最新青岛版五年级下册数学知识点总结
最新青岛版五四制五年级数学下册总复习知识点归纳

第一部分数与代数(一)数的认识知识点一:数的意义和分类自然数、整数、正数和负数、分数、百分数、小数(一)整数1 、整数的意义自然数和0都是整数。
像-1,-2,-3……这样的数也叫整数。
2 、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
无论是整数还是小数,相邻两个计数单位之间的进率都是10。
4、数位及数位顺序表计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。
倍数和因数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的因数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
青岛版五四制五年级数学下册总复习知识点归纳

第一部分数与代数(一)数的认识知识点一:数的意义和分类自然数、整数、正数和负数、分数、百分数、小数(一)整数1 、整数的意义自然数和0都是整数。
像-1,-2,-3……这样的数也叫整数。
2 、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
无论是整数还是小数,相邻两个计数单位之间的进率都是10。
4、数位及数位顺序表计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。
倍数和因数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的因数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
青岛版五年级下学期全部知识点

青岛版五年级下学期全部知识点第一部分:数与代数第一单元:认识正、负数。
1、像+4、这样的数都是正数。
像-4 、这样的数都是负数。
0既不是正数,也不是负数。
正数都大于0,负数都小于0。
正数都大于负数。
2、描述具有相反意义的量,可以用正、负数。
第二单元:分数的意义和性质3、单位“1”:一个物体或许多物体组成的一个整体,可以用自然数1来表示,通常把它叫做单位“1”。
4、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
分母表示把单位1平均分成的份数,分子表示取了这样的多少份。
5、分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
6、分数大小的比较方法同分母的:同分母,分子大,则分数大。
同分子的:同分子,分母小,则分数大。
异分母异分子的:先通分,再比较。
7、求一个数是另一个数的几分之几——分数与除法的关系 例如a 是b 的几分之几:a÷b =ba(b≠0) 被除数相当于分数的分子,除数相当于分数的分母。
被除数÷除数=除数被除数8、分数的分类:①真分数:分子比分母小的分数叫做真分数,真分数都小于1;②假分数:分子比分母大或者分子和分母相等的分数,叫做假分数,假分数都大于或等于1.③带分数:分子不是分母倍数的假分数还可以写成整数与真分数合成的数,通常叫做带分数。
9、假分数化成带分数:假分数=分子÷分母=被除数÷除数=商除数余数10、假分数化成整数:分子是分母倍数的假分数可以化成整数,整数=分子÷分母11、整数化成指定分母的假分数:整数=指定分母指定分母乘分子12、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
13、分数量与率的比较例如把3米的绳子平均分成2段,每段是全长的21,每段长23米。
第三、五单元 分数加减法 14、最大公因数:(约分用)把一个数化成同它相等,但分子、分母都比较小的分数,叫做约分。
青岛版五年级数学下册知识点总结

青岛版五年级数学下册知识点总结知识点总结一认识正、负数1、除0外,不带“—”号的数是正数。
(像:7,+5,……)带“—”号的数是负数。
(像:—3,—155,……)2、0既不是正数,也不是负数。
正数都大于0,负数都小于0,正数都大于负数。
3、描述具有相反意义的量,可以用正、负数。
