2017-2018年北京市海淀区高三上学期期末数学试卷(理科)和答案
2016-2017年北京市海淀区高三(上)期末数学试卷和参考答案(理科)

2016-2017学年北京市海淀区高三(上)期末数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)抛物线y2=2x的焦点到准线的距离为()A.B.1 C.2 D.32.(5分)在极坐标系中,点(1,)与点(1,)的距离为()A.1 B.C.D.3.(5分)如图程序框图所示的算法来自于《九章算术》,若输入a的值为16,b 的值为24,则执行该程序框图的结果为()A.6 B.7 C.8 D.94.(5分)已知向量,满足,()=2,则=()A.﹣ B.C.﹣2 D.25.(5分)已知直线l经过双曲线的一个焦点且与其一条渐近线平行,则直线l的方程可以是()A.y=﹣B.y=C.y=2x﹣D.y=﹣2x+6.(5分)设x,y满足,则(x+1)2+y2的最小值为()A.1 B.C.5 D.97.(5分)在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不都涂成红色,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为()A.14 B.16 C.18 D.208.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围是()A.[0,1]B.[,]C.[1,2]D.[,2]二、填空题(共6小题,每小题5分,满分30分)9.(5分)已知复数z(1+i)=2,则z=.10.(5分)(x2+)6的展开式中常数项是.(用数字作答)11.(5分)若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为.12.(5分)已知圆C:x2﹣2x+y2=0,则圆心坐标为;若直线l过点(﹣1,0)且与圆C相切,则直线l的方程为.13.(5分)已知函数y=2sin(ωx+φ)(ω>0,|φ|<).①若f(0)=1,则φ=;②若∃x∈R,使f(x+2)﹣f(x)=4成立,则ω的最小值是.14.(5分)已知函数f(x)=e﹣|x|+cosπx,给出下列命题:①f(x)的最大值为2;②f(x)在(﹣10,10)内的零点之和为0;③f(x)的任何一个极大值都大于1.其中,所有正确命题的序号是.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,c=2a,B=120°,且△ABC面积为.(1)求b的值;(2)求tanA的值.16.(13分)诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:(1)计算表中十二周“水站诚信度”的平均数;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(14分)如图1,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC=4,O 是边AB的中点,将三角形AOD饶边OD所在直线旋转到A,OD位置,使得∠A,OB=120°,如图2,设m为平面A1DC与平面A1OB的交线.(1)判断直线DC与直线m的位置关系并证明;(2)若在直线m上的点G满足OG⊥A1D,求出A1G的长;(3)求直线A1O与平面A1BD所成角的正弦值.18.(13分)已知A(0,2),B(3,1)是椭圆G:上的两点.(1)求椭圆G的离心率;(2)已知直线l过点B,且与椭圆G交于另一点C(不同于点A),若以BC为直径的圆经过点A,求直线l的方程.19.(14分)已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.20.(13分)对于无穷数列{a n},{b n},若b i=max{a1,a2,…,a i}﹣min{a1,a2,…,a k}(k=1,2,3,…),则称{b n}是{a n}的“收缩数列”,其中max{a1,a2,…,a k},min{a1,a2,…,a k}分别表示a1,a2,…,a k中的最大数和最小数.已知{a n}为无穷数列,其前n项和为S n,数列{b n}是{a n}的“收缩数列”.(1)若a n=2n+1,求{b n}的前n项和;(2)证明:{b n}的“收缩数列”仍是{b n};(3)若S1+S2+…+S n=(n=1,2,3,…),求所有满足该条件的{a n}.2016-2017学年北京市海淀区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)抛物线y2=2x的焦点到准线的距离为()A.B.1 C.2 D.3【解答】解:抛物线y2=2x的焦点到准线的距离为:p=1.故选:B.2.(5分)在极坐标系中,点(1,)与点(1,)的距离为()A.1 B.C.D.【解答】解:点(1,)与点(1,)的距离,即点(,)与点(﹣,)的距离为,故选:B.3.(5分)如图程序框图所示的算法来自于《九章算术》,若输入a的值为16,b 的值为24,则执行该程序框图的结果为()A.6 B.7 C.8 D.9【解答】解:模拟程序的运行,可得a=16,b=24满足条件a≠b,不满足条件a>b,b=24﹣16=8,满足条件a≠b,满足条件a>b,a=16﹣8=8,不满足条件a≠b,输出a的值为8.故选:C.4.(5分)已知向量,满足,()=2,则=()A.﹣ B.C.﹣2 D.2【解答】解:向量,满足+2=,即++=,∴+=﹣,又()=2,∴﹣•=2,∴=﹣2.故选:C.5.(5分)已知直线l经过双曲线的一个焦点且与其一条渐近线平行,则直线l的方程可以是()A.y=﹣B.y=C.y=2x﹣D.y=﹣2x+【解答】解:直线l经过双曲线的焦点(,0),渐近线方程为:y=,选项C、D错误;焦点坐标代入选项A正确,选项B错误.故选:A.6.(5分)设x,y满足,则(x+1)2+y2的最小值为()A.1 B.C.5 D.9【解答】解:作出不等式组对应的平面区域如图:(x+1)2+y2的几何意义是区域内的点到定点A(﹣1,0)的距离的平方,由图象知A到直线x+y﹣2=0的距离最小,此时距离d==,则距离的平方d2=()2=,故选:B.7.(5分)在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不都涂成红色,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为()A.14 B.16 C.18 D.20【解答】解:红色用1次,有6种方法,红色用2次,有10种方法,红色用3次,有4种方法,共20种,故选D.8.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围是()A.[0,1]B.[,]C.[1,2]D.[,2]【解答】解:由题意,若x=y=1,则棱DD1与平面BEF交于点D,符合题意;若x=1,y=0,则棱DD1与平面BEF交于线段DD1,符合题意.故选:C.二、填空题(共6小题,每小题5分,满分30分)9.(5分)已知复数z(1+i)=2,则z=1﹣i.【解答】解:由(1+i)z=2,得,故答案为:1﹣i.10.(5分)(x2+)6的展开式中常数项是15.(用数字作答)【解答】解:设通项公式为,整理得C6r x12﹣3r,因为是常数项,所以12﹣3r=0,所以r=4,故常数项是c64=15故答案为15.11.(5分)若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为.【解答】解:由已知中的三视图可得:该几何体是一个正方体挖去一个同底同高的四棱锥得到的组合体,正方体的体积为:2×2×2=8,四棱锥的体积为:×2×2×2=,故组合体的体积V=8﹣=,故答案为:12.(5分)已知圆C:x2﹣2x+y2=0,则圆心坐标为(1,0);若直线l过点(﹣1,0)且与圆C相切,则直线l的方程为y=±(x+1).【解答】解:圆C:x2﹣2x+y2=0,可化为(x﹣1)2+y2=1,圆心坐标为(1,0),设直线l的方程为y﹣0=k(x+1),即kx﹣y+k=0,圆心到直线的距离d==1,∴k=±,∴直线l的方程为y=±(x+1),故答案为(1,0),y=±(x+1)13.(5分)已知函数y=2sin(ωx+φ)(ω>0,|φ|<).①若f(0)=1,则φ=;②若∃x∈R,使f(x+2)﹣f(x)=4成立,则ω的最小值是.【解答】解:①∵由已知可得2sinφ=1,可得:sinφ=,∴可得:φ=2kπ+,或φ=2kπ+,k∈Z,∵|φ|<,∴当k=0时,φ=.②∵∃x∈R,使2sin[ω(x+2)+φ]﹣2sin(ωx+φ)=4成立,即:sin(ωx+2ω+φ)﹣sin(ωx+φ)=2,∴∃x∈R,使ωx+2ω+φ=2k1π+,ωx+φ=2k2π+,k∈Z,∴解得:ω=k1π﹣k2π﹣,k1,k2∈Z,又∵ω>0,|∴ω的最小值是.故答案为:,.14.(5分)已知函数f(x)=e﹣|x|+cosπx,给出下列命题:①f(x)的最大值为2;②f(x)在(﹣10,10)内的零点之和为0;③f(x)的任何一个极大值都大于1.其中,所有正确命题的序号是①②③.【解答】解:由→0,故当x=0时,f(x)的最大值为2,故①正确;函数f(x)=e﹣|x|+cosπx,满足f(﹣x)=f(x),故函数为偶函数;其零点关于原点对称,故f(x)在(﹣10,10)内的零点之和为0,故②正确;当cosπx取极大值1时,函数f(x)=e﹣|x|+cosπx取极大值,但均大于1,故③正确;故答案为:①②③三、解答题(共6小题,满分80分)15.(13分)在△ABC中,c=2a,B=120°,且△ABC面积为.(1)求b的值;(2)求tanA的值.【解答】(本题满分为13分)解:(1)∵c=2a,B=120°,△ABC面积为=acsinB=.∴解得:a=1,c=2,∴由余弦定理可得:b===.(2)∵a=1,c=2,b=,∴cosA==,∴tanA==.16.(13分)诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:(1)计算表中十二周“水站诚信度”的平均数;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.【解答】解:(1)表中十二周“水站诚信度”的平均数:=×=91%.(2)随机变量X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)=,P(X=3)=,∴X的分布列为:EX==2.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%→94%和80%到85%看出,后继一周都有提升.17.(14分)如图1,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC=4,O 是边AB的中点,将三角形AOD饶边OD所在直线旋转到A,OD位置,使得∠A,OB=120°,如图2,设m为平面A1DC与平面A1OB的交线.(1)判断直线DC与直线m的位置关系并证明;(2)若在直线m上的点G满足OG⊥A1D,求出A1G的长;(3)求直线A1O与平面A1BD所成角的正弦值.【解答】解:(1)∵DC∥OB,DC⊄平面A1OB,OB⊂平面A1OB∴DC∥平面A1OB,∵m为平面A1DC与平面A1OB的交线,∴DC∥m;(2)由题意,A1D在平面A1OB中的射影为A1O,∴OG⊥A1O,∴A1G=2A1O=4;(3)△A1OB中,A1B==2,∵A 1D=DB=2,∴==,设O到平面A1DB的距离为h,则,∴h=,∵A1O=2,∴直线A1O与平面A1BD所成角的正弦值=.18.