树枝状大分子聚酰胺_胺的合成与性能_李杰

合集下载

聚酰胺-胺(PAMAM)树状大分子的应用

聚酰胺-胺(PAMAM)树状大分子的应用

聚酰胺-胺(PAMAM)树状大分子的应用陈谡(02300002)摘要:聚酰胺-胺(PAMAM)树状大分子是目前树状大分子化学中研究较为成熟的一类,是三种已经商品化的树状大分子之一,其功能化和应用是目前树状大分子领域的热点。

PAMAM已在多个领域显示出良好的应用前景。

本文主要对PAMAM在表面活化、载体、膜材料、絮凝剂等方面的应用进行阐述。

关键词:聚酰胺-胺(PAMAM);树状大分子;功能化;应用。

树状大分子(Dendrimer) 是当前正在蓬勃发展的新型合成高分子。

近年来,随着对树枝状大分子各方面研究的不断深入,其许多独特的性质引起相关领域普遍关注。

由于这类化合物研究的迅猛发展,美国化学文摘从第116 卷起在普通主题索引中新设专项标题(Den2drimic Polymers) 。

在1993 年美国丹佛召开的美国化学会全国会议上和在2002 年北京召开的国际纯粹和应用化学联合会( IUPAC) 的世界高分子会议上,树枝形大分子被列为五大主题之一。

聚酰胺胺(PAMAM)树状大分子是目前研究最广泛,最深入的树状大分子之一,它既具有树状大分子的共性,又有自身特色.聚酰胺胺(PAMAM)树状分子的特点是:精确的分子结构,大量的表面官能团,分子内存在空腔,相对分子质量可控性,分子量分布可达单分散性,分子本身具有纳米尺寸,高代数分子呈球状.聚酰胺胺(PAMAM)树状分子的结构特点使其具有独特的性质:良好的相容性,低的熔体粘度和溶液粘度,独特的流体力学性能和易修饰性。

自1985 年PAMAM 树状分子首次出现以来,有关PAMAM 树状分子的研究工作十分活跃,尤其是近10 年来,关于PAMAM 树状分子合成和应用研究的报道更是快速增长。

PAMAM 树状大分子在药物载体、纳米复合材料、纳米反应器、毛细管气相色谱固定相、废水处理、乳化炸药稳定剂、催化剂、高分子材料的流变学改性剂、光电传感、液晶、单分子膜、基因载体等多方面已显示出广阔的应用前景。

综述

综述

树状大分子PAMAM 的合成及运用综述摘要 综述树状大分子聚酰胺-胺PAMAM 的合成方法,对其中发散法和收敛法进行分析和讨论。

PAMAM 已经在许多方面有着重要运用,本文介绍了PAMAM 在表面活性剂、催化剂和复合材料的运用。

关键词 聚酰胺-胺 PAMAM 树状大分子 合成方法 运用树状大分子是在1984年由Tomolia 最先开发的新型大分子材料,与以往的以线状单体构成的高分子完全不同,它以构造分枝基元规则地不断重复而形成的多分枝大分子,它在外型上呈球状。

因此,又被称作球状大分子。

这类分子具有非常完整而精致的结构,其分子体积、形状和功能可以在分子水平精确控制。

它的出现引起高分子化学、有机化学和超分子化学等多学科专家的极大兴趣和关注。

聚酰胺—胺(PAMAM )是目前研究最广泛、最深入的树状大分子之一,本文对聚酰胺—胺的合成及应用方面进行概述。

1结构从结构上来看,树状大分子由三部分组成:①核:核位于树分子的正中心,周围对称地包裹着分枝基元;②内部基团:处在核和端基之间,对称地排列在核的周围,它们之间布满了大小不同的空间;③端基基团:端基位于树分子的表面,含有最多的分支,可以是构造基元,也可以是其他基团。

每一个同心分枝基元称为代,由内向外称不第一代,第二代,第三代……2合成方法合成树状大分子时通常利用如下传统有机化学反应:缩合反应(如醚化、酯化、酰胺化)、加成反应(如Michael 加成)、外环聚合等。

