高中数列通项解题公式

合集下载

高中数学数列公式

高中数学数列公式

高中数列基本公式:1 、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=Sn=Sn=当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式:an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn= Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{an}为等差数列,则(c>0)是等比数列。

12、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c1) 是等差数列。

高中数列公式总结大全

高中数列公式总结大全

高中数列公式总结大全在高中数学中,数列是一个非常重要的概念,它在数学中有着广泛的应用。

数列的概念最早可以追溯到古希腊数学家毕达哥拉斯,他首次提出了等差数列的概念。

在高中阶段,学生们通常会学习到等差数列、等比数列、及数列的通项公式、数列的前n项和等相关知识。

本文将对高中数列公式进行总结,帮助读者更好地理解和掌握数列的相关知识。

一、等差数列公式等差数列是指数列中相邻两项之差都相等的数列,这个相等的差值称为公差,通常用d表示。

对于等差数列{a1, a2, a3, ...},其通项公式可以表示为an = a1 + (n-1)d。

其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差,n表示项数。

另外,等差数列的前n项和公式为Sn = n/2 * (a1 + an),其中Sn表示等差数列的前n项和。

二、等比数列公式等比数列是指数列中相邻两项的比值都相等的数列,这个相等的比值称为公比,通常用q表示。

对于等比数列{a1, a2, a3, ...},其通项公式可以表示为an = a1 *q^(n-1)。

其中,an表示等比数列的第n项,a1表示等比数列的首项,q表示等比数列的公比,n表示项数。

等比数列的前n项和公式为Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示等比数列的前n项和。

三、斐波那契数列公式斐波那契数列是一种非常特殊的数列,它的定义是从第三项开始,每一项都等于前两项之和。

斐波那契数列的通项公式可以表示为an = (1/sqrt(5)) *((1+sqrt(5))/2)^n - (1/sqrt(5)) * ((1-sqrt(5))/2)^n。

其中,an表示斐波那契数列的第n项。

四、等差数列、等比数列的求和公式除了前面提到的等差数列和等比数列的前n项和公式外,还有一种更通用的求和公式,适用于任意一种数列。

这就是数列的通项公式与求和公式的结合。

对于任意一种数列{a1, a2, a3, ...},如果已知其通项公式为an = f(n),则其前n项和公式可以表示为Sn = f(1) + f(2) + f(3) + ... + f(n)。

数列通项公式

数列通项公式

数列通向公式的求解1、公式法:2、累加法:3、累乘法:4、a n与S n的关系:5、构造法:(1)、待定系数法:(2)、同除+待定系数:(3)、取倒数+待定系数:(4)、取对数+待定系数:(5)、连续三项:6、无穷递推关系式:(减去前n-1项剩下最后一项)7、连续两项:8、不动点法:→不动点:方程f(x)=x的根称为函数f(x)的不动点。

数列通项公式典例分析:1、已知数列{a n}满足_________________2、已知数列{a n}满足_________________3、已知数列{a n}满足___________;___________4、已知数列{a n}满足__________________5、已知数列{a n}满足_________________6、已知数列{a n}满足_____________7、已知数列{a n}满足________________8、已知数列{a n}满足______________9、已知数列{a n}满足_________________10、已知数列{a n}满足__________11、已知数列{a n}满足__________________12、已知数列{a n}满足_________________13、已知数列{a n}满足__________________14、已知数列{a n}满足__________________15、已知数列{a n}满足_____________________16、已知数列满足,,则=________17、设是首项为1的正项数列,且(=1,2,3,…),则=________18、在数列中,,,.则=______________19、数列中,,(n≥2),则=______________20、已知数列的首项,,则=__________________21、设数列{an}满足,则=_______________22、已知数列满足且,则=___________23、设数列满足,则=______________。

