三招破解三角形解的个数问题

合集下载

(完整版)三角形解的个数问题专题

(完整版)三角形解的个数问题专题

解三角形专题2三角形解的个数问题A 为锐角 A 为钝角或直角图形关系 A<bsinAA=bsinA bsinA<a<b a ≥b a ≤b解的个数无解 一解 两解 一解 无解1 已知下列三角形中的两边及其中一边的对角,判断三角形是否有解,并指出有几解?(1) 78105a ,b ,A ==∠=(2) 102080a ,b ,A ==∠=(3) 105660b ,c ,C ==∠=(4) 23630a ,b ,A ==∠=答案:(1) 90A ∠>而a b <,故无解(2) 90A ,a b sin A b ∠<<<,故有无解(3) c b >,故有一组解(4) 90A ,b sin A a b ∠<<<,故有两组解2在△ABC 中,A =45°,AB =3,则“BC=2”是“△ABC 只有一解且C =60°”的A .充分不必要条件B .必要不充分条件C .充要条件D .既为充分也不必要条件另解法法1:大角对大边在已知ABC ∆中的边长a ,b 和角A ,且已知a ,b 的大小关系,常利用正弦定理结合“大边对大角”来判断三角形解的个数,一般的做法如下,首先利用大边对大角,判断出角B 与角A 的大小关系,然后求出B 的值,根据三角函数的有界性求解.【例1】在ABC ∆中,已知a =b =45B =︒,求A 、C 及c .解:由正弦定理,得sin sin 2a B A b ===,∵4590B =︒<︒,b a <,∴60A =︒或120︒. 当60A =︒时,75C =︒,sin 75sin sin 452b C c B ︒===︒; 当120A =︒时,15C =︒,sin sin b C c B ===. 点评:在三角形中,sin sin a b A B A B >⇔>⇔>这是个隐含条件,在使用时我们要注意挖掘.法2:二次方程的正根个数一般地,在ABC ∆中的边长a ,b 和角A ,常常可对角A 应用余弦定理,并将其整理为关于c 的一元二次方程2222cos 0c bc A b a -+-=,若该方程无解或只有负数解,则该三角形无解;若方程有一个正数解,则该三角形有一解;若方程有两个不等的正数解,则该三角形有两解. 【例2】如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=︒,135BCD ∠=︒,求BC 的长.解:在ABD ∆中,设BD x =,由余弦定理得2221410210cos60x x =+-⋅︒,整理得210960x x --=,解得16x =.由正弦定理,得sin 16sin30sin sin135BD CDB BC BCD ∠︒===∠︒点评:已知三角形两边和其中一边的对角,我们可以采用正弦定理或余弦定理求解,从上述例子可以看出,利用余弦定理结合二次方程来判断显得更加简捷.法3:画圆法已知ABC ∆中,A 为已知角(90≠︒),先画出A ,确定顶点A ,再在A 的一边上确定顶点C ,使AC边长为已知长度,最后以顶点C 为圆心,以CB 边长为半径画圆,看该圆与A 的另一边是否有A B C D交点,如果没有交点,则说明该三角形的解的个数为0;若有一个交点,则说明该三角形的解的个数为1;若有两个交点,则说明该三角形的解的个数为2.【例3】在ABC ∆中,60A ∠=︒,a =3b =,则ABC ∆解的情况( ) (A )无解 (B )有一解 (C )有两解 (D)不能确定 解:在A 的一边上确定顶点C ,使3AC b ==,作60CAD ∠=︒,以顶点C 为圆心,以CB a ==AD 没有交点,则说明该三角形的解的个数为0,故选A .A bC a D。

三招破解三角形解的个数问题(打印)

三招破解三角形解的个数问题(打印)