合成方法有发散法、收敛法、发散收敛共同法和固相合成法。

2.1发散法发散法由Vogtle 等始创,由内向外构建大分子,示意图如下:以Tomolia 等合成的聚(酰胺-胺)(PAMAM)为例,用发散法合成树状大分子的过程如下, 以NH 3或NH 2CH 2CH 2NH 2为核,与丙烯酸甲酯的双键进行Michael 加成反应,用NH 2CH 2CH 2NH 2进行酰胺化,重复Michael 加成反应和酰胺化即可得到聚(酰胺-胺)。

树枝状大分子

树枝状大分子

季铵盐改性树状分子
聚酰胺 -胺树枝状高分子具有一个中空的中心 核和一个高度密集的外层 , 内部的空腔可包裹 小分子化合物, 并在一定条件下将其释放出来, 广泛用于药物及基因载体 。而外围大量的活 性官能团能被改性制备各种新型功能的 PAMAM 。目前季铵化改性树状聚酰胺 -胺的 合成、 研究还处于起步阶段, 大量的问题还需 要解决。
主题 研究现状:
国外对聚酰胺-胺树状大分子的研究比较成熟,众 多世界著名的大公司如IBM公司、Du Poni公司、 Eastman Koak公司、Dow化学工业公司和DSM 化学工业公司等都投入巨资开展该领域的研究, Sigma-Aldrich公司已经生产出第 10 代的PAMAM, 4.0代的产品其进口价格约为 1000 元/2.5 克,代 数越高价格越贵,到目前为止尚未查到国内生产 的信息,因此,PAMAM的生产具有广阔的市场前 景。但是从80年代中期出现至今仍没有被广泛的 投入商业化应用。目前相关文献报道都集中于高 代分子的应用研究,对于合成条件,尤其是低代 分子的核查条件优化,很少见诸报道。
B)树形分子的叔胺化
c)树形分子的季铵化
季铵盐改性树状分子合成步骤
(1)PAMAM树形分子的合成(PAMAMGO.5~G1.0为例) 取丙烯酸甲醋与乙二胺合成 G0.5PAMAM 一 Me, 然后与过量的 EDA 反应 , 温度须控制在O~10℃以下,得产物G1.0PAMAM-NH2。 (2)PAMAM树形分子叔胺化(PAMAMG2.0为例)按如下反应式合成:
从图1中可以看出,它的分子是由内部的核心, 内部的多个支化官能团和外部的表面基团三 部分组成。
树枝状大分子的合成方法
核心出发逐步引入单体。代数高,分子量大;易有缺陷,产物与反应物 不易分离 分散法

树枝状大分子聚酰胺-胺的合成与性能研究的开题报告

树枝状大分子聚酰胺-胺的合成与性能研究的开题报告

树枝状大分子聚酰胺-胺的合成与性能研究的开题报告一、研究背景和意义聚酰胺-胺是一类重要的高性能聚合物,具有优异的机械性能、化学稳定性和热稳定性,被广泛应用于航空、航天、电子、汽车、医疗等领域。

传统的聚酰胺-胺通常采用直线状分子作为单体,但由于分子结构的限制,其分子链往往呈现出一定的线性程度,导致其分子链形态相对单一,难以兼顾聚合物的多种性能。

而树枝状分子可以增加聚合物的分子链层级,提高空间枝叶化程度,从而提高聚合物的溶解度、热稳定性、力学性能等多个方面的性能,具有较大的潜在应用价值。

二、主要研究内容和方向本研究旨在设计一种新型的树枝状大分子聚酰胺-胺,并探究其合成方法和性能表现,具体包括以下几个方面:1. 合成树枝状大分子聚酰胺-胺的单体。

本研究将采用三羟甲基丙烷三丙酮酸酯(TMP-tris-acrylamide)作为主要单体,通过边缘反应、转移反应等方法引入缩醛基,形成树枝状结构。

2. 研究树枝状大分子聚酰胺-胺的合成方法。

本研究将分别采用自由基聚合和酰胺化反应两种方法合成树枝状大分子聚酰胺-胺,并对两种方法下的聚合反应体系进行比较。

研究反应温度、催化剂选择等影响因素对树枝状聚酰胺-胺分子结构的影响。

3. 探究树枝状大分子聚酰胺-胺的性能表现。

本研究将对合成的树枝状大分子聚酰胺-胺进行结构表征、热稳定性、溶解度、力学性能等方面的测定,并将其与传统直线状聚酰胺-胺进行比较,评估树枝状结构对聚合物性能的影响。

