oracle数据库参数优化技巧,但具体的优化策略需要根据实际情况进行调整,可以参考Oracle官方文档和专业的DBA建议。

Oracle提高查询效率的方法

Oracle提高查询效率的方法

优化SQL语句的若干方法1、操作符号:NOT IN操作符此操作是强列推荐不使用的,因为它不能应用表的索引。

推荐方案:用NOT EXISTS 或(外连接+判断为空)方案代替"IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT IN", "NOT LIKE", "LIKE '%500'",因为他们不走索引全是表扫描。

NOT IN会多次扫描表,使用EXISTS、NOT EXISTS、IN、LEFT OUTER JOIN来替代,特别是左连接, 而Exists比IN更快,最慢的是NOT操作。

使用in时,在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,这样可以减少判断的次数2、注意union和union all的区别。

union比union all多做了一步distinct操作。

能用union all的情况下尽量不用union。

3、查询时尽量不要返回不需要的行、列。

另外在多表连接查询时,尽量改成连接查询,少用子查询。

4、尽量少用视图,它的效率低。

对视图操作比直接对表操作慢,可以用存储过程来代替它。

特别的是不要用视图嵌套,嵌套视图增加了寻找原始资料的难度。

我们看视图的本质:它是存放在服务器上的被优化好了的已经产生了查询规划的SQL。

对单个表检索数据时,不要使用指向多个表的视图,直接从表检索或者仅仅包含这个表的视图上读,否则增加了不必要的开销,查询受到干扰.5、创建合理的索引,对于插入或者修改比较频繁的表,尽量慎用索引。

因为如果表中存在索引,插入和修改时也会引起全表扫描。

索引一般使用于where后经常用作条件的字段上。

6、在表中定义字段或者存储过程、函数中定义参数时,将参数的大小设置为合适即可,勿设置太大。

oracle 查询慢的原因总结

oracle 查询慢的原因总结

查询速度慢的原因很多,常见如下几种:1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)2、I/O吞吐量小,形成了瓶颈效应。

3、没有创建计算列导致查询不优化。

4、内存不足5、网络速度慢6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。

9、返回了不必要的行和列10、查询语句不好,没有优化可以通过如下方法来优化查询:1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。

数据量(尺寸)越大,提高I/O越重要.2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)3、升级硬件4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。

注意填充因子要适当(最好是使用默认值0)。

索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段5、提高网速;6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。

配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。

运行Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。

如果另外安装了全文检索功能,并打算运行Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。

将SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。

7、增加服务器CPU个数;但是必须明白并行处理串行处理更需要资源例如内存。

使用并行还是串行程是MsSQL自动评估选择的。

oracle 递归查询优化的方法

oracle 递归查询优化的方法

oracle 递归查询优化的方法Oracle数据库是一种常用的关系型数据库管理系统,具有强大的查询功能。

在实际开发中,我们经常会遇到需要递归查询的情况,即查询某个节点的所有子节点或祖先节点。

然而,递归查询往往会涉及到大量的数据和复杂的逻辑,导致查询效率低下。

因此,本文将介绍一些优化递归查询的方法,以提高查询效率。

1. 使用CONNECT BY子句进行递归查询Oracle提供了CONNECT BY子句来支持递归查询。

通过使用CONNECT BY子句,我们可以轻松地实现递归查询,例如查询某个员工及其所有下属员工的信息。

CONNECT BY子句的基本语法如下:```SELECT 列名FROM 表名START WITH 条件CONNECT BY PRIOR 列名 = 列名;```其中,START WITH子句用于指定递归查询的起始节点,CONNECT BY PRIOR子句用于指定递归查询的连接条件。

通过合理设置起始节点和连接条件,我们可以实现不同类型的递归查询。

2. 使用层次查询优化递归查询在递归查询中,我们经常会遇到多层递归查询的情况,即查询某个节点的所有子节点及其子节点的子节点。

这时,可以使用层次查询来优化递归查询。

层次查询是一种特殊的递归查询,通过使用LEVEL伪列可以获取每个节点的层次信息。

例如,我们可以使用以下语句查询某个员工及其所有下属员工的信息及其层次信息:```SELECT 列名, LEVELFROM 表名START WITH 条件CONNECT BY PRIOR 列名 = 列名;```通过使用LEVEL伪列,我们可以方便地获取每个节点的层次信息,从而更好地理解查询结果。