二分数的意义和性质分数的产生:在进行测量、分物或计算时,不能正好得到整数的结果分数的意义分数与意义:把单位1平均分成若干份,表示这样的一份或几份的数分数与除法:分子(被除数),分母(除数),分数值(商)真分数:分子比分母小的分数(真分数小于1)真分数与假分数假分数:分子比分母大或相等的分数(假分数大于1或等于1).带分数:分子不是分母倍数的假分数(整数部分和真分数)假分数化带分数、整数(分子除以分母,商作整数部分余数作分子)分数的基本性质:分数的分子和分母同时乘或除以相同的数(0分数的基本性质除外),分数的大小不变。
通分:把异分母分数分别化成与原来分数相等的同分母分数最大公因数约分求最大公因数(列举法、短除法)最简分数:分子和分母只有公因数1的分数(分子分母互质的分数)约分及其方法最小公倍数通分求最小公倍数(列举法、短除法)分数比大小(通分成同分母分数、化成小数)通分及其方法(找公分母)小数化分数:小数化成分母是10、100、1000等的分数再化简分数和小数的互化分数化小数:分子除以分母(除不尽的一般保留三位小数)分数的意义和性质思维导图1、分数单位: 把单位“1”平均分成若干份,表示其中一份的数2、3/8和平3/8米的区别:不带单位的分数,无实际意义,只与平均分成的份数有关。
(表示:把单位“1”平均分成8份,表示其中的3份);带单位的分数,有实际意义。
(表示:3米的确1/8或1米的3/8,是一个具体的长度)3、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
4、最简分数的分母只含有质因数2和5,这个分数一定能化成有限小数。
青岛版五年级下册数学知识点

青岛版五年级下册数学知识点1.像+4.这样的数都是正数。
像-4 .这样的数都是负数。
2.0既不是正数,也不是负数。
正数都大于0,负数都小于0。
正数都大于负数。
3.描述具有相反意义的量,可以用正.负数。
第二单元:分数的意义和性质1.单位“1”:一个物体或许多物体组成的一个整体,可以用自然数1来表示,通常把它叫做单位“1”。
2.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
3.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
4.分数大小的比较方法同分母的:同分母,分子大,则分数大。
同分子的:同分子,分母小,则分数大。
7.异分母异分子的:先通分,再比较。
8.求一个数是另一个数的几分之几——除法与分数的关系a是b的几分之几:a÷b=【b≠0】被除数相当于分数的分子,除数相当于分数的分母。
被除数÷除数=8.分数的分类:①真分数:分子比分母小的分数叫做真分数;②假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
分子比分母大的分数一定是假分数,分子等于分母的分数一定假分数。
【b≠0】是真分数,则a<b,<1;【b≠0】是假分数,则a=b,=1或a>b,>1,a是b的倍数可以化成整数。
带分数:分子不是分母倍数的假分数还可以写成整数与真分数合成的数,通常叫做带分数。
9.假分数化成带分数:假分数=分子÷分母=被除数÷除数=商10.假分数化成整数:分子是分母倍数的假分数可以化成整数,整数=分子÷分母11.整数化成指定分母的假分数:整数=12.分数的基本性质:分数的分子和分母同时乘或除以相同的数【0除外】,分数的大小不变。
13.分数虚实量的比较把3米的绳子平均分成2段,每段是全长的,每段长米。
第三.五单元14.最大公因数:【约分用】把一个数化成同它相等,但分子.分母都比较小的分数,叫做约分。
约分时,要约成最简分数。
【1】.互质关系:1是最大公因数。
(完整版)青岛版五年级下册数学知识点总结

6、分子比分母大或分子和分母相等的分数,叫做
假分数 。 ( 11 、 7 、 9 、 17 假分数 11 3 5 4
都大于或等于 1)
7、分子不是分母倍数的假分数还可以写成整数与真分数合成的数,通常叫做
带分数 。
( 7 =2 1 ,读作 2 又三分之一、 9 =1 4 ,读作 1 又五分之四 )
33
三、负十…“ -”是负号; 0 既不是正数,也不是负数 。正数都大于 0,负数都小于 0。 二、分数的意义和性质
1、一个物体或多个物体组成的一个整体,可以用自然数
1 来表示,通常把它叫做 单