三、研究方法和实验计划本研究将采用化学合成方法制备树枝状大分子聚酰胺-胺,并利用多种表征方法对其进行精确的结构表征。

具体实验计划如下:1. 合成 TMP-tris-acrylamide 单体。

首先将丙烯酰胺与 TMP-tris-acrylate 反应,通过边缘反应、转移反应等手段将缩醛基引入单体中,形成树枝状结构单体。

2. 合成树枝状大分子聚酰胺-胺。

采用自由基聚合和酰胺化反应两种方法分别制备树枝状大分子聚酰胺-胺,并分别通过核磁共振、红外光谱等表征手段对其结构进行验证。

树枝状大分子聚酰胺-胺的合成

树枝状大分子聚酰胺-胺的合成

树枝状大分子聚酰胺-胺的合成赵莹;梁骁男;杨世杰;雷鑫宇【摘要】以乙二胺(EDA)和丙烯酸甲酯(MA)为原料,采用分步法合成了聚酰胺-胺(PAMAM)树枝状大分子.考察了单体配比、反应温度、反应时间和搅拌速度对半代PAMAM的合成工艺影响.实验结果表明,在n(EDA)∶n(MA)=1∶6时,于25℃下快速搅拌30 h,所得半代PAMAM产率可达92%.【期刊名称】《精细石油化工进展》【年(卷),期】2014(015)005【总页数】3页(P29-31)【关键词】树枝状分子;聚酰胺-胺;合成【作者】赵莹;梁骁男;杨世杰;雷鑫宇【作者单位】西南石油大学化学化工学院,成都610500;中国石化中原天然气有限责任公司,河南濮阳457001;中海油田服务股份有限公司油田化学事业部,天津300452;中国科学院成都有机化学有限公司,成都610041【正文语种】中文聚酰胺-胺(PAMAM)树枝状大分子是油田化学品常用的分子骨架[1],常用于破乳剂、降黏剂、絮凝剂等产品的分子设计[2]。

由于PAMAM树枝状大分子具有两亲的分子链段,也可作表面改性剂、增溶剂、凝胶化试剂和吸附剂等[3]。

PAMAM 的合成通常用逐步合成法,但对合成工艺的优化研究较少。

笔者以乙二胺(EDA)和丙烯酸甲酯(MA)为原料,采用逐步合成法[4]合成了PAMAM树枝状大分子;试验考察了单体配比、反应温度、反应时间和搅拌速度对半代PAMAM的合成工艺影响。

1 实验1.1 试剂与仪器乙二胺(EDA)、丙烯酸甲酯(MA)、无水甲醇等,均为分析纯,成都科龙化工试剂厂。

DF-101S集热式磁力搅拌器,上海双捷实验设备有限公司;R-201型旋转蒸发仪,上海申顺生物科技有限公司;PHS-25型pH计,上海精密科学仪器有限公司;WQF-510型傅里叶红外光谱仪(KBr压片),北京瑞利分析仪器公司。

1.2.1 半代PAMAM的合成向反应瓶中分别加入EDA 9 g(0.15 mol)和无水甲醇90 g,在冰水浴中搅拌1 h,缓慢滴加MA 77.4 g(0.9 mol),15 min滴毕,升至室温,连续反应24 h[5]。

聚酰胺-胺树状大分子的应用.aspx

聚酰胺-胺树状大分子的应用.aspx

!!!!!!!!!!!""""知识介绍基金项目:苏州大学青年基金(@3109205);苏州大学博士论文基金资助;作者简介:吴文娟(1979-),女,江苏高邮人,苏州大学化学系在读硕士,主要从事树状大分子方面的研究;#通讯联系人。

聚酰胺-胺树状大分子的应用吴文娟,徐冬梅,张可达#,朱秀林,宁春花(苏州大学化学化工系,苏州215006)摘要:聚酰胺-胺(PAMAM )树状大分子是目前树状大分子化学中研究较为成熟的一类,是三种已经商品化的树状大分子之一,其功能化和应用是目前树状大分子领域的热点。