高中数学数列公式大全

高中数学数列公式大全

一、数列基本公式:1、一般数列的通项a n 与前n 项和S n 的关系:a n =2、等差数列的通项公式:a n =a 1+(n-1)d a n =a k +(n-k)d (其中a 1为首项、a k 为已知的第k 项) 当d≠0时,a n 是关于n 的一次式;当d=0时,a n 是一个常数。

3、等差数列的前n 项和公式:S n = S n =S n =当d≠0时,S n 是关于n 的二次式且常数项为0;当d=0时(a 1≠0),S n =na 1是关于n 的正比例式。

4、等比数列的通项公式: a n = a 1 q n-1 a n = a k q n-k(其中a 1为首项、a k 为已知的第k 项,a n ≠0)5、等比数列的前n 项和公式:当q=1时,S n =n a 1 (是关于n 的正比例式);当q≠1时,S n = S n =三、高中中有关等差、等比数列的结论1、等差数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等差数列。

2、等差数列{a n }中,若m+n=p+q ,则3、等比数列{a n }中,若m+n=p+q ,则4、等比数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等比数列。

5、两个等差数列{a n }与{b n }的和差的数列{a n+b n }、{a n -b n }仍为等差数列。

6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列{a n b n }、 、 仍为等比数列。

7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。

8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq ;四个数成等比的错误设法:a/q 3,a/q,aq,aq 3(为什么)11、{a n }为等差数列,则 (c>0)是等比数列。

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。

解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。

二、累加法例2 已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例4已知数列满足,求数列的通项公式。

解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。

三、累乘法例5 已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。

例6 已知数列满足,求的通项公式。

解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。

所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。

四、待定系数法例7已知数列满足,求数列的通项公式。

解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。

例8 已知数列满足,求数列的通项公式。

解:设⑥将代入⑥式,得整理得。

令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。

高中数列公式总结大全

高中数列公式总结大全

高中数列公式总结大全数列是数学中的一个重要概念,它是由一系列按照某种规律排列的数所组成的序列。

在高中数学学习中,数列是一个重要的知识点,掌握数列的公式对于解题至关重要。

下面我们来总结一下高中数列公式的大全。

1.等差数列公式。

等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都是一个常数。

其通项公式为,$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示第一项,d表示公差,n表示项数。

2.等比数列公式。

等比数列是指一个数列中,从第二项开始,每一项与它的前一项之比都是一个常数。

其通项公式为,$a_n = a_1 q^{n-1}$,其中$a_n$表示第n项,$a_1$表示第一项,q表示公比,n表示项数。

3.斐波那契数列公式。

斐波那契数列是指一个数列中,每一项都是前两项之和。

其通项公式为,$F_n = F_{n-1} + F_{n-2}$,其中$F_n$表示第n项,$F_{n-1}$表示第n-1项,$F_{n-2}$表示第n-2项。

4.调和数列公式。

调和数列是指一个数列中,每一项是调和级数的一项。

其通项公式为,$a_n = \frac{1}{n}$,其中$a_n$表示第n项。

5.等差中项公式。

等差中项是指在等差数列中,位于两个已知项之间的项。

其公式为,$a_m =\frac{a_i + a_j}{2}$,其中$a_m$表示等差中项,$a_i$和$a_j$分别表示已知的两个项。

6.等比中项公式。

等比中项是指在等比数列中,位于两个已知项之间的项。

其公式为,$a_m =\sqrt{a_i a_j}$,其中$a_m$表示等比中项,$a_i$和$a_j$分别表示已知的两个项。

7.数列求和公式。

数列求和是指将数列中的所有项相加的操作。

对于等差数列来说,求和公式为,$S_n = \frac{n}{2}(a_1 + a_n)$;对于等比数列来说,求和公式为,$S_n =\frac{a_1(1-q^n)}{1-q}$。

数列求通项公式的五种重要方法

数列求通项公式的五种重要方法

求通项公式的5种重要方法一、Sn 法,根据等差数列、等比数列的定义求通项an=Sn-S n-1*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=例1例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

2、累乘法 适用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na a a f f f n a a a +===,,, n a例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