(13分)已知A(0,2),B(3,1)是椭圆G:上的两点.(1)求椭圆G的离心率;(2)已知直线l过点B,且与椭圆G交于另一点C(不同于点A),若以BC为直径的圆经过点A,求直线l的方程.【解答】解:(1)∵椭圆G过A(0,2),B(3,1),∴,解得,则=,∴椭圆G的离心率e==;(2)由(1)得,椭圆G的方程是,①当直线的斜率不存在时,则直线BC的方程是x=3,代入椭圆G的方程得,C(3,﹣1),不符合题意;②当直线的斜率存在时,设斜率为k,C(x1,y1),则直线BC的方程为y=k(x﹣3)+1,由得,(3k2+1)x2﹣6k(3k﹣1)x+27k2﹣18k﹣3=0,∴3+x1=,3x1=,则x1=,∵以BC为直径圆经过点A,∴AB⊥AC,则,即(3,﹣1)•(x1,y1﹣2)=0,∴3x1﹣y1+2=0,即3x1﹣[k(x1﹣3)+1]=0,∴(3﹣k)x1+3k+1=0,(3﹣k)•+3k+1=0,化简得,18k2﹣7k﹣1=0,解得k=或k=,∴直线BC的方程为y=(x﹣3)+1或y=(x﹣3)+1,即直线BC的方程是x+2y﹣5=0或x﹣9y+6=0,综上得,直线l的方程是x+2y﹣5=0或x﹣9y+6=0.19.(14分)已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.【解答】解:(1)由f(x)=lnx﹣﹣1得:f′(x)=,(x>0),由已知曲线y=f(x)存在斜率为﹣1的切线,∴f′(x)=﹣1存在大于0的实数根,即x2+x+a=0存在大于0的实数根,∵y=x2+x+a在x>0时递增,∴a的范围是(﹣∞,0);(2)由f′(x)=,(x>0),得:a≥0时,f′(x)>0,∴f(x)在(0,+∞)递增;a<0时,若x∈(﹣a,+∞)时,f′(x)>0,若x∈(0,﹣a),则f′(x)<0,故f(x)在(﹣a,+∞)递增,在(0,﹣a)递减;(3)由g(x)=及题设得:g′(x)==,由﹣1<a<0,得:0<﹣a<1,由(2)得:f(x)在(﹣a,+∞)递增,∴f(1)=﹣a﹣1<0,取x=e,显然e>1,f(e)=﹣>0,∴存在x0∈(1,e)满足f(x0)=0,即存在x0∈(1,e)满足g′(x0)=0,令g′(x)>0,解得:x>x0,令g′(x)<0,解得:1<x<x0,故g(x)在(1,x0)递减,在(x0,+∞)递增,∴﹣1<a<0时,g(x)在(1,+∞)存在极小值.20.(13分)对于无穷数列{a n},{b n},若b i=max{a1,a2,…,a i}﹣min{a1,a2,…,a k}(k=1,2,3,…),则称{b n}是{a n}的“收缩数列”,其中max{a1,a2,…,a k},min{a1,a2,…,a k}分别表示a1,a2,…,a k中的最大数和最小数.已知{a n}为无穷数列,其前n项和为S n,数列{b n}是{a n}的“收缩数列”.(1)若a n=2n+1,求{b n}的前n项和;(2)证明:{b n}的“收缩数列”仍是{b n};(3)若S1+S2+…+S n=(n=1,2,3,…),求所有满足该条件的{a n}.【解答】解:(1)由a n=2n+1可得{ a n}为递增数列,所以b n=max{ a1,a2,…,a n}﹣min{ a1,a2,…,a n}=a n﹣a1=2n+1﹣3=2n﹣2,故{ b n}的前n项和为(2n﹣2)n=n(n﹣1)(2)因为max{ a1,a2,…,a n}≤max{ a1,a2,…,a n+1},因为min{ a1,a2,…,a n}≥min{ a1,a2,…,a n+1},所以max{ a1,a2,…,a n+1}﹣min{ a1,a2,…,a n+1}≥max{ a1,a2,…,a n}﹣min{ a1,a2,…,a n},所以b n+1≥b n,又因为b n=a1﹣a1=0,所以max{ b1,b2,…,b n}﹣min{ b1,b2,…,b n}=b n﹣b1=b n,所以{ b n}的“收缩数列”仍是{ b n},(3)由S1+S2+…+S n=n(n+1)a1+n(n﹣1)b1,当n=1时,a1=a1,当n=2时,3a1+2a2+a3=6a3+3b3,即3b3=2(a2﹣a1)+(a3﹣a1),(*),若a1<a3<a2,则b3=a2﹣a1,所以由(*)可得a3=a2与a3<a2矛盾,若a3<a1≤a2,则b3=a2﹣a3,所以由(*)可得a3﹣a2=3(a1﹣a3),所以a3﹣a2与a1﹣a3同号,这与a3<a1≤a2矛盾;若a3≥a2,则b3=a3﹣a2,由(*)可得a3=a2,猜想:满足S1+S2+…+S n=n(n+1)a1+n(n﹣1)b1的数列{ a n}是,a n=,a2≥a1,经验证:左式=S1+S2+…+S n=na1+[1+2+…+(n﹣1)]=na1+n(n﹣1)a2,右式=n(n+1)a1+n(n﹣1)b1=n(n+1)a1+n(n﹣1)(a2﹣na1)=na1+n (n﹣1)a2下面证明其它数列都不满足(3)的题设条件由上述n≤3的情况可知,n≤3,a n=,a2≥a1是成立的,假设a k=是首次不符合a n=,a2≥a1的项,则a1≤a2=a3=…=a k﹣1≠a k 由题设条件可得(k2﹣k﹣2)a2+a k=k(k﹣1)a1+k(k﹣1)b k(*),若a1<a k<a2,则由(*)可得a k=a2与a k<a2矛盾,若a k<a1≤a2,则b k=a2﹣a k,所以由(*)可得a k﹣a2=k(k﹣1)(a1﹣a k),所以a k﹣a2与a1﹣a k同号,这与a k<a1≤a2矛盾;所以a k≥a2,则b k=a k﹣a1,所以由(*)化简可得a k=a2,这与假设a k≠a2相矛盾,所以不存在数列不满足a n=,a2≥a1的{a n}符合题设条件。
北京市海淀区2017届高三上学期期末考试数学(理)试题(全Word版,含答案)

海淀区高三年级第一学期期末练习数学(理科)2017.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项. 1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1B .2C .3D .53.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为 A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A .1522y x =-+B .152y x =- C .322y x =- D .23y x =-+6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14 B .16 C .18 D .20 8.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1]B .13[,]22C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.ABCD1D 1A 1B 1C E F开始是否是否a a b=-b b a=-a输出结束,a b输入a b≠a b>10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是__. 14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B =,且∆ABC 面积为32. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一....周期..,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周 第二周 第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期85%92%95%96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠=,224AB CD BC ===,O 是边AB 的中点.将三俯视图2左视图211主视图角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠=,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-=,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”.(Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ;(Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =,求所有满足该条件的{}n a .海淀区AOBCD1图ODCB2图1A高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);3(1)3y x =+和3(1)3y x =-+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==1332222a a ⨯⨯=,解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,7b b >∴=. (不写b>0不扣分) (Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:1321sin sin 2147a A B b ==⨯=, 又120B =,所以A 是锐角(或:因为12,a c =<=) 所以217557cos 1sin 19614A A =-==, 所以sin 213tan .cos 557A A A === 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X ==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分.情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的.例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分)解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1ADC 平面1A OB m =所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则1(3,1,0),(0,2,0),(0,0,2)A B D -,所以1(3,1,2)A D =-.设(3,,0)G m ,则由1OG A D ⊥可得10A D OG ⋅=,即(3,1,2)(3,,0)30m m -⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n 即320,330,x y z x y ⎧-++=⎪⎨-+=⎪⎩令1y =,则3,1x z ==, 所以(3,1,1)=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=1115cos ,5A O n A O n A O n⋅<>==⋅.