PAMAM 已在多个领域显示出良好的应用前景。

本文主要对PAMAM 在表面活性剂、催化剂、纳米复合材料、金属纳米材料、膜材料、导电材料等方面的应用进行评述。

关键词:聚酰胺-胺(PAMAM );树状大分子;功能化;应用聚酰胺-胺(PAMAM )树状大分子是近年来合成并迅速发展的一类新型聚合物,是目前研究最广泛、最深入的树状大分子之一。

相对于线型的聚合物,其结构固定规整,由中心向外对称发散并高度分支,有着极好的几何对称性。

许多研究结果表明,由发散法合成的PAMAM 树状大分子,在低代数(3.0G 以下)为敞开和相对疏松的结构,在高代数(4.0G 以上)则是表面紧密堆积的结构[1]。

与传统的大分子相比,这类大分子可以在分子水平上严格控制和设计分子大小、形状结构和功能基团,来满足不同的目的和要求。

PAMAM 树状大分子的一个重要结构特点就是具有大量的端基官能团,因此通过对端基官能团的改性可以得到具有不同用途的树状大分子。

另外,PAMAM 树状大分子成为商品化的原因还在于合成容易,每一步可接近定量,目前已合成到10代。

自从1985年Tomalia 等[2]首次用发散法合成PAMAM 树状大分子以来,基于PAMAM 已制备了多种多样结构的树状大分子,其性能和应用亦得到了较为充分的研究。

可双固化树枝形聚酰胺-胺树脂的合成及其涂膜性能研究

可双固化树枝形聚酰胺-胺树脂的合成及其涂膜性能研究

Ke rs dn r e ;0 (mioa ie ; V c r g mo tr c r g d a c r g yWo d :edi rp 1 a d m n ) U u n ; i ue u n ;ul u n m y i s i i
和硅氧基 团将其 改性 , 探索 可同时具 有紫 外光 固化和 潮气 固
乙二胺 : 分析 纯 , 上海三浦化工 有限公 司; 丙烯 酸 甲酯 : 分
度支化 的高分子材 料不 同 , 树枝 形大 分子具 有精 确的分 子结 构 , 度几何对称性 , 高 大量 的表面官 能 团, 且分 子 内存 在 空 而
腔, 分子链增 长具 有可控性 。分子结 构的这些 特点 , 使树枝形 高分子具有较大 的密度 , 良好 的热稳定性 , 良好 的流体 力学性
0 引 言
树枝形大分子( edi e) D nr r是近几年发展起来 的一种三维 m
化性能 的双 固化树脂 。
的 、 度有序 的新 型高分子材料 。其分 子 由中心核 、 高 内层重 复
单元和外层端基三部分组成。与现有 的线 型高分子材 料和 高
1 实 验 部分
1 1 仪器和 试剂 .来自Abta tI i p p r 15 2 5 oy a d mn )d n r esw r pe ae i eat n t src : t s a e , . . P l( mioa i n h G. G e e di r ee r rdwt t c ra m p hh e e
基丙烯酸缩 水甘油酯( MA) G 和 一氨丙基三 乙氧基硅烷进行 了改性 , 使其能够 紫外光 固化和潮 气 固化 。热分 析考查 了玻璃化温度和热稳定性 , 并进行 了硬度 、 光泽 、 固化速度 、 光 潮气 固化速度 、 附着力 、 柔韧性等测试 。 关键词 : 树枝形大分子 ;聚酰胺 一 ( A A ; 胺 P M M) 紫外光 固化 ; 潮气 固化 ; 双组 分树脂 中图分类号 :Q 60 4 T 3 . 文献标识码 : A 文章编号 :2 3— 32 20 )3— 0 7— 6 0 5 4 1 (0 7 0 0 3 0