3. 使用递归子查询优化递归查询在某些情况下,使用CONNECT BY子句可能会导致查询效率低下,特别是在处理大量数据时。

这时,可以考虑使用递归子查询来优化递归查询。

递归子查询是一种特殊的子查询,通过使用WITH子句和递归关键字来实现递归查询。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 ORACLE中的查询变换
Oracle执行很多种的查询变换——子查询展开(译者注:Subquery Unnesting,指的是把ANY和EXISTS这类子查询变成连接),分组和DISTINCT视图的合并(译者注:group-by and distinct view merging,指的是在带有GROUP BY/DISTICNT的视图/内联视图中,先和外层的表进行连接,过滤掉一些数据然后再做聚合操作),相同子表达式的消除(译者注:common sub-expression elimination,指的是同样的一个表达式出现多次,只需计算一次并多次引用计算结果),连接谓词下推(译者注:join predicate pushdown,指的是把外层的连接条件推入里层从而达到预先过滤的目的),连接因式分解(译者注:join factorization,指的是把UNION的两个子查询中的公共部分提取出来放到UNION之后做,类似提取公因式),集合操作INTERSECT和MINUS到连接/反连接的转换,OR谓词的扩展(译者注:OR expansion,指的是把OR或者IN变成一系列UNION ALL),星型转换(译者注:star transformation,用于数据仓库的事实表和维表连接,转换为事实表的位图索引的一系列BITAND运算),分组和DISTINCT的置换(译者注:group-by and distinct placement,指的是在有GROUP BY或DISTINCT,同时有WHERE连接条件,CBO先做分组聚合减少行数再做连接操作,和先前的group-by and distinct view merging恰好相反)。Oracle中的查询变换可能是试探式的或基于成本的。在基于成本的变换中,逻辑变换和物理优化结合起来生成了优化的执行计划。
2.子查询合并
子查询合并指的是这样一种技术,即两个子查询在某些条件下能够合并成一个,从而把多次表扫描、多次连接匹配减少为单次表扫描和单次连接匹配。虽然子查询合并被定义为二元操作(译者注:指合并的子查询数目为两个),它可以被依次应用到任意数目的子查询。子查询合并是可行的,因为一个子查询的作用相当于在外层查询的表之上的一个过滤谓词。
Oracle对几乎所有的子查询都进行展开。有两种范围广泛的展开方式——一种生成衍生表(内联视图),另一种把一个子查询合并到它的外层查询。在Oracle中,前者是以一种基于成本的方式应用的,而后者则是以一种试探式的方法完成的。
对于非标量子查询(译者注:scalar subqueries标量子查询指的是出现在SELECT部分的子查询)的展开往往变成半连接(semijoin)或反连接(antijoin)。Oracle能够使用索引查找,哈希,排序-合并来进行半连接或反连接。Oracle执行引擎对反连接或半连接结果中的左表元组进行缓存,所以当左表的连接列中有大量重复数据时,对子查询的多次求值能够避免。在缺乏相关索引的情况下,Oracle对存在量词或全称量词的不等比较子查询(例如: > ANY, < ANY,等等)进行展开,在不等谓词上做排序-合并连接。
1.3.1报表类窗口函数
本文展示的子查询优化利用了窗口函数中被称为报表窗口函数的一类。这些窗口函数,根据它们的定义,对于每行返回相应分区(按照分区键的定义)中所有行的聚合值。如果一个窗口函数没有排序键和WINDOW子句,或者当每行的WINDOW包含了它所属分区的每一行,则可称为报表窗口函数。在本文中,我们有时候也把这些函数成为窗口汇总。
Window_Function ([arguments]) OVER (
[ PARTITION BY pk1 [, pk2,...] ]
[ ORDER BY ok1 [, ok2, ...] [WINDOW clause] ] )
窗口函数在由分区键PARTITION BY pk1, pk2, ...定义的分区中求值,每个分区的数据以排序键ORDER BY ok1,ok2,....进行排序。WINDOW子句为每行数据定义窗口(起止点)。SQL聚合函数(SUM, MIN, COUNT等等),排名函数(RANK, ROW_NUMBER,等等),或参照函数(LAG, LEAD, FIRST_VALUE,等等)可被用作窗口函数。ANSI SQL标准[文献10,11]包含了窗口函数的语法语义细节。
2.1同类型的子查询合并
如果两个AND EXISTS子查询或者两个OR NOT EXISTS子查询满足包容属性,那么它们就能被合并为一个,合并结果是被包容的那个子查询留下,包容子查询去除。如果是OR EXISTS或者AND NOT EXISTS的情况,则合并结果是包容子查询被留下,被包容子查询去除。