法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,ODCBG1A zxy M所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D =,所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠=,所以160OAG ∠=, 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),(1,3,0),(0,0,2)O A B D -(, 所以11(2,0,2),(3,3,0,)A D A B =-=- 设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,330,x z x y -+=⎧⎪⎨-+=⎪⎩令1x =,则3,1y z ==,所以(1,3,1)n =,设直线1A O 与平面1A BD 所成角为θ,则 sin θ=1115cos ,5AO n AO n AO n ⋅<>==⋅.18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=, 解得212,23a a ==.所以2228,22c a b c =-==, 所以椭圆G 的离心率是6.3c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,O DCBG1A zxy由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根, 因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x 0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列, 所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=-,故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤=,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥=,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥=. 又因为1110b a a =-=, 所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-=,所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-,--所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+, 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-=,所以1121()ki k i a a b b b =-≤+++∑,(1,2,3,,)k n =即112()k k S ka b b b ≤++++,(1,2,3,,)k n =由1(1,2,3,)n n b b n +≥=可得(1,2,3,,)k n b b k n ≤=又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k =, 所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++-,--即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n n S S S a b +-+++≤+等号成立的条件是1(1,2,3,,)i i n a a b b i n -===,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)精品文档考试教学资料施工组织设计方案。
2017年北京市海淀区高三理科上学期数学期末试卷

2017年北京市海淀区高三理科上学期数学期末试卷一、选择题(共8小题;共40分)1. 已知i为虚数单位,则5i1−2i= A. 2+iB. −2+iC. 2−iD. −2−i2. 在极坐标系Ox中,方程ρ=2sinθ表示的圆为 A. B.C. D.3. 执行如图所示的程序框图,输出的k值为 A. 4B. 5C. 6D. 74. 设m是不为零的实数,则“m>0”是“方程x2m −y2m=1表示双曲线”的 A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 已知直线x−y+m=0与圆O:x2+y2=1相交于A,B两点,且△OAB为正三角形,则实数m的值为 A. 32B. 62C. 32或−32D. 62或−626. 从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为 A. 15B. 25C. 35D. 457. 某三棱锥的三视图如图所示,则下列说法中:①三棱锥的体积为16;②三棱锥的四个面全是直角三角形;③三棱锥四个面的面积中最大的值是32.所有正确的说法是 A. ①B. ①②C. ②③D. ①③8. 已知点F为抛物线C:y2=2px p>0的焦点,点K为点F关于原点的对称点,点M在抛物线C上,则下列说法错误的是 A. 使得△MFK为等腰三角形的点M有且仅有4个B. 使得△MFK为直角三角形的点M有且仅有4个C. 使得∠MKF=π4的点M有且仅有4个D. 使得∠MKF=π6的点M有且仅有4个二、填空题(共6小题;共30分)9. 点2,0到双曲线x24−y2=1的渐近线的距离是.10. 已知公差为1的等差数列a n中,a1,a2,a4成等比数列,则a n的前100项的和为.11. 设抛物线C:y2=4x的顶点为O,经过抛物线C的焦点且垂直于x轴的直线和抛物线C交于A,B两点,则OA+OB=.12. 已知5x−1n的展开式中,各项系数的和与各项二项式系数的和之比为64:1,则n=.13. 已知正方体ABCD−A1B1C1D1的棱长为4,M是棱BC的中点,点P在底面ABCD内,点Q在线段A1C1上.若PM=1,则PQ长度的最小值为.14. 对任意实数k,定义集合D k=x,y x−y+2≥0,x+y−2≤0,x,y∈R kx−y≤0.①若集合D k表示的平面区域是一个三角形,则实数k的取值范围是;②当k=0时,若对任意的x,y∈D0,有y≥a x+3−1恒成立,且存在x,y∈D0,使得x−y≤a成立,则实数a的取值范围为.三、解答题(共6小题;共78分)15. 如图,在△ABC中,点D在AC边上,且AD=3DC,AB=,∠ADB=π3,∠C=π6.(1)求DC的值;(2)求tan∠ABC的值.16. 据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席.其中超算全球第一“神威·太湖之光”完全使用了国产处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下:(数值越小,速度越快,单位是MIPS)测试1测试2测试3测试4测试5测试6测试7测试8测试9测试10测试11测试品牌A3691041121746614品牌B2854258155121021(1)从品牌A的12次测试结果中,随机抽取一次,求测试结果小于7的概率;(2)在12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E X;(3)经过了解,前6次测试是打开含有文字与表格的文件,后6次测试是打开含有文字与图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.17. 如图1,在梯形ABCD中,AD∥BC,CD⊥BC,BC=CD=1,AD=2,E为AD中点.将△ABE沿BE翻折到△A1BE的位置,使A1E=A1D如图2.(1)求证:平面A1ED⊥平面BCDE;(2)求A1B与平面A1CD所成角的正弦值;(3)设M,N分别为A1E和BC的中点,试比较三棱锥M−A1CD和三棱锥N−A1CD(图中未画出)的体积大小,并说明理由.18. 已知椭圆C:x2+2y2=9,点P2,0.(1)求椭圆C的短轴长与离心率;(2)过1,0的直线l与椭圆C相交于M,N两点,设MN的中点为T,判断TP与TM 的大小,并证明你的结论.19. 已知函数f x=2e x−ax2−2x−2.(1)求曲线y=f x在点0,f0处的切线方程;(2)当a≤0时,求证:函数f x有且只有一个零点;(3)当a>0时,写出函数f x的零点的个数.(只需写出结论)20. 无穷数列a n满足:a1为正整数,且对任意正整数n,a n+1为前n项a1,a2,⋯,a n中等于a n的项的个数.(1)若a1=2,请写出数列a n的前7项;(2)求证:对于任意正整数M,必存在k∈N∗,使得a k>M;(3)求证:“a1=1”是“存在m∈N∗,当n≥m时,恒有a n+2≥a n成立”的充要条件.答案第一部分 1. B 2. D 3. D 【解析】s =20+21+22+⋯+2k=1−2k +11−2=2k +1−1,当 k =5 时,26−1<100,当 k =6 时,27−1>100,则 k =k +1=7,输出 k =7.4. A5. D6. C7. D8. C第二部分9. 25 5 10. 5050 11. 2 12.6 13. 14. −1,1 , −2,15 第三部分15. (1) 由题意得,∠DBC=∠ADB −∠C =π3−π6=π6, 故 ∠DBC =∠C ,DB =DC , 设 DC =x ,则 DB =x ,DA =3x . 在 △ADB 中,由余弦定理得,AB 2=DA 2+DB 2−2DA ⋅DB ⋅cos ∠ADB , 即 7= 3x 2+x 2−2⋅3x ⋅x ⋅12=7x 2, 解得 x =1,即 DC =1.(2) 方法一.在 △ADB 中,由 AD >AB ,得 ∠ABD >∠ADB =60∘,故∠ABC =∠ABD +∠DBC>π3+π6=π2, 在 △ABC 中,由正弦定理得,AC sin ∠ABC =ABsin ∠ACB , 即 4sin ∠ABC =712,故 sin ∠ABC =7,由 ∠ABC ∈ π2,π ,得 cos ∠ABC = 37,tan ∠ABC = 3=−23 3.方法二.在 △ADB 中,由余弦定理得,cos ∠ABD =AB 2+BD 2−AD 2=2⋅ 7⋅1=2 7由 ∠ABD ∈ 0,π ,故 sin ∠ABD = 32 7,故 tan ∠ABD =−3 3, 故tan ∠ABC=tan ∠ABD +π=tan ∠ABD +tan π61−tan ∠ABD ⋅tanπ6=−3 3+33 3 33=−2 3.方法三:BC 2=BD 2+CD 2−2BD ⋅CD ⋅cos ∠BDC =3,BC = 3,cos ∠ABC =BA 2+BC 2−AC 22BA⋅BC= 3 7, 因为 ∠ABC ∈ 0,π , 所以 sin ∠ABC =7,所以 tan ∠ABC = 3=−23 3.16. (1) 从品牌A 的 12 次测试中,测试结果打开速度小于 7 的测试有:测试 1,2,5,6,9,10,11,共 7 次,设“该测试结果打开速度小于 7”为事件A ,因此 P A =712.(2) 12 次测试中,品牌A 的测试结果大于品牌B 的测试结果的测试有:测试 1,3,4,5,7,8,共 6 次,随机变量 X 所有可能的取值为:0,1,2,3, P X =0 =C 63C 6C 123=111, P X =1 =C 62C 61C 123=922, P X =2 =C 61C 62C 123=922,P X =3 =C 60C 63C 123=111,随机变量 X 的分布列为:X 0123P 1991E X =111×0+922×1+922×2+111×3=32.