树状大分子聚酰胺-胺原油破乳剂的合成与性能评价

树状大分子聚酰胺-胺原油破乳剂的合成与性能评价
维普资讯

20







第 8 第 2期 卷
ADvANcEs N 兀 NE P r I E,ROcHEMI cA
树 状 大 分 子 聚 酰 胺 一胺 原 油 破 乳 剂 的合成 与 性 能评 价
胡 志杰 陈大 钧
( 西南 石油 大学 化学 化 工学 院 , 都 600 ) 成 150
( H C O C 5 H )( C s H N) C 5 O C 2 s2 C 3 O C H C 22N H C 5 ( H C O c H ),
因此 , 开发 具有新 型化 学结构 的 O W 型 破乳 剂解 / 决 由于采用 新 的采 油 技 术 而带 来 的难 题 , 已成 为 油 田后 期开 发 的一个 重要研究 课题 。 树状 大 分子 是一 类 由多 官 能 内核 出发 , 向外
列 P M M。 A A
重 复生 长 , 高度支 化 的三维大 分子 , 是一 种具 有新
型化 学结 构 的功 能化 合物 u , 而且 结 构 可 以改 变 J 和调节 , 以将树 状 大 分 子作 为 表 面 活性 剂 应 用 所
于 油 田化学 领域符合 破乳 剂 的开发 方 向。
1 1 药 品 .
水率 。脱水 率是 指 当某 种 破乳 剂 用 于 原油 时 , 在