位“ 1”。 (例: 1 个西瓜平均切成 6 块,吃掉 1 ,还剩几分之几,单位“ 1”是 1 个西 3
瓜。 240 袋面粉,运走 80 袋,剩下的是总的几分之几,单位“ 1”是 240 袋面粉。 )
同 )组成,从一个方向观察,最多能同时看到
3 个面。
2、相交于一个顶点的三条棱的长度分别叫做长方体的 长、宽、高。
高h
长a
宽b
3、长方体总棱长 =4 长 +4 宽 +4 高 =4× (长+宽 +高 )等的长方体, 是特殊的长方体 。
5、正方体的特点 :6 个面完全相同, 8 个顶点, 12 条棱长度相等。
之几, 0.12= 12 = 12 4 = 3 ……两位小数表示百分之几) 100 100 25
9、 分数化成小数 : ①分母是 10、 100……的分数,直接去掉分母,分母后面有几个
0 就从分子的末尾向
左数出几位,并点上小数点。 ( 3 =0.3、 97 =0.97 )
10
100
②分母不是 10、100 的分数, 用分子除以分母, 除不尽时按四舍五入法保留三位小数。
2024年青岛版五年级数学知识点总结

2024年青岛版五年级数学知识点总结一、数的认识1. 数的读法和写法,数的大小比较。
2. 数的顺序排列和数的分解。
3. 数线和数的位置。
二、加减法1. 加法的概念和意义。
2. 数的加法交换律和结合律。
3. 加法的简便计算。
4. 减法的概念和意义。
5. 减法的简便计算和列竖式计算。
三、乘除法1. 数的乘法的概念和意义。
2. 数的乘法交换律和结合律。
3. 数的乘法法则。
4. 乘法的简便计算和列竖式计算。
5. 数的除法的概念和意义。
6. 数的除法法则。
7. 除法的简便计算和列竖式计算。
四、容量、质量和长度1. 容量的认识和读法。
2. 容量的比较和换算。
3. 质量的认识和读法。
4. 质量的比较和换算。
5. 长度的认识和读法。
6. 长度的比较和换算。
五、时间1. 用钟表表示时间。
2. 整小时和半小时。
3. 时间的先后顺序。
4. 时间的简便计算。
5. 日常时间问题的解答。
六、图形与几何1. 图形的认识和分类。
2. 直线、折线、线段与封闭曲线。
3. 直角和直角的判断。
4. 正方形、长方形和三角形。
5. 正方体和长方体。
七、数据统计1. 排序和统计。
2. 图形的绘制和分析。
3. 数据的分析和归纳。
总结:以上是____年青岛版五年级数学的主要知识点,包括数的认识、加减法、乘除法、容量、质量和长度、时间、图形与几何以及数据统计等内容。
学完这些知识点,学生将对数学的基本概念和运算有更深入的理解,能够灵活运用数学知识解决生活中的问题。
青岛版五四制五年级数学下册总复习知识点归纳

青岛版五四制五年级数学下册总复习知识点归纳(一)数的认识知识点一:数的意义和分类自然数、整数、正数和负数、分数、百分数、小数(一)整数1 、整数的意义自然数和0都是整数。
像-1;-2;-3……这样的数也叫整数。
2 、自然数我们在数物体的时候;用来表示物体个数的1;2;3……叫做自然数。
一个物体也没有;用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
无论是整数还是小数;相邻两个计数单位之间的进率都是10。
4、 数位及数位顺序表计数单位按照一定的顺序排列起来;它们所占的位置叫做数位。
5、数的整除整数a 除以整数b(b ≠ 0);除得的商是整数而没有余数;我们就说a 能被b 整除;或者说b 能整除a 。
如果数a 能被数b (b ≠ 0)整除;a 就叫做b 的倍数;b 就叫做a的因数(或a的因数)。
倍数和因数是相互依存的。
因为35能被7整除;所以35是7的倍数;7是35的因数。
一个数的因数的个数是有限的;其中最小的因数是1;最大的因数是它本身。
例如:10的因数有1、2、5、10;其中最小的因数是1;最大的因数是10。
一个数的倍数的个数是无限的;其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ;没有最大的倍数。
个位上是0、2、4、6、8的数;都能被2整除;例如:202、480、304;都能被2整除。
个位上是0或5的数;都能被5整除;例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除;这个数就能被3整除;例如:12、108、204都能被3整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