(3) 标准 1:会用前 6 次测试品牌A 、品牌B 的测试结果的平均值与后 6 次测试品牌A 、品牌B 的测试结果的平均值进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的平均值均小于打开含有文字和图片的文件的测试结果的平均值;这两种品牌的处理器打开含有文字与表格的文件的平均速度均快于打开含有文字和图片的文件的平均速度).【解析】标准2:会用前6次测试品牌A、品牌B的测试结果的方差与后6次测试品牌A、品牌B的测试结果的方差进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的方差均小于打开含有文字和图片的文件的测试结果的方差;这两种品牌的处理器打开含有文字与表格的文件的速度的波动均小于打开含有文字和图片的文件的速度的波动).标准3:会用品牌A前6次测试结果的平均值、后6次测试结果的平均值与品牌B前6次测试结果的平均值、后6次测试结果的平均值进行阐述(品牌A前6次测试结果的平均值大于品牌B前6次测试结果的平均值,品牌A后6次测试结果的平均值小于品牌B后6次测试结果的平均值,品牌A打开含有文字和表格的文件的速度慢于品牌B,品牌A,打开含有文字和图形的文件的速度快于品牌B).标准4:会用品牌A前6次测试结果的方差、后6次测试结果的方差与品牌B前6次测试结果的方差、后6次测试结果的方差进行阐述(品牌A前6次测试结果的方差大于品牌B前6次测试结果的方差,品牌A 后6次测试结果的方差小于品牌B后6次测试结果的方差,品牌A打开含有文字和表格的文件的速度的波动大于品牌B,品牌A,打开含有文字和图形的文件的速度的波动小于品牌B).标准5:会用品牌A这12次测试结果的平均值与品牌B这12次测试结果的平均值进行阐述(品牌A这12次测试结果的平均值小于品牌B这12次测试结果的平均值,品牌A打开文件的平均速度快于品牌B).标准6:会用品牌A这12次测试结果的方差与品牌B这12次测试结果的方差进行阐述(品牌A这12次测试结果的方差小于品牌B这12次测试结果的方差,品牌A打开文件的平均速度的波动小于品牌B).标准7:会用前6次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数、后6次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数进行阐述(前6次测试结果中,品牌A小于品牌B的有2次,占1/3,后6次测试中,品牌A小于品牌B的有4次,占2/3.故品牌A打开含有文字和表格的文件的速度慢于品牌B,品牌A打开含有文字和图片的文件的速度快于品牌B).标准8:会用这12次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数进行阐述(这12次测试结果中,品牌A小于品牌B的有6次,占1/2.故品牌A和品牌B打开文件的速度相当).参考数据:期望前6次后6次12次品牌A 5.509.837.67品牌B 4.3311.838.08品牌A与品牌B 4.9210.83方差前6次后6次12次品牌A12.3027.3723.15品牌B 5.0731.7732.08品牌A与品牌B8.2727.9717. (1)由图1,在梯形ABCD中,AD∥BC,CD⊥BC,BC=1,AD=2,E为AD中点,BE⊥AD,故图2,BE⊥A1E,BE⊥DE,因为A1E∩DE=E,A1E,DE⊂平面A1DE,所以BE⊥平面A1DE,因为BE⊂平面BCDE,所以平面A1DE⊥平面BCDE.(2)解一:取DE中点O,连接OA1,ON.因为在△A1DE中,A1E=A1D=DE=1,O为DE中点,所以A1O⊥DE,因为平面A1DE⊥平面BCDE,平面A1DE∩平面BCDE=DE,A1O⊂平面A1DE,所以A1O⊥平面BCDE,因为在正方形BCDE中,O,N分别为DE,BC的中点,所以ON⊥DE,建系如图.则A10,0,32,B1,−12,0,C1,12,0,D0,12,0,E0,−12,0,A1B=1,−12,−32,A1D=0,12,−32,DC=1,0,0,设平面A1CD的法向量为n=x,y,z,则n⋅A1D=0,n⋅DC=0,即12y−32z=0,x=0,令z=1得,y=3,所以n=0,3,1是平面A1CD的一个法向量.cos A1B,n=A1B⋅nA1B⋅ n =32⋅2=−64,所以A1B与平面A1CD所成角的正弦值为64.解二:在平面A1DE内作Ez⊥ED.由BE⊥平面A1DE,建系如图.则A10,12,32,B1,0,0,C1,1,0,D0,1,0,E0,0,0.A1B=1,−12,−32,A1D=0,12,−32,DC=1,0,0,设平面A1CD的法向量为n=x,y,z,则n⋅A1D=0,n⋅DC=0,即12y−32z=0,x=0,令z=1得,y=3,所以n=0,3,1是平面A1CD的一个法向量.cos A1B,n=A1B⋅nA1B⋅ n =32⋅2=−64,所以A1B与平面A1CD所成角的正弦值为64.(3)三棱锥M−A1CD和三棱锥N−A1CD的体积相等.理由如下:方法一:连接MN,由M0,14,34,N1,12,0,知MN=1,14,−34,则MN⋅n=0,因为MN⊄平面A1CD,所以MN∥平面A1CD.故点M,N到平面A1CD的距离相等,有三棱锥M−A1CD和N−A1CD同底等高,所以体积相等.方法二:如图,取DE中点P,连接MP,NP,MN.因为在△A1DE中,M,P分别是A1E,DE的中点,所以MP∥A1D,因为在正方形BCDE中,N,P分别是BC,DE的中点,所以NP∥CD,因为MP∩NP=P,MP,NP⊂平面MNP,A1D,CD⊂平面A1CD,所以平面MNP∥平面A1CD,因为MN⊂平面MNP,所以MN∥平面A1CD,故点M,N到平面A1CD的距离相等,有三棱锥M−A1CD和N−A1CD同底等高,所以体积相等.方法三:如图,取A1D中点Q,连接MN,MQ,CQ.因为在△A1DE中,M,Q分别是A1E,A1D的中点,所以MQ∥ED且MQ=12ED,因为在正方形BCDE中,N是BC的中点,所以NC∥ED且NC=12ED,所以MQ∥NC且MQ=NC,故四边形MNCQ是平行四边形,故MN∥CQ,因为CQ⊂平面A1CD,MN⊄平面A1CD,所以MN∥平面A1CD.故点M,N到平面A1CD的距离相等,有三棱锥M−A1CD和N−A1CD同底等高,所以体积相等.18. (1)C:x29+y292=1,故a2=9,b2=92,c2=92,有a=3,b=c=322.椭圆C的短轴长为2b=3e=ca =22.(2)方法1:结论是:TP<TM.当直线l斜率不存在时,l:x=1,TP=0<TM=2,当直线l斜率存在时,设直线l:y=k x−1,M x1,y1,N x2,y2,x2+2y2=9,y=k x−1,整理得:2k2+1x2−4k2x+2k2−9=0,Δ=4k22−42k2+12k2−9=64k2+36>0,故x1+x2=4k22k2+1,x1x2=2k2−92k2+1,PM⋅PN=x1−2x2−2+y1y2=x1−2x2−2+k2x1−1x2−1=k2+1x1x2−k2+2x1+x2+k2+4=k2+1⋅2k2−92k2+1−k2+2⋅4k22k2+1+k2+4 =−6k2+52k2+1<0.故∠MPN>90∘,即点P在以MN为直径的圆内,故TP<TM.方法2:结论是:TP<TM.当直线l斜率不存在时,l:x=1,TP=0<TM=2,当直线l斜率存在时,设直线l:y=k x−1,M x1,y1,N x2,y2,T x T,y T,x2+2y2=9,y=k x−1,整理得:2k2+1x2−4k2x+2k2−9=0,Δ=4k22−42k2+12k2−9=64k2+36>0,故x1+x2=4k22k+1,x1x2=2k2−92k+1,x T=12x1+x2=2k22k2+1,y T=k x T−1=−k2k2+1,TP2=x T−22+y T2=2k22−22+ −k22=2k2+22+k22k2+12=4k4+9k2+42k2+12.TM2=12MN2=14k2+1x1−x22=14k2+1x1+x22−4x1x2=14k2+14k22k2+12−4⋅2k2−92k2+1=k2+116k2+9=16k4+25k2+92k2+12.此时,TM2− TP2=16k4+25k2+92k2+12−4k4+9k2+42k2+12=12k4+16k2+522>0.故TM>TP.19. (1)因为函数f x=2e x−ax2−2x−2,所以fʹx=2e x−2ax−2,故f0=0,fʹ0=0,则曲线y=f x在x=0处的切线方程为y=0.(2)当a≤0时,令g x=fʹx=2e x−2ax−2,则gʹx=2e x−2a>0,故g x是R上的增函数,由g0=0,故当x<0时,g x<0,当x>0时,g x>0,即当x<0时,fʹx<0,当x>0时,fʹx>0,故f x在−∞,0上单调递减,在0,+∞上单调递增,函数f x的最小值为f0.由f0=0,故f x有且仅有一个零点.(3)当0<a<1时,f x有两个零点,当a=1时,f x有一个零点;当a>1时,f x有两个零点.20. (1)若a1=2,则数列a n的前7项为2,1,1,2,2,3,1.(2)证法一:假设存在正整数M,使得对任意的k∈N∗,a k≤M,由题意,a k∈1,2,3,⋯,M,故数列a n至多有M个不同的取值,考虑数列a n的前M2+1项:a1,a2,a3,⋯,a M2+1,其中至少有M+1项的取值相同,不妨设a i1=a i2=⋯=a iM+1,此时有:a iM+1+1=M+1>M,矛盾.故对于任意的正整数M,必存在k∈N∗,使得a k>M.证法二:假设存在正整数M,使得对任意的k∈N∗,a k≤M,由题意,a k∈1,2,3,⋯,M,故数列a n至多有M个不同的取值,对任意的正整数m,数列a n中至多有M项的值为m,事实上若数列a n中至少有M+1项的值为m,其M+1项为a i1,a i2,a i3,⋯,a iM−1,a iM,a iM+1,此时有:a iM+1+1=M+1>M,矛盾.故数列a n至多有M2项,这与数列a n有无穷多项矛盾.故对于任意的正整数M,必存在k∈N∗,使得a k>M.(3)充分性:若a1=1,则数列a n的项依次为1,1,2,1,3,1,4,1,⋯,k−2,1,k−1,1,k,1,⋯特别地,数列a n的通项公式为a n=k,n=2k−11,n=2k,即a n=n+12,n=2k−11,n=2k,故对任意的n∈N∗,(1)若n为偶数,则a n+2=a n=1,(2)若n为奇数,则a n+2=n+32>n+12=a n,综上,a n+2≥a n恒成立,特别地,取m=1有当n≥m时,恒有a n+2≥a n成立.必要性:方法一:假设存在a1=k k>1,使得“存在m∈N∗,当n≥m时,恒有a n+2≥a n成立”,则数列a n的前k2+1项为k,1,1,2,1,3,1,4,⋯,1,k−2,1,k−1,1,k⏟2k−1项,2,2,3,2,4,2,5,⋯,2,k−2,2,k−1,2,k⏟2k−3项,3,3,4,3,5,3,6,⋯,3,k−2,3,k−1,3,k⏟2k−5项,⋯,k−2,k−2,k−1,k−2,k⏟5项,k−1,k−1,k⏟3项,k后面的项顺次为k+1,1,k+1,2,k+1,3,⋯,k+1,k−2,k+1,k−1,k+1,k⏟2k项,k+2,1,k+2,2,k+2,3,⋯,k+2,k−2,k+2,k−1,k+2,k⏟2k项,k+3,1,k+3,2,k+3,3,⋯,k+3,k−2,k+3,k−1,k+3,k⏟2k项,⋯k+t,1,k+t,2,k+t,3,⋯,k+t,k−2,k+t,k−1,k+t,k⏟2k项,⋯故对任意的s=1,2,3,⋯,k−2,k−1,k,t∈N∗,a k2+1+2t−1k+2s−1=k+t,a k2+1+2t−1k+2s=s,对任意的m,取t=m2k+1,其中x表示不超过x的最大整数,则2kt>m,令n=k2+1+2kt,则n>m,此时a n=k,a n+2=1,有a n>a n+2,这与a n≤a n+2矛盾,故若存在m∈N∗,当n≥m时,恒有a n+2≥a n成立,必有a1=1.方法二:若存在m∈N∗,当n≥m时,a n+2≥a n恒成立,记max a1,a2,⋯,a m=s,由第Ⅱ问的结论可知:存在k∈N∗,使得a k>s(由s的定义知k≥m+1),不妨设a k是数列a n中第一个大于等于s+1的项,即a1,a2,⋯,a k−1均小于等于s,则a k+1=1,因为k−1≥m,所以a k+1≥a k−1,即1≥a k−1且a k−1为正整数,所以a k−1=1,记a k=t≥s+1,由数列a n的定义可知,在a1,a2,⋯,a k−1中恰有t项等于1,假设a1≠1,则可设a i1=a i2=⋯=a it=1,其中1<i1<i2<⋯<i t=k−1,考虑这t个1的前一项,即a i1−1,a i2−1,⋯,a it−1,因为它们均为不超过s的正整数,且t≥s+1,所以a i1−1,a i2−1,⋯,a it−1中一定存在两项相等,将其记为a,则数列a n中相邻两项恰好为a,1的情况至少出现2次,但根据数列a n的定义可知:第二个a的后一项应该至少为2,不能为1,所以矛盾!故假设a1≠1不成立,所以a1=1,即必要性得证!综上,“a1=1”是“存在m∈N∗,当n≥m时,恒有a n+2≥a n成立”的充要条件.。