乙二胺 , 析纯 ; 烯 酸 甲酯 , 析 纯 ; 分 丙 分 甲醇 , 分析 纯 ; ( H )分 析纯 。 氨 N 3,
12 合成 .
定 加量 、 温度 、 降 时 间 内 , 沉 自原 油 中脱 出的水
关键词 树状大分子 聚 酰胺 一胺 破乳剂 原油
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15卷第2期化学研究Vol.15No.2 2004年6月C HE MICAL RESEARC H Jun.2004树枝状大分子聚酰胺-胺的合成与性能李杰,王俊,王天凤,刘立新(大庆石油学院石油化工系,黑龙江大庆163318)摘要:采用发散合成法合成了以乙二胺为核的1.0~3.0代的系列树枝状高分子聚酰胺-胺(PAMAM).采用IR、核磁共振、端基分析对PAMAM的结构进行了表征,考察了PAMAM水溶液的表面活性及其对难溶药物水杨酸的增溶能力.结果表明:半代PAMAM具有一定的表面活性,整代PAMAM几乎没有表面活性,表面活性主要与PA-MAM的端基结构有关;PAMAM对难溶药物水杨酸具有增溶作用,增溶能力随代数和质量浓度的增加而增大,增溶方式与传统的表面活性剂不同.关键词:树状大分子;聚酰胺-胺;合成;表面张力;增溶中图分类号:O633122文献标识码:A文章编号:1008-1011(2004)02-0031-04 Synthesis and Performance of Dendrimer PolyamidoamineLI Jie,W ANG Jun,WANG Tian-feng,LIU L-i xin(De partmend o f Petroc hemical Engineering,Daqing Petrole um Institute,Daqing163318,Heilongjiang,China) Abstract:A series of1.0~3.0G dendrimers(PAMAM)have been synthesized by divergent method withethylenedia mine as core.The structure of PAMAM has been characterized by IR,NMR,terminal analysis.The surface activity of their aqueous solution and their solubilization to water insoluble salic ylic acid havebeen investigated.The results are as follows:PAMAM of hal-f generation possesses certain surface activity,while PAMAM of integer-generation possesses hardly any surface ac tivity.The surface ac tivity of PAMAMaqueous solution is related to their terminal groups.PAMAM have certain solubilization on water insolublesalicylic acid.The solubilization magnitude increases with the build-up of PAMAM mass concentration orgeneration,and their solubilizing pattern is different from that of traditional surfactant.Keywords:dendrimer;polyamidoamine;synthesis;surface tension;solubilization树枝状高分子(dendrimer)是上世纪80年代中期国外开发的一类新型合成高分子[1].由于树枝状高分子的内部具有空腔,外部含有大量的功能基团,具有携带难溶药物和生物活性物质的潜在能力,所以,它在药物输送领域具有良好的应用前景[2-3].本实验采用/发散合成法0[1]合成了以乙二胺为核(core)的1.0~ 3.0代端基为胺基的树枝状高分子聚酰胺-胺(PAMAM)1在对PAMAM进行表征的基础上,考察了PAMAM水溶液的表面活性和其对难溶药物的增溶作用.1实验部分111原料与试剂乙二胺,AR,沈阳市东兴试剂厂;丙烯酸甲酯,AR,沈阳市新西试剂厂;甲醇,AR,黑龙江省阿城化学试剂厂;甲苯,AR,哈尔滨市化工试剂厂;乳化剂OP-7,天津助剂厂.1.2仪器与测试红外光谱用403型傅立叶变换红外光谱仪,液膜法测定;端基分析用ZD-2型自动电位滴定计测定;核磁共振采用美国Varian NOVA400MHz核磁共振仪,C DCl3为溶剂,13C的观测频率为399.716MHz.PAMAM的增溶性能采用UV-300型紫外分光光度计测定;表面活性用滴体积法测定.113PAMAM的合成收稿日期:2003-09-01.基金项目:黑龙江省教育厅资助课题(10511121).作者简介:李杰(1970-),男,硕士,讲师,研究方向为油田化学.1)将9.0g (0.15mol)乙二胺和32g (1.0mol)甲醇加入到带有磁力搅拌子、回流冷凝管和温度计的三口烧瓶中,25e 搅拌条件下,采用滴液管滴加103.2g (1.2mol )丙烯酸甲酯,反应24h.在22e ,133Pa 的压力下减压蒸馏,除去溶剂甲醇和过量的丙烯酸甲酯,得到0.5代(0.5G)PAMAM,产率为99.7%.