如果Oracle的基于成本的优化器选择了一个计划,使得数据能够以分区键和排序键的顺序产生,那么排序就可以去掉。在这种情况下,窗口缓存执行被使用,Oracle仅仅是把数据缓存并多次访问来计算窗口函数。可是,对于像RANK, ROW_NUMBER,累计窗口聚合函数(译者注:例如SUM,COUNT等)这些窗口函数来说,假如数据是按顺序产生的,那么连缓存也没有必要。只要保留某些上下文信息(窗口函数值和分区键值),这些函数就能够在处理输入数据的同时被计算。
Oracle 10g引进了一种用作基于成本的查询变换的通用框架[文献8],和几种状态空间的搜索策略。在基于成本的查询变换过程中,一个查询被复制、变换,同时,现有的基于成本的物理优化器会计算出它的成本。这个过程被重复多次,每次运用一套不同的转换方案;最后,一种或多种转换被选中并应用于原来的查询,如果它的成本计算结果很理想的话。基于成本的变换框架提供了一种机制,能够试探一种或多种变换所生成的状态空间,从而使得Oracle能够以一种高效的方式选择理想的转换方案。基于成本的变换框架能够处理用户查询的多个查询块和多种转换方案之间的依赖关系造成的复杂性。
在一个查询块之中,窗口函数在WHERE,GROUP-BY,和HAVING子句之后被求值。在计算一个窗口函数时,Oracle按分区键和排序键对数据进行排序,并且根据需要遍历数据。我们称之为窗口排序执行。显然,如果窗口函数没有分区键和排序键,则排序就没有必要。在这种情况下,Oracle为了计算窗口函数对数据进行缓存,这称作窗口缓存执行。
目前,当两个EXISTS (或NOT EXISTS)子查询出现在一个逻辑相连或逻辑分离之中(译者注:指AND或者OR。为方便起见,下文都把conjunctive和disjunctive翻译为AND和OR),Oracle会执行不同的子查询合并。既然ANY和ALL子查询能被相应转换成EXISTS和NOT EXISTS子查询,我们这里不再不讨论ANY/ALL子查询的合并。两个子查询等价而且是同一种类型(即都是EXISTS或都是NOT EXISTS)的情况是微不足道的,因为子查询合并仅仅是把其中一个去除。如果两个等价子查询是不同类型,则合并过程会把两个都去除并代之以FALSE/TRUE谓词,取决于这两个子处理各种复杂的SQL查询,包括带有聚合函数,UNION/UNION ALL, DISTINCT,分组(GROUP BY)视图等等的嵌套子查询。这类查询在决策支持系统(DSS)和在线分析处理系统(OLAP)中越来越重要。查询变换是通常推荐的用于优化此类子查询的技术。
子查询是SQL的一种强大的组件,大大扩展了它的声明性和表达能力。SQL标准允许子查询被使用在SELECT, FROM, WHERE和HAVING子句中。决策支持系统的基准测试TPC-H [文献14]和TPC-DS [文献15]大量使用了子查询。TPC-H基准测试的22个查询中,差不多有一半用了子查询。大部分是相关子查询,很多都含有聚合函数。所以,高效地执行复杂子查询对数据库至关重要。
包容属性是一个重要属性,它使得我们能够把两个子查询的动作合并到一起。如果两个相连的子查询违背了包容属性,那么它们的过滤谓词就不能结合到一个子查询,因为这个子查询只会产生交集。
(译者注:例如EXISTS A AND EXISTS B, A和B可以是“分别存在”即可,如果改为EXISTS A AND B则要求满足两个条件的同一行存在,和原来不等价)
SUM(volume) OVER (PARTITION BY ticker) AS "Reporting SUM"
FROM stocks;
Table 1. Reporting Window SUM Example
Ticker Day Volume Reporting SUM
-------------------------------------------------
如果两个查询块产生了同样的结果集,则它们被认为是语义等价的。结构或语法相同的两个查询块也可以确定它们的等价性。
如果一个查询块Y的结果是X的结果的子集(不一定是真子集),那么我们就认为查询块X包容查询块Y。X称为包容查询块,而Y则称为被包容查询块。换而言之,假如Y含有一些"与"过滤谓词P,并且当P不被考虑时X和Y变得等价,则X和Y满足包容属性。(译者注:假设Y是在X的基础上多加一些WHERE过滤谓词,这组谓词P是用AND连到X上去的,那么X就包容Y)
本文描述了ORACLE关系数据库系统中的增强型子查询优化。它讨论了几种技术——子查询合并,利用窗口函数(译者注:即分析函数)的子查询消除,对分组查询的视图消除(view elimination)。这些技术辨认出查询结构中的冗余成分,并把它们去除,将查询转换为可能更加优化的形式。本文也讨论了新型的并行执行技术,该技术应用广泛,并可用来改善这些经过变换的查询的可扩展性。它还描述了一种反连接(antijoin)的变种,用来优化在有空值的列上带全称量词(译者注:在SQL中指ALL这类量词)的查询。它随后演示了这些优化的结果,表明在执行速度上有着显著的改善。
如果子查询在全称量词比较(例如, <>ALL)中带有可空列,则无法展开为常规的反连接。Oracle使用了一种反连接的变种,称为“已知空值反连接”(null-aware antijoin),来展开此类子查询。
相关文档
最新文档