2017届北京市海淀区高三上学期期末考试数学理试题(word版)

2017届北京市海淀区高三上学期期末考试数学理试题(word 版)2017.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项. 1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1 BCD3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为 A .6 B .7 C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A.12y x =- B.12y x =C.2y x = D.2y x =-6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14 B .16 C .18 D .20 8.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1]B .13[,]221D 1A 1B 1C FC .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____________.13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是________.14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B = ,且∆ABC(Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)俯视图主视图诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周第二周第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期85% 92% 95% 96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠= ,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠= ,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)AOBCD1图ODCB2图1A已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-= ,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ;(Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = ,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);1)y x =+和1)y x =+13.π6,π214.①②③三、解答题(共6小题,共80分)15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==122a a ⨯=,解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,b b >∴. (不写b>0不扣分)(Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:sin sin a A B b ===, 又120B = ,所以A 是锐角(或:因为12,a c =<=)所以cos A ==所以sin tan cos A A A === 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X ==⨯⨯=随机变量X 的分布列为X0 1 2 3 P1327321532932171590123232323232EX =⨯+⨯+⨯+⨯=. (Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述 标准2:会用三个周期的诚信度平均数变化进行阐述 标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下: 情况一:结论:两次主题活动效果均好.(1分) 理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分) 情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分) 情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化) 情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分) 情况六: 以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分. ②以下情况不得分. 情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分)解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1A DC 平面1A OB m = 所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = ,所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则11,0),(0,2,0),(0,0,2)A B D -,所以1(,2)A D =.设,0)G m ,则由1OG A D ⊥可得10A D OG ⋅= ,即(,2),0)30m m ⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则 110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,30,y z y ⎧++=⎪⎨+=⎪⎩令1y =,则1x z ==, 所以=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,A O n A O n A O n⋅<>==⋅法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D = , 所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠= ,所以160OAG ∠= , 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,则如图,建立空间直角坐标系O xyz -,A10,0,0),(2,0,0),(1(0,0,2)O A B D -(,所以11(2,0,2),(A D A B =-=-设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,30,x z x -+=⎧⎪⎨-+=⎪⎩令1x =,则1y z =,所以n =,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,AO n AO n AO n ⋅<>==⋅18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==所以椭圆G 的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-.法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A ,所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++ 2236128031k k k --=+, 即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-. 19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根, 因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即 存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列,所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=- , 故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤= ,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥= ,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥= . 又因为1110b a a =-=,所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-= , 所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-, 所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+, 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠ ,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-= ,所以1121()ki k i a a b b b =-≤+++∑ ,(1,2,3,,)k n =即112()k k S ka b b b ≤++++ ,(1,2,3,,)k n = 由1(1,2,3,)n n b b n +≥= 可得(1,2,3,,)k n b b k n ≤= 又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k = ,所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++- ,即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n nS S S a b +-+++≤+ 等号成立的条件是1(1,2,3,,)i i n a a b b i n -=== ,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)。