化学反应方程式为:NH 2C H 2C H 2NH 2+4CH 2C HCOOC H 3NCH 2CH 2N C H 3OOCCH 2CH 2C H 3OOCCH 2CH 2CH 2C H 2COOCH 3CH 2C H 2COOCH 3 2)将20.2g (0.05mol)0.5代PAMAM 和64g (2.0mol)甲醇加入到带有磁力搅拌子、回流冷凝管和温度计的三口烧瓶中,25e 搅拌条件下,采用滴液管滴加72g (1.2mol )的乙二胺,反应24h.在72e ,266Pa 的压力下减压蒸馏,除去溶剂甲醇和过量的乙二胺,得到1.0代(1.0G)PAMAM,产率为99.9%.化学反应方程式为:0.5G+4NH 2CH 2CH 2NH 24C H 3OH +NCH 2CH 2NNH 2CH 2C H 2NHOCC H 2C H 2NH 2CH 2C H 2NHOCC H 2C H 2CH 2CH 2CONHC H 2C H 2NH 2CH 2CH 2CONHC H 2C H 2NH 2(1.0G) 3)分别按1)和2)的加料比例和操作条件,重复Mickeal 加成和酰胺化缩合反应,则分别合成了1.5代、2.0代、2.5代、3.0代的PAMAM,其中1.0,2.0和3.0代PAMAM 的收率均达到98%以上[5].图1 3.0代PAMAM 的红外光谱图Fig.1 Infra -red spectrogram of 3.0G PAMA M 2 结果与讨论2.1 红外光谱表征由于整代产品1.0~ 3.0的核心和端基相同,只是支化代不同,所以整代产品之间的结构相近.目前尚未有PAMAM 的标准谱,图1是3.0代PAMAM 的红外光谱图.图1中:3357.46c m -1为N )H 的吸收峰;2942.84和2869.56cm -1为-CH 2-的特征吸收峰,即不对称伸缩振动和对称伸缩振动吸收峰,1463.71c m -1处的吸收峰为-CH 2-的弯曲振动吸收峰;1643.05和1558.20cm -1是酰胺基的特征谱带,分别称酰胺Ñ和酰胺Ò谱带[4],即分别为羰基的伸缩振动(M C=O )吸收峰和(D NH +M CN );而1199.51和1126.22cm -1分别为伯胺和叔胺的伸缩振动峰(M C )N ),这两个吸收峰均较弱.红外光谱的分析结果表明,3.0代PAMAM 分子中含有-NH 2、-CH 2-、-CONH -等特征基团,与理论上的结构相符.2.2 端基分析由于整代产品1.0~3.0代的端基均为胺基,所以可以采用电位滴定法进行滴定,测定第一和第二等当点的盐酸用量,就可以计算出分子外部的伯胺基和内部的叔胺基比值X ,而X 的理论值可以通过分子结构计算出来,以乙二胺为核1.0、2.0和3.0代PAMAM 分子X 的理论值分别为2.00、1.33和1.14.实验结果列于表1.表1 PAMAM 的端基电位滴定结果Table 1 Results of PAMA M term inal potentiometric titrationGeneration1.0G2.0G3.0G First equivalent point V 1(HCl)/m L11.114.613.6Second equivalent point V 2(HCl)/mL16.624.525.2Calculated value X c2.02 1.39 1.17Theoretical value X t 2.00 1.33 1.14从表1的实验结果可以看出,通过对端基的电位分析,计算分子外部的伯胺基和内部的叔胺基比值与理论值非常接近,说明所合成的PAMAM 与实际分子结构相符.32 化 学 研 究2004年2.3 核磁共振采用Varian NOVA 400MHz 核磁共振仪,以C DCl 3为溶剂,1.0~3.0代树枝状聚合物13C 的化学位移的测定结果列于表2.表2 树枝状大分子PAMAM 的13C 化学位移xTable 213C chemical shift assignments o f PA MAM 支化代化学位移D 1.0G(a)51.4,(b)50.2,(c)33.9,(d)42.1,(e)40.8,(NC=O)172.22.0G (a)52.3,(b)49.6,(c)33.3,(d)41.9,(e)41.0,(f)50.0,(g)33.7,(h)41.9,(i)40.7,(内部NC=O)172.0,(外部NC=O)172.33.0G (a)51.5,(b)49.1,(c)33.4,(d)42.1,(e)41.3,(f)50.2,(g)33.9,(h)42.1,(i)40.7,(j)49.4,(k)32.3,(l)42.2,(m)41.3,(内部NC=O)172.1,(中间NC=O)172.4,(外部NC=O)172.5,(OC H 3)52.5,(C=O)172.6x C 原子是从分子的内部向外按a 、b 、c 、d 、e ,,顺序排列核磁共振的分析结果表明,对分子中的所有的碳原子都进行了合理的归属,体现出了分子结构具有相似性的特点,与Tomalia 的测定结果完全相符[1].2.4表面活性图2 30e 时PAMAM 水溶液的表面张力Fig.2 Surface tension of the aqueous solution of PAMAM at 30e 考察了不同代树状大分子PAMAM 水溶液的表面张力,结果见图2.图2是半代PAMAM 水溶液表面张力随浓度的变化关系1从图中可以看出,在30e 时,半代树状高分子0.5G 、1.5G 、2.5G PA -MAM 的Q (PAMAB)=0.01g/m L 水溶液的表面张力与纯水(表面张力为72.42mN/m)相比分别下降为64.00、55.08、49.99m N/m,说明半代PAMAM 具有一定的表面活性,但是表面活性并不很强.半代PAMAM 具有表面活性的原因是其由亲水和疏水两种结构单元组成,亲水单元为内部的羰基和胺基,疏水单元为内部的碳氢链和表层的甲基.半代PAMAM 的表面活性随着代数的增大而增强,主要是因为高代表层疏水基团-C H 3数目增加,范德华力作用使基团排列更加紧密;同时,裸露在外部的亲水基团(如羰基等)减少,这两个因素均使得树状高分子的亲水性降低,在空气-水界面聚集能力提高,表现为表面活性增强.