一个数;如果只有1和它本身两个因数;这样的数叫做质数(或素数);100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册数学知识点一、认识正、负数 1、温度计中以0℃为分界线,在0刻度线以上是正值,0刻度以下是负值。
零上13℃,用“+13℃”表示,零下3℃,用“-3℃”表示。
(注意:0℃表示温度分界线,不表示没有温度)2、像+13、+38…都是正数,“+”是正号通常省略不写;像-3、-10…都是负数读作负三、负十…“-”是负号;0既不是正数,也不是负数。
正数都大于0,负数都小于0。
二、分数的意义和性质1、一个物体或多个物体组成的一个整体,可以用自然数1来表示,通常把它叫做单位“1”。
(例:1个西瓜平均切成6块,吃掉31,还剩几分之几,单位“1”是1个西瓜。
240袋面粉,运走80袋,剩下的是总的几分之几,单位“1”是240袋面粉。
) 2、把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。
(51、134) 3、把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
(65的分数单位是61、131的分数单位是131、2371的分数单位是231)4、分数与除法的关系:被除数÷除数=除数被除数,用a 表示被除数,b 表示除数(b ≠0),a ÷b=ba 。
(2÷10=102=51、12÷3=312=4、15÷4=415=343)5、分子比分母小的分数叫做真分数。
(31、74、112、87真分数都小于1) 6、分子比分母大或分子和分母相等的分数,叫做假分数。
(1111、37、59、417假分数都大于或等于1)7、分子不是分母倍数的假分数还可以写成整数与真分数合成的数,通常叫做带分数。
(37=231,读作2又三分之一、59=154,读作1又五分之四)8、假分数化成带分数:分母去除分子,能整除的,所得的商就是整数;不能整除的,商就是带分数的整数部分,余数就是分数部分的分子,分母不变,能化简的分数要化简成最简分数。
(312=12÷3=4、417=17÷4=4…1=441、626=26÷6=4…2=462=431) 9、带分数化成假分数:用带分数的整数部分乘以分母再加上真分数部分的分子做分子,分母不变。
(414=4144(+⨯)=417、531=3135(+⨯)=316、273=7372(+⨯)=717)10、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
(32=2322⨯⨯=64、53=3533⨯⨯=159、2416=824816÷÷=32、4520=545520÷÷=94) 三、分数加减法(一)1、几个数公有的约数叫做这几个数的公因(约)数,其中最大的一个叫做这几个数的最大公因数。
只有公因数1的两个数叫做互质数。
(12和18的公因数:1,2,3,6。
12和18的最大公因数是6。
)2、用短除法求最大公因数:一般先用这两个数公有的质因数连续去除,一直除到所有的商是互质数为止(只有公因数1),然后把所有的除数连乘起来,所得的积就是这两个数的最大公因数。
(若其中一个数能被另一个整除,则最大公因数是其中最小的那个:12和6的最大公数是6,20和5的最大公因数是5)3、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
约分要约成最简分数。
(2416=824816÷÷=32、4520=545520÷÷=94像32、94、31…这些,分子和分母只有公因数1的分数,叫做最简分数)4、同分母分数相加减,分母不变,只把分子相加减。
(例:151+152+158=15821++=1511、83-81=813-=82=41注:计算结果能约分的,一般要约成最简分数)。
5、异分母分数相加减,先通分成分母是几个分数分母的最小公倍数,再按同分母分数相加减计算。
(例:31+43=4341⨯⨯+3433⨯⨯=124+129=1294+=1211、52-154=3532⨯⨯-154=156-154=1546-=152) 6、分数比较大小:①同分母分数:分母相同的分数,分子大的那个分数比较大。