最新题库年北京市海淀区高三(上)期末数学试卷和参考答案(理科)

第 11 页(共 19 页)
又∵ ω>0,| ∴ ω的最小值是 . 故答案为: , .
14.( 5 分)已知函数 f( x)=e﹣| x|+cosπ,x给出下列命题:
① f(x)的最大值为 2;
② f(x)在(﹣ 10, 10)内的零点之和为 0;
③ f(x)的任何一个极大值都大于 1.
其中,所有正确命题的序号是 ①②③ .
第一周
第二周
第三周
第四周
第一个周期
95%
98%
92%
88%
第二个周期
94%
94%
83%
80%
第三个周期
85%
92%
95%
96%
( 1)计算表中十二周 “水站诚信度 ”的平均数 ;
( 2)分别从表中每个周期的 4 个数据中随机抽取 1 个数据,设随机变量 X 表示
取出的 3 个数据中 “水站诚信度 ”超过 91%的数据的个数, 求随机变量 X 的分布列
.
【解答】 解:①∵由已知可得 2sin φ=,1 可得: sin φ=, ∴可得: φ=2kπ+ ,或 φ=2kπ+ ,k∈Z, ∵ | φ| < ,
∴当 k=0 时, φ= . ②∵ ? x∈R,使 2sin[ ω( x+2)+φ] ﹣2sin( ωx+φ)=4 成立,即: sin( ωx+2ω+φ) ﹣ sin(ωx+φ) =2, ∴ ? x∈ R,使 ωx+2ω+φ=2k1π+ ,ωx+φ =22kπ+ ,k∈ Z, ∴解得: ω=k1π﹣k2π﹣ ,k1, k2∈Z,
11.( 5 分)若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该
2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
北京市海淀区2017-2018学年高三上学期期中数学试卷(理科) Word版含解析

2017-2018学年北京市海淀区高三(上)期中数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1} B.{x|2<x<3}C.{x|1<x<3}D.{x|x>2或x<1}2.已知向量=(﹣1,2),=(2,﹣4).若与()A.垂直 B.不垂直也不平行C.平行且同向D.平行且反向3.函数y=2x+的最小值为()A.1 B.2 C.2D.44.已知命题p:∃c>0,方程x2﹣x+c=0 有解,则¬p为()A.∀c>0,方程x2﹣x+c=0无解B.∀c≤0,方程x2﹣x+c=0有解C.∃c>0,方程x2﹣x+c=0无解D.∃c<0,方程x2﹣x+c=0有解5.已知函数y=a x,y=x b,y=log c x的图象如图所示,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a6.设,是两个向量,则“|+|>|﹣|”是“•>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知函数f(x)=cos4x+sin2x,下列结论中错误的是()A.f(x)是偶函数B.函f(x)最小值为C.是函f(x)的一个周期D.函f(x)在(0,)内是减函数8.如图所示,A是函数f(x)=2x的图象上的动点,过点A作直线平行于x轴,交函数g(x)=2x+2的图象于点B,若函数f(x)=2x的图象上存在点C使得△ABC为等边三角形,则称A 为函数f(x)=2x上的好位置点.函数f(x)=2x上的好位置点的个数为()A.0 B.1 C.2 D.大于2二、填空题共6小题,每小题5分,共30分.9.已知数列{a n}的前n项和S n=3n+1,则a2+a3=.10.若角θ的终边过点P(3,﹣4),则sin(θ﹣π)=.11.已知正方形ABCD边长为1,E是线段CD的中点,则•=.12.去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsin(x+)(a,b为常数).若6月份的月平均气温约为22℃,12月份的月平均气温约为4℃,则该地8月份的月平均气温约为℃.13.设函数f(x)=(a>0,且a≠1).①若a=,则函数f(x)的值域为;②若f(x)在R上是增函数,则a的取值范围是.14.已知函数f(x)的定义域为R.∀a,b∈R,若此函数同时满足:①当a+b=0时,有f(a)+f(b)=0;②当a+b>0时,有f(a)+f(b)>0,则称函数f(x)为Ω函数.在下列函数中:①y=x+sinx;②y=3x﹣()x;③y=是Ω函数的为.(填出所有符合要求的函数序号)三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.已知数列{a n}是公差为2的等差数列,数列{b n满足b n﹣b n=a n,且b2=﹣18,b3=﹣24.+1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求b n取得最小值时n的值.16.已知函数f(x)=cos(2x﹣)﹣cos2x.(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期和单调递增区间.17.已知函数f(x)=x3﹣9x,函数g(x)=3x2+a.(Ⅰ)已知直线l是曲线y=f(x)在点(0,f(0))处的切线,且l与曲线y=g(x)相切,求a的值;(Ⅱ)若方程f(x)=g(x)有三个不同实数解,求实数a的取值范围.18.如图,△ABC是等边三角形,点D在边BC的延长线上,且BC=2CD,AD=.(Ⅰ)求CD的长;(Ⅱ)求sin∠BAD的值.19.已知函数f (x )=e x (x 2+ax +a ). (Ⅰ)求f (x )的单调区间;(Ⅱ)求证:当a ≥4时,函数f (x )存在最小值.20.已知数列{a n }是无穷数列,满足lga n +1=|lga n ﹣lga n ﹣1|(n=2,3,4,…).(Ⅰ)若a 1=2,a 2=3,求a 3,a 4,a 5的值;(Ⅱ)求证:“数列{a n }中存在a k (k ∈N *)使得lga k =0”是“数列{a n }中有无数多项是1”的充要条件;(Ⅲ)求证:在数列{a n }中∃a k (k ∈N *),使得1≤a k <2.2016-2017学年北京市海淀区高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1} B.{x|2<x<3}C.{x|1<x<3}D.{x|x>2或x<1}【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式解得:1<x<3,即B={x|1<x<3},∵A={x|x>2},∴A∩B={x|2<x<3},故选:B.2.已知向量=(﹣1,2),=(2,﹣4).若与()A.垂直 B.不垂直也不平行C.平行且同向D.平行且反向【考点】平行向量与共线向量;数量积判断两个平面向量的垂直关系.【分析】直接利用向量关系,判断即可.【解答】解:向量=(﹣1,2),=(2,﹣4).=﹣2,所以两个向量共线,反向.故选:D.3.函数y=2x+的最小值为()A.1 B.2 C.2D.4【考点】基本不等式.【分析】直接利用基本不等式化简求解即可.【解答】解:函数y=2x+≥2=2,当且仅当x=时,等号成立.故选:C.4.已知命题p:∃c>0,方程x2﹣x+c=0 有解,则¬p为()A.∀c>0,方程x2﹣x+c=0无解B.∀c≤0,方程x2﹣x+c=0有解C.∃c>0,方程x2﹣x+c=0无解D.∃c<0,方程x2﹣x+c=0有解【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题p:∃c>0,方程x2﹣x+c=0 有解,则¬p为∀c>0,方程x2﹣x+c=0无解.故选:A.5.已知函数y=a x,y=x b,y=log c x的图象如图所示,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【考点】指数函数的单调性与特殊点.【分析】根据指数函数、对数函数与幂函数的图象与性质,用特殊值即可判断a、b、c的大小.【解答】解:根据函数的图象知,函数y=a x是指数函数,且x=1时,y=a∈(1,2);函数y=x b是幂函数,且x=2时,y=2b∈(1,2),∴b∈(0,1);函数y=log c x是对数函数,且x=2时,y=log c2∈(0,1),∴c>2;综上,a、b、c的大小是c>a>b.故选:C.6.设,是两个向量,则“|+|>|﹣|”是“•>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据向量数量积的定义和性质结合充分条件和必要条件的定义进行判断即可.【解答】解:若|+|>|﹣|,则等价为|+|2>|﹣|2,即||2+||2+2•>||2+||2﹣2•,即4•>0,则•>0成立,反之,也成立,即“|+|>|﹣|”是“•>0”的充要条件,故选:C.7.已知函数f(x)=cos4x+sin2x,下列结论中错误的是()A.f(x)是偶函数B.函f(x)最小值为C.是函f(x)的一个周期D.函f(x)在(0,)内是减函数【考点】三角函数的周期性及其求法;三角函数的最值.【分析】根据奇偶性的定义,判断函数f(x)是偶函数;化简函数f(x),求出它的最小值为;化简f(x),求出它的最小正周期为;判断f(x)在x∈(0,)上无单调性.【解答】解:对于A ,函数f (x )=cos 4x +sin 2x ,其定义域为R ,对任意的x ∈R ,有f (﹣x )=cos 4(﹣x )+sin 2(﹣x )=cos 4x +sin 2x=f (x ), 所以f (x )是偶函数,故A 正确;对于B ,f (x )=cos 4x ﹣cos 2x +1=+,当cosx=时f (x )取得最小值,故B 正确;对于C ,f (x )=+=+=+=+=+,它的最小正周期为T==,故C 正确;对于D ,f (x )=cos4x +,当x ∈(0,)时,4x ∈(0,2π),f (x )先单调递减后单调递增,故D 错误.故选:D .8.如图所示,A 是函数f (x )=2x 的图象上的动点,过点A 作直线平行于x 轴,交函数g (x )=2x +2的图象于点B ,若函数f (x )=2x 的图象上存在点C 使得△ABC 为等边三角形,则称A 为函数f (x )=2x 上的好位置点.函数f (x )=2x 上的好位置点的个数为( )A .0B .1C .2D .大于2【考点】函数的图象.【分析】根据题意,设出A 、B 、C 的坐标,由线段AB ∥x 轴,△ABC 是等边三角形,x=log 2(m ﹣)=log 2m ﹣1,求出m 的值,计算出结果. 