同时还测定了30e 时1代、2代、3代PAMAM 高分子水溶液的表面张力(0.02g/mL 时分别为66.4mN/m,66.6mN/m,67.0mN/m),它们基本上没有表面活性,原因是其最外层基团是-CONH 2,亲水性很强,以致不能降低水的表面张力.图3 PAMAM 对水扬酸的增溶曲线Fig.3 Solubilization curve of PAMAM on salicylic acid2.5 增溶性能考察了不同代树状大分子PAMAM 对难溶药物水杨酸的增溶能力,结果见图3.实验结果表明,半代PAMAM 对水杨酸表现出增溶作用.水杨酸在25e 水中溶解度为2.17mg/mL,在0.01mol/L 的2.5G PAMAM水溶液中的溶解度增加为12.35mg/mL.P AMAM 增溶能力随质量浓度的增加而增大,这是由于溶液中的每个PAMAM 分子在单独对模型药物分子起着增溶作用;同时代数越高增溶能力越大,这是因为随着代数的增加,PAMAM 内部的空间也增大,可容纳的客体分子也越多.PAMAM 的增溶作用与传统增溶方式不同[5],PAMAM 的增溶作用不受临界胶束浓度的影响,而且增溶模型的溶解度与PAMAM 呈线性关系,说明PAMAM 分子之间没有形成聚集体,PAMAM 在水中以单分子胶束形式存在[6-7].第2期李杰等:树枝状大分子聚酰胺-胺的合成与性能3334化学研究2004年3结论采用/发散合成法0合成了树枝状高分子PAMAM,分子结构表征结果与理论结构完全相符.端基为酯基的半代PAMAM具有一定的表面活性,端基为酰胺基的整代PAMAM几乎没有表面活性,表面活性主要与PAMAM的端基结构有关.树状大分子PAMAM对难溶药物水杨酸具有增溶作用,增溶能力随代数和质量浓度的增加而增大,增溶方式与传统的表面活性剂不同.参考文献:[1]Tomalia D A,Baker H,Dewald J,et al.A new class of polymers:starburs-t dendri tic macromolecules[J].Polym J(Tokyo),1985,17:117-132.[2]Omayra L,Jesus P D,Fr chet J M J,et al.Novel polymeric system for drug delivery[J].Polym Mater Sci En g,2001,84-218.[3]Twyman L J.The synthesis of water soluble dendrimers,and their application as possible drug delivery systems[J].Tetrahedron Lette rs,1999,40:1743-1746.[4]王宗明.实用红外光谱学[M].北京:石油工业出版社,19901284-286.[5]赵国玺.表面活性剂物理化学(修订版)[M].北京:北京大学出版社,19911184-193.[6]Newkome G R,Yao Z Q,Baker G R,et al.Cascade molecules:synthesis and characterization of benzo[9]3-arborol[J].J Am Che mSoc,1986,108:849-850.[7]Vanhes t J C M,Delnoye D A P,Baars M W P L,et al.Polystyrene-dendrimer amphiphic block copolymers with a generation-dependentaggregation[J].Science,1995,268:1592-1595.(上接第27页)从表2可知,先加无机混凝剂,后加有机高分子絮凝剂比先加有机高分子絮凝剂,再加无机混凝剂效果好,其Zeta电位更易达到零电点.先加有机高分子絮凝剂,再加无机混凝剂与只加高分子絮凝剂相比较,发现Zeta电位的变化很小.这是因为有机高分子絮凝剂率先与颗粒表面吸附,无机混凝剂在颗粒表面的吸附过程受阻.由此可见,处理压裂酸化等油田作业废水时,加药顺序宜无机混凝剂先加,有机絮凝剂后加.3结论(1)酸性条件下,废水的Zeta电位(绝对值)比碱性条件下要小.因此,油田作业废水适合在弱酸性条件下进行絮凝处理.(2)投加带正电荷的无机混凝剂对体系Zeta电位影响较为明显.随无机混凝剂加量的增大,逐步中和了原水中胶体的负电荷,减少了离子间的排斥力,增加了颗粒之间的吸附,使这些颗粒脱稳,形成矾花.当混凝剂过量时,水中的离子带正电荷,又增加了离子之间的排斥力,不易形成大矾花.只有当投加量适当时,混凝处理效果较好.在P AC、PFS和PFSS三种无机混凝剂中,PFSS的混凝效果最好.(3)阳离子絮凝剂CPAM使废水颗粒表面Zeta电位向正方向移动,并达到零电点,中和颗粒表面负电荷.阴离子絮凝剂P HP使废水颗粒表面Zeta电位向负方向移动.非离子絮凝剂P AM使废水颗粒表面Zeta电位绝对值下降,但变化较小.由于废水初始Zeta电位为负值,因此考虑投加阳离子絮凝剂CP AM较为合适.(4)在油田废水处理中,宜无机混凝剂先加,有机絮凝剂后加.这种加药次序有利于絮凝处理,可明显提高污水处理质量.参考文献:[1]王蓉沙,周建东,刘光全.钻井废弃物处理技术[M],北京:石油工业出版社,2001.10.[2]万里平,孟英峰,赵立志.探井残余压裂液破胶降粘方法的研究[J].环境工程,2002(增刊):344-346.[3]万里平,刘宇程.氧化-吸附法联合处理油田酸化废水[J].油气田环境保护,2001,11(2):33-34.[4]万里平,赵立志.气田水无机混凝剂的筛选实验研究[J].石油与天然气化工,2002,31(6):331-335.。

相关文档
最新文档