例5 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。

三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+;解题基本步骤:1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式例7 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。

高中数学必修五数列通项公式常见求法

高中数学必修五数列通项公式常见求法

求数列通项公式的方法1. 叠加法a n 1 a n f (n) ,且 f (1) f (2)f (n) 比较好求 .【例题】数列a n 的首项为 3 ,b n 为等差数列且 b n a n 1 a n (nN *) .若则 b 32 ,b1012 ,则 a 8.★练习 已知数列a n 知足 a 11 a n1a n 的通项公式 ., a n 1n 2 ,求数列2n2. 叠乘法a n 1 f (n)a n ,且 f (1) f (2) f (n) 比较好求 .【例题】在数列{ a n }中, a 1 =1, (n+1) ·a n 1 =n ·a n ,则 a n 的通项公式为.★练习 在数列{ a n }中, a 1 =1,a n 1 = 2n ·a n ,则 a n 的通项公式为.3. 待定系数法(1) a n =qa n-1 +p(q 、 p 为常数 ,q ≠1且 p ≠0),可化为 a n +λ=q(a n-1+λ).结构出一个以 q 为公比的等比数列 { a n +λ},而后化简用待定系数法求 λ,进而求出 a n .(2) 关于 a n 1qa n f (n)(此中 q 为常数 ) 这类形式 ,一般我们议论两种状况:①当 f(n)为多项式时,可化为 an 1g n1 q a n +g n的形式来求通项,此中g(n)是f(n)的齐次式 .【例题】设数列 a n 中, a 1 1,a n 1 3a n 2n 1 ,求 a n 的通项公式 . ★练习 设数列a 中, a 1 1,a n 1 2a n n 2 n ,求 a的通项公式 .nn②当 f( n)为指数幂即递推公式为 a n 1qa n r p n (q 、 r 、 p 为常数 ) ,可两边同时除以 p n 1 化为a n 1q a nra n的通项公式,进而求出 a n .p n 1p p n的形式,能够求出数列p np【例题】设数列 a n 中, a 1 1,a n 1 4a n 2n ,求 a n 的通项公式 .★练习 设数列a n 中, a 11,a n 1 3a n 2 3n ,求 a n 的通项公式 .4. 倒数法a n1,能够两边取倒数; a n a n 1a n 1 a n,能够两边同时除以 a n a n 1.a nka n 1ba n 1【例题】已知数列a n知足: a11,a n3a n 1,求a n的通项公式. 1★练习在数列 { a n } 中,a11a nan 1a n 1 a n,求数列{ a n}的通项公式.,35. 对数法a n 1qa n p (q、 p为常数 ) ,两边分别取对数,进行降次.【例题】已知数列a n知足:a13, a n1a n2,求 a n的通项公式 .★练习已知数列a n知足:a12, a n1a n22a n,求a n的通项公式 .6. 特点方程法(1) a n+2=A a n+1 +B a n (A 、 B 是常数),特点方程为 x2-A x-B=0,①当方程有两个相异的实根p、q 时,有:a n c1 p n c2 q n,此中c1与 c2由 a1和 a2确立;②当方程有两个同样的实根p 时,有a n(c1n c2 ) p n,此中c1与 c2由 a1和 a2确立.【例题】已知数列 { a n } 知足 a12, a23,a n23a n 12a n (n N * ) ,求 { a n } 的通项公式.★练习已知数列 { a n } 知足a1=2,a2=3, a n22a n1a n,求 { a n} 的通项公式.(2) a n 1 a a n b( a、 b、 c、 d 为常数),特点方程为x ax b ,c a nd cx d①当方程有两个相异的实根a n p a1p a cpp、q 时,数列是以a1为首项,为公比的a n q q a cq等比数列;②当方程有两个同样的实根p 时,数列1p 是以a11为首项,2c为公差的等差a n p a d数列 .【例题】已知数列{ a n} 知足 a12, a n an 12( n2) ,求数列 { a n} 的通项 a n.2a n11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档