【解答】解:根据题意,设A ,B 的纵坐标为m , 则A (log 2m ,m ),B (log 2m ﹣2,m ), ∴AB=log 2m ﹣log 2m +2=2, 设C (x ,2x ),∵△ABC 是等边三角形,∴点C 到直线AB 的距离为,∴m﹣2x=,∴x=log2(m﹣),∴x=(log2m+log2m﹣2)=log2m﹣1,∴log2(m﹣)=log2m﹣1=log2,∴m﹣=,解得m=2,∴x=log2(m﹣)=log2,函数f(x)=2x上的好位置点的个数为1个,故选:B.二、填空题共6小题,每小题5分,共30分.9.已知数列{a n}的前n项和S n=3n+1,则a2+a3=24.【考点】数列的求和;数列递推式.【分析】直接利用数列的和,化简求解即可.【解答】解:数列{a n}的前n项和S n=3n+1,S1=31+1=4,S3=33+1=28,a2+a3=28﹣4=24.故答案为:24.10.若角θ的终边过点P(3,﹣4),则sin(θ﹣π)=.【考点】任意角的三角函数的定义.【分析】利用同角三角函数的基本关系、诱导公式,求得要求式子的值.【解答】解:∵角θ的终边过点P(3,﹣4),∴x=3,y=﹣4,r=|OP|=5,∴sinθ=﹣,则sin(θ﹣π)=﹣sinθ=,故答案为:.11.已知正方形ABCD边长为1,E是线段CD的中点,则•=.【考点】平面向量数量积的运算.【分析】由题意可得=0,AD=AB=1,再根据•=(+)•(﹣),计算求得结果.【解答】解:由题意可得=0,AD=AB=1,∴•=(+)•(﹣)=﹣﹣=1﹣0﹣=,故答案为:.12.去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsin(x+)(a,b为常数).若6月份的月平均气温约为22℃,12月份的月平均气温约为4℃,则该地8月份的月平均气温约为31℃.【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】根据题意,把x、y的值代入函数解析式,列出方程求出函数y的解析式,再计算x=8时y的值即可.【解答】解:函数y=a+bsin(x+)(a,b为常数),当x=6时y=22;当x=12时y=4;即,化简得,解得a=13,b=﹣18;∴y=13﹣18sin(x+),当x=8时,y=13﹣18sin(×8+)=31.故答案为:31.13.设函数f(x)=(a>0,且a≠1).①若a=,则函数f(x)的值域为(﹣,﹣]∪(0,+∞);②若f(x)在R上是增函数,则a的取值范围是[2,+∞).【考点】分段函数的应用.【分析】(1)根据指数函数和对数函数的性质,分别求其值域,再求并集即可,(2)由题意可得a的不等式组,解不等式组可得.【解答】解:(1)当a=时,若x≤1,则f(x)=2x﹣,则其值域为(﹣,﹣],若x>1,f(x)=log x,则其值域为(0,+∞),综上所述函数f(x)的值域为(﹣,﹣]∪(0,+∞),(2)∵f(x)在R上是增函数,∴a>1,此时f(x)=2x﹣a的最大值为2﹣a,f(x)=log a x>0,∴2﹣a≤0,解得a≥2,故a的取值范围为[2,+∞),故答案为:(1):(﹣,﹣]∪(0,+∞),(2):[2,+∞)14.已知函数f(x)的定义域为R.∀a,b∈R,若此函数同时满足:①当a+b=0时,有f(a)+f(b)=0;②当a+b>0时,有f(a)+f(b)>0,则称函数f(x)为Ω函数.在下列函数中:①y=x+sinx;②y=3x﹣()x;③y=是Ω函数的为①②.(填出所有符合要求的函数序号)【考点】命题的真假判断与应用.【分析】容易判断函数①②为奇函数,且在定义域R上为增函数,可设y=f(x),容易得出这两函数满足Ω函数的两条,而函数③是奇函数,不是增函数,这样显然不能满足Ω函数的第②条,这样即可找出为Ω函数的函数序号.【解答】解:容易判断①②③都是奇函数;y′=1﹣cosx≥0,y′=ln3(3x+3﹣x)>0;∴①②都在定义域R上单调递增;③在定义域R上没有单调性;设y=f(x),从而对于函数①②:a+b=0时,a=﹣b,f(a)=f(﹣b)=﹣f(b);∴f(a)+f(b)=0;a+b>0时,a>﹣b;∴f(a)>f(﹣b)=﹣f(b);∴f(a)+f(b)>0;∴①②是Ω函数;对于函数③,a+b>0时,得到a>﹣b;∵f(x)不是增函数;∴得不到f(a)>f(﹣b),即得不出f(a)+f(b)>0.故答案为:①②.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.已知数列{a n}是公差为2的等差数列,数列{b n满足b n﹣b n=a n,且b2=﹣18,b3=﹣24.+1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求b n取得最小值时n的值.【考点】数列递推式.【分析】(Ⅰ)由已知求得a2,结合公差求得首项,则数列{a n}的通项公式可求;﹣b n=a n,利用累加法求得b n,结合二次函数求得b n取(Ⅱ)把数列{a n}的通项公式代入b n+1得最小值时n的值.【解答】解:(Ⅰ)由题意知d=2,﹣b n=a n,且b2=﹣18,b3=﹣24,得a2=b3﹣b2=﹣6,再由b n+1则a1=a2﹣d=﹣6﹣2=﹣8,∴a n=﹣8+2(n﹣1)=2n﹣10;(Ⅱ)b n﹣b n=2n﹣10,+1∴b2﹣b1=2×1﹣10,b3﹣b2=2×2﹣10,…=2(n﹣1)﹣10(n≥2),b n﹣b n﹣1累加得:b n=b1+2[1+2+…+(n﹣1)]﹣10(n﹣1)=b2﹣a1+2[1+2+…+(n﹣1)]﹣10(n﹣1),=﹣10+=.∴当n=5或6时,b n取得最小值为b5=b6=﹣30.16.已知函数f(x)=cos(2x﹣)﹣cos2x.(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数的周期性及其求法;余弦函数的单调性.【分析】(Ⅰ)根据函数f(x)的解析式,计算f()的值即可;(Ⅱ)化函数f(x)为正弦型函数,即可求出它的最小正周期与单调递增区间.【解答】解:(Ⅰ)函数f(x)=cos(2x﹣)﹣cos2x,∴f()=cos(﹣)﹣cos=﹣(﹣)=1;(Ⅱ)函数f(x)=cos(2x﹣)﹣cos2x=cos2xcos+sin2xsin﹣cos2x=sin2x﹣cos2x=sin(2x﹣);∴函数f(x)的最小正周期为T==π;由y=sinx的单调递增区间是[2kπ﹣,2kπ+],(k∈Z);令2kπ﹣≤2x﹣≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+;∴函数f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).17.已知函数f(x)=x3﹣9x,函数g(x)=3x2+a.(Ⅰ)已知直线l是曲线y=f(x)在点(0,f(0))处的切线,且l与曲线y=g(x)相切,求a的值;(Ⅱ)若方程f(x)=g(x)有三个不同实数解,求实数a的取值范围.【考点】利用导数研究曲线上某点切线方程;根的存在性及根的个数判断.【分析】(Ⅰ)求出f(x)的导数和切线的斜率和方程,设l与曲线y=g(x)相切于点(m,n),求出g(x)的导数,由切线的斜率可得方程,求得a的值;(Ⅱ)记F(x)=f(x)﹣g(x)=x3﹣9x﹣3x2﹣a,求得导数和单调区间,极值,由题意可得方程f(x)=g(x)有三个不同实数解的等价条件为极小值小于0,极大值大于0,解不等式即可得到所求范围.【解答】解:(Ⅰ)函数f(x)=x3﹣9x的导数为f′(x)=3x2﹣9,f(0)=0,f′(0)=﹣9,直线l的方程为y=﹣9x,设l与曲线y=g(x)相切于点(m,n),g′(x)=6x,g′(m)=6m=﹣9,解得m=﹣,g(m)=﹣9m,即g(﹣)=+a=,解得a=;(Ⅱ)记F(x)=f(x)﹣g(x)=x3﹣9x﹣3x2﹣a,F′(x)=3x2﹣6x﹣9,由F′(x)=0,可得x=3或x=﹣1.当x<﹣1时,F′(x)>0,F(x)递增;当﹣1<x<3时,F′(x)<0,F(x)递减;当x>3时,F′(x)>0,F(x)递增.可得x=﹣1时,F(x)取得极大值,且为5﹣a,x=3时,F(x)取得极小值,且为﹣27﹣a,因为当x→+∞,F(x)→+∞;x→﹣∞,F(x)→﹣∞.则方程f(x)=g(x)有三个不同实数解的等价条件为:5﹣a>0,﹣27﹣a<0,解得﹣27<a<5.18.如图,△ABC是等边三角形,点D在边BC的延长线上,且BC=2CD,AD=.(Ⅰ)求CD的长;(Ⅱ)求sin∠BAD的值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知及等边三角形的性质可得AC=2CD,∠ACD=120°,由余弦定理即可解得CD的值.(Ⅱ)由(Ⅰ)可求BD=3CD=3,由正弦定理即可解得sin∠BAD的值.【解答】(本题满分为13分)解:(Ⅰ)∵△ABC是等边三角形,BC=2CD,∴AC=2CD,∠ACD=120°,∴在△ACD中,由余弦定理可得:AD2=AC2+CD2﹣2AC•CDcos∠ACD,可得:7=4CD2+CD2﹣4CD•CDcos120°,解得:CD=1.(Ⅱ)在△ABC中,BD=3CD=3,由正弦定理,可得:sin∠BAD==3×=.19.已知函数f(x)=e x(x2+ax+a).(Ⅰ)求f(x)的单调区间;(Ⅱ)求证:当a≥4时,函数f(x)存在最小值.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)结合(Ⅰ)得到函数f(x)在x∈[﹣a,+∞)上f(x)≥f(﹣2),而x∈(﹣∞,﹣a)时,f(x)=e x[x(x+a)+a]>0,从而求出f(x)的最小值是f(﹣2);法二:根据函数的单调性求出f(x)的最小值是f(﹣2)即可.【解答】解:(Ⅰ)f′(x)=e x(x+2)(x+a),由f′(x)=0,解得:x=﹣2或x=﹣a,①﹣a=﹣2即a=2时,f′(x)=e x(x+2)2≥0恒成立,∴函数f(x)在R递增;,(﹣a ,+∞)递增,在(﹣2,﹣a )递减,a >2时,f (x )在(﹣∞,﹣a ),(﹣2,+∞)递增,在(﹣a ,﹣2)递减;(Ⅱ)法一:由(Ⅰ)得:a ≥4时,函数f (x )在x ∈[﹣a ,+∞)上f (x )≥f (﹣2), 且f (﹣2)=e ﹣2(4﹣a )≤0,∵a ≥4,∴x ∈(﹣∞,﹣a )时,x (x +a )≥0,e x >0,x ∈(﹣∞,﹣a )时,f (x )=e x [x (x +a )+a ]>0,∴a ≥4时,函数f (x )存在最小值f (﹣2);法二:由(Ⅰ)得:a ≥4时,函数f (x )在x ∈[﹣a ,+∞)上f (x )≥f (﹣2), 且f (﹣2)=e ﹣2(4﹣a )≤0, x →﹣∞时,x 2+ax +a →+∞,∴f (x )>0,由(Ⅰ)可知,函数f (x )在(﹣∞,﹣a )递增,∴x ∈(﹣∞,﹣a )时,f (x )>0,∴a ≥4时,函数f (x )的最小值是f (﹣2).20.已知数列{a n }是无穷数列,满足lga n +1=|lga n ﹣lga n ﹣1|(n=2,3,4,…).(Ⅰ)若a 1=2,a 2=3,求a 3,a 4,a 5的值;(Ⅱ)求证:“数列{a n }中存在a k (k ∈N *)使得lga k =0”是“数列{a n }中有无数多项是1”的充要条件;(Ⅲ)求证:在数列{a n }中∃a k (k ∈N *),使得1≤a k <2.【考点】数列递推式.