(54>52) ②同分子分数:分子相同的分数,分母小的那个分数比较大。
(72>112) ③异分母分数:异分母分数要先化成同分母分数再比较大小。
(32、43,128<129)7、几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
(例:6、12、18……既是2的倍数,也是3的倍数,它们是2和3的公倍数。
其中6是最小的,是2和3的最小公倍数) 8、用短除法求最小公倍数:先用这两个数公有的质因数连续去除,一直除到所有的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。
(若其中一个数能被另一个整除,则最小公倍数是其中最大的那个:6和2的最小公倍数是6,30和5的最小公倍数是30)8、小数化成分数:原来有几位小数,就在1后面写几个0做分母,把原来小数的小数点去掉做分子,能约分的分成最简分数。
(0.8=108=21028÷÷=54……一位小数表示十分之几,0.12=10012=÷÷100412=253……两位小数表示百分之几) 9、分数化成小数:①分母是10、100……的分数,直接去掉分母,分母后面有几个0就从分子的末尾向左数出几位,并点上小数点。
(103=0.3、10097=0.97)②分母不是10、100的分数,用分子除以分母,除不尽时按四舍五入法保留三位小数。
(3019=19÷30≈0.633、207=7÷20=0.35或207=52057⨯⨯=10035=0.35) 四、方向与位置1、竖排叫做列,横排叫做行,确定第几列一般从左向右数,确定第几行一般从前往后数。
2、第3列第2行的位置,可以用数对(3,2)表示。
一般数对中前面的数表示第几列,后面的数表示第几行。
五、分数加减法(二)1、把异分母分数化成与原来分数相等的同分母分数,叫做通分。
通分时,相同的分母叫做这几个分数的公分母。
(例:把43和65通分,43=3433⨯⨯=129、65=2625⨯⨯=1210,公分母是12。
注:通分时,用几个分数分母的最小公倍数作公分母计算最简单)2、分子是1的两个异分母分数相加减,用分母的积做新分母,分母的和差做新分子,即a 1+b 1=aba b +,a 1-b 1=ab a b -。
(例:31+41=4334⨯+=127、31-41=4334⨯-=121) 六、统计 1、条形统计图:是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。
优点:从条形统计图中很容易看出各种数量的多少,并能直观对两组数进行对比。
(复式条形统计图) 2、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
优点:不但可以表示各种数量的多少,而且能够清楚地表示出数量增减变化的情况。
(复式折线统计图) 七、长方体和正方体1、长方体由6个面(相对的两个面完全相同)、8个顶点、12条棱(按长度分成3组,相对的4条棱长度相同)组成,从一个方向观察,最多能同时看到3个面。
2、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体总棱长=4长+4宽+4高=4×(长+宽+高),正方体总棱长=12×棱长。
4、正方体是长、宽、高都相等的长方体,是特殊的长方体。
5、正方体的特点:6个面完全相同,8个顶点,12条棱长度相等。
6、长方体或正方体6个面的总面积,叫做它的表面积。
(面积单位有平方厘米cm 2、平方分米dm 2、平方米m 2)7、S 长方体=(长×宽+长×高+宽×高)×2=(ab+ah+bh)×2 S 正方体=6(棱长×棱长)=(a ×a )×6=6a 28、物体所占空间的大小叫做物体的体积。
(体积单位有立方厘米cm 3、立方分米dm 3和立方米m 3)9、长方体的体积=长×宽×高 V=a ·b ·h 正方体的体积=棱长×棱长×棱长 V=a ·a ·a=a 310、长方体和正方体底面的面积叫做它们的底面积。
V 长方体(或正方体)=底面积×高 V=sh前 右上5101520253035一月二月三月四月五月六月5101520253035一月二月三月四月五月六月12、容器所能容纳物体的体积叫做它的容积。
(计量液体体积常用容积单位升L与毫升mL) 1升(L)=1立方分米、1毫升(mL)=1立方厘米、1升=1000毫升。