【分析】(Ⅰ)由a 1=2,a 2=3,结合lga n +1=|lga n ﹣lga n ﹣1|(n=2,3,4,…)可得a 3,a 4,a 5的值;(Ⅱ)分必要性和充分性证明,充分性利用反证法证明;(Ⅲ)利用反证法,假设数列{a n }中不存在a k (k ∈N *),使得1≤a k <2,则0<a k <1或a k ≥2(k=1,2,3,…).然后分类推出矛盾得答案.【解答】(Ⅰ)解:∵a 1=2,a 2=3,lga n +1=|lga n ﹣lga n ﹣1|(n=2,3,4,…),∴lga 3=|lg3﹣lg2|=,即;,即a 4=2;,即;(Ⅱ)证明:必要性、已知数列{a n }中有无数多项是1,则数列{a n }中存在a k (k ∈N *)使得lga k =0.∵数列{a n }中有无数多项是1,∴数列{a n }中存在a k (k ∈N *)使得a k =1,即数列{a n }中存在a k (k ∈N *)使得lga k =0.充分性:已知数列{a n }中存在a k (k ∈N *)使得lga k =0,则数列{a n }中有无数多项是1.假设数列{a n }中没有无数多项是1,不妨设是数列{a n }中为1的最后一项,则a m +1≠1,若a m +1>1,则由lga n +1=|lga n ﹣lga n ﹣1|(n=2,3,4,…),可得lga m +2=lga m +1, ∴lga m +3=|lga m +2﹣lga m +1|=0,则lga m +3=1,与假设矛盾;若0<a m +1<0,则由lga n +1=|lga n ﹣lga n ﹣1|(n=2,3,4,…),可得lga m +2=﹣lga m +1, ∴lga m +3=|lga m +2﹣lga m +1|=﹣2lga m +1,lga m +4=|lga m +3﹣lga m +2|=|﹣2lga m +1+lga m +1|=﹣lga m +1,lga m +5=|lga m +4﹣lga m +3|=|﹣lga m +1+2lga m +1|=﹣lga m +1,∴lga m +6=|lga m +5﹣lga m +4|=0,得lga m +6=1,与假设矛盾.综上,假设不成立,原命题正确;(Ⅲ)证明:假设数列{a n }中不存在a k (k ∈N *),使得1≤a k <2, 则0<a k <1或a k ≥2(k=1,2,3,…).由lga n +1=|lga n ﹣lga n ﹣1|(n=2,3,4,…),可得(n=1,2,3,…)*,且a n >0(n=1,2,3,…),∴当n ≥2时,a n ≥1,a n ≥2(n=3,4,5,…).若a 4=a 3≥2,则a 5=1,与a 5≥2矛盾;若a 4≠a 3≥2,设b m =max {a 2m +1,a 2m +2}(m=1,2,3,…),则b m ≥2.由(*)可得,,,∴,即(m=1,2,3,…), ∴,对于b 1,显然存在l 使得.∴,这与b m ≥2矛盾. ∴假设不成立,原命题正确.2016年11月17日。
2018北京市海淀区高三数学(理科)(上)期末(K12教育文档)

2018北京市海淀区高三数学(理科)(上)期末(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018北京市海淀区高三数学(理科)(上)期末(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018北京市海淀区高三数学(理科)(上)期末(word版可编辑修改)的全部内容。
2018北京市海淀区高三数学(理科)(上)期末 2018. 1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。
(1)复数12+=ii(A )2-i (B )2+i(C )2--i(D)2-+i (2)在极坐标系Ox 中,方程2sin ρθ=表示的圆为(A )(B)(C )(D )(3)执行如图所示的程序框图,输出的k 值为(A ) 4 (B) 5 (C) 6 (D ) 7(4)设m 是不为零的实数,则“0m >"是“方程221x y m m-=表示双曲线”的(A )充分而不必要条件 (B )必要而不充分条件(C)充分必要条件 (D )既不充分也不必要条件(5)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,且OAB ∆为正三角形,则实数m的值为(A(B(C或(或 (6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为(A )15(B )25(C )35(D)45(7)某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形 ③所有正确的说法是(A)①(B)①②(C )②③ (D )①③(8)已知点F 为抛物线C :()220y px p =>的焦点,点K 为点F 关于原点的对称点,点M 在抛物线C 上,则下列说法错误..的是 (A )使得MFK ∆为等腰三角形的点M 有且仅有4个 (B )使得MFK ∆为直角三角形的点M 有且仅有4个(C)使得4MKF π∠=的点M 有且仅有4个 (D)使得6MKF π∠=的点M 有且仅有4个主视图左视图俯视图二、填空题共6小题,每小题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14. (5 分)对任意实数 k,定义集合
.
①若集合 Dk 表示的平面区域是一个三角形,则实数 k 的取值范围是
;
②当 k=0 时,若对任意的(x,y)∈Dk,有 y≥a(x+3)﹣1 恒成立,且存在(x, y)∈Dk,使得 x﹣y≤a 成立,则实数 a 的取值范围为 .
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程. 15 . ( 13 分 ) 如 图 , 在 △ ABC 中 , 点 D 在 AC 边 上 , 且 AD=3BC , AB= (Ⅰ)求 DC 的值; (Ⅱ)求 tan∠ABC 的值. .
18. (13 分)已知椭圆 C:x2+2y2=9,点 P(2,0) (Ⅰ)求椭圆 C 的短轴长和离心率; (Ⅱ)过(1,0)的直线 l 与椭圆 C 相交于两点 M,N,设 MN 的中点为 T,判 断|TP|与|TM|的大小,并证明你的结论. 19. (14 分)已知函数 f(x)=2ex﹣ax2﹣2x﹣2. (Ⅰ)求曲线 y=f(x)在点(0,f(0) )处的切线方程; (Ⅱ)当 a≤0 时,求证:函数 f(x)有且仅有一个零点;
7. (5 分)某三棱锥的三视图如图所示,则下列说法中: ①三棱锥的体积为 ②三棱锥的四个面全是直角三角形 ③三棱锥的四个面的面积最大的是 所有正确的说法是( )
A.① B.①②
C.②③
D.①③
8. (5 分)已知点 F 为抛物线 C:y2=2px(p>0)的焦点,点 K 为点 F 关于原点 的对称点,点 M 在抛物线 C 上,则下列说法错误的是( A.使得△MFK 为等腰三角形的点 M 有且仅有 4 个 B.使得△MFK 为直角三角形的点 M 有且仅有 4 个 C.使得 D.使得 的点 M 有且仅有 4 个 的点 M 有且仅有 4 个 )
2017-2018 学年北京市海淀区高三(上)期末数学试卷(理科)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选 出符合题目要求的一项. 1. (5 分)复数 =( )
A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i 2. (5 分)在极坐标系中 Ox,方程 ρ=2sinθ 表示的圆为( )
16. (13 分)据中国日报网报道:2017 年 11 月 13 日,TOP500 发布的最新一期 全球超级计算机 500 强榜单显示, 中国超算在前五名中占据两席, 其中超算全球 第一“神威太湖之光”完全使用了国产品牌处理器. 为了了解国产品牌处理器打开 文件的速度, 某调查公司对两种国产品牌处理器进行了 12 次测试, 结果如下 (数 值越小,速度越快,单位是 MIPS) 测试 测试 测试 测试 测试 测试 测试 测试 测试 测试 测试 测试
第 4 页(共 25 页)
(Ⅲ)当 a>0 时,写出函数 f(x)的零点的个数. (只需写出结论) 20. (13 分)无穷数列{an}满足:a1 为正整数,且对任意正整数 n,an+1 为前 n 项 a1,a2,…,an 中等于 an 的项的个数. (Ⅰ)若 a1=2,请写出数列{an}的前 7 项; (Ⅱ)求证:对于任意正整数 M,必存在 k∈N*,使得 ak>M; (Ⅲ) 求证: “a1=1”是“存在 m∈N*, 当 n≥m 时, 恒有 an+2≥an 成立”的充要条件.
二、填空题共 6 小题,每小题 5 分,共 30 分. 9. (5 分)点(2,0)到双曲线 的渐近线的距离是
第 2 页(共 25 页)
.
10. (5 分)已知公差为 1 的等差数列{an}中,a1,a2,a4 成等比数列,则{an}的 前 100 项和为 .
11. (5 分)设抛物线 C:y2=4x 的顶点为 O,经过抛物线 C 的焦点且垂直于 x 轴 的直线和抛物线 C 交于 A,B 两点,则 = .
第 3 页(共 25 页)
1 品牌 A 品牌 B 2 3
2 6
3 9
4 10
5 4
6 1
7 12
8 17
9 4
10 6
11 6
12 14
8
5
4
2
5
8
15
5
12
10
21
(Ⅰ)从品牌 A 的 12 次测试中,随机抽取一次,求测试结果小于 7 的概率; (Ⅱ)从 12 次测试中,随机抽取三次,记 X 为品牌 A 的测试结果大于品牌 B 的 测试结果的次数,求 X 的分布列和数学期望 E(X) ; (Ⅲ)经过了解,前 6 次测试是打开含有文字和表格的文件,后 6 次测试是打开 含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国 产品牌处理器打开文件的速度进行评价. 17. (14 分)如图 1,梯形 ABCD 中,AD∥BC,CD⊥BC,BC=CD=1,AD=2,E 为 AD 中点.△A1ED 为正三角形,将△ABE 沿 BE 翻折到△A1BE 的位置,如图 2,△ A1ED 为正三角形. (Ⅰ)求证:平面△A1DE⊥平面 BCDE; (Ⅱ)求直线 A1B 与平面 A1CD 所成角的正弦值; (Ⅲ)设 M,N 分别为 A1E 和 BC 的中点,试比较三棱锥 M﹣A1CD 和三棱锥 N﹣ A1CD(图中未画出)的体积大小,并说明理由.
12. (5 分)已知(5x﹣1)n 的展开式中,各项系数的和与各项二项式系数的和 之比为 64:1,则 n= . ,点 M 是棱 BC 的中点,
13. (5 分)已知正方体 ABCD﹣A1B1C1D1 的棱长为
点 P 在底面 ABCD 内,点 Q 在线段 A1C1 上,若 PM=1,则 PQ 长度的最小值 为 .
A.
B.
C.
D. )
3. (5 分)执行如图所示的程序框图,输出的 k 值为(
A.4
B.5
C.6
D.7 表示的曲线为双曲
4. (5 分)设 m 是不为零的实数,则“m>0”是“方程 线”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
第 1 页(共 25 页)
5. (5 分)已知直线 x﹣y+m=0 与圆 O:x2+y2=1 相交于 A,B 两点,且△AOB 为 正三角形,则实数 m 的值为( A. B. C. 或 ) D. 或
6. (5 分)从编号分别为 1,2,3,4,5,6 的六个大小完全相同的小球中,随 机取出三个小球,则恰有两个小球编号相邻的概率为( A. B. C. D. )