案例二:直角三角形解的个数问题
总结词
直角三角形解的个数问题需要利用勾股定理和三角形的基本性质,通过数形结合和分类 讨论求解。
详细描述
直角三角形有一个角为90度,可以利用勾股定理求出斜边长度。然后利用三角形的性 质,通过数形结合的方式,进行分类讨论求解。同样需要注意排除不符合三角形基本性
质的解。
案例三:等边三角形解的个数问题
三招破解三角形解 的个数问题(打印)
目 录
• 三角形解的个数问题的概述 • 三角形解的个数问题的解题方法 • 三角形解的个数问题的应用场景 • 三角形解的个数问题的案例分析 • 三角形解的个数问题的总结与展望
01
三角形解的个数问题 的概述
三角形解的个数问题的定义
01
三角形解的个数问题是指在给定 一组边长后,判断这组边长能否 构成三角形,以及构成三角形的 可能个数。
具体例子:在求解与正弦、余弦函数有关的代数方程时, 需要考虑方程在不同区间上的解的个数,以及是否满足三 角函数的周期性和图像性质。
代数题
代数题中三角形解的个数问题通常涉及到代数方程的解的个数,需要利用代数方程的性质和求解方法 来判断解的个数。例如,在求解与三角形边长和角度有关的代数方程时,需要考虑不同情况下解的个 数。
的方法。
三角函数法主要涉及三角函数的 周期性和振幅,通过分析三角函 数的图像来确定三角形的解的个
数。
三角函数法需要熟练掌握三角函 数的性质和图像,对于一些特殊 的问题可能需要找到合适的三角
函数表达式。
03
三角形解的个数问题 的应用场景
几何题
三角形解的个数问题在几何题中常常涉及到三角形边长和角 度的关系,需要利用三角形的性质和定理来判断解的个数。 例如,在求解等腰三角形、直角三角形、等边三角形等问题 时,需要考虑不同情况下解的个数。

判断三角形解的个数的方法

判断三角形解的个数的方法

判断三角形解的个数的方法判断三角形解的个数的方法判断三角形解的个数是数学中一个重要的问题,在实际应用中也经常涉及到。

一般来说,有两种方法可以用来判断三角形解的个数:方法一:三角不等式法三角不等式法是判断三角形解个数的经典方法,也是一种比较直观的方法。

根据三角形的性质,三角形的任意两边之和大于第三边,即a + b > c,b + c > a,a + c > b,其中a、b、c分别为三角形的三条边。

如果已知一组三角形边长,只需将这组数据代入三角不等式,判断是否成立即可。

例如,若已知一组三角形边长为a=3 cm,b=4 cm,c=7 cm,则:a +b > c,即3 + 4 > 7,成立。

b +c > a,即4 + 7 > 3,成立。

a + c > b,即3 + 7 > 4,成立。

因此,该组数据满足三角不等式,故可构成一个三角形。

如果三边的长度难以直接比较,则可以取出其中最大的一边,判断其余两边之和是否大于最大边,以此来判断是否能构成三角形。

方法二:海龙公式法海龙公式法是利用三条边的长度求出用海龙公式求出面积,然后根据海龙公式,面积S=max{p(p-a)(p-b)(p-c)}^{1/2},其中p=(a+b+c)/2,判断是否能构成三角形的方法。

海龙公式法比三角不等式法更精准,适用于各种情况。

若a,b,c都是正数,且满足a+b>c,b+c>a,a+c>b,则S>0,这说明这三条边可以构成一个三角形。

若S=0,则说明这三条边不能构成一个三角形。

例如,若已知一组三角形边长为a=3 cm,b=4 cm,c=7 cm,则:p=(a+b+c)/2=14/2=7。

S=max{p(p-a)(p-b)(p-c)}^{1/2}=max{7*4*3*0}/2=0。

因此,该组数据不能构成一个三角形。

总的来说,三角不等式法适用于求三角形是否存在、没有求边长的时候判断是否存在三角形;而海龙公式法适用于求三角形的面积、判别三个给定边是否能构成三角形。

三角形解的个数问题的解法优化

三角形解的个数问题的解法优化

三角形解的个数问题的解法优化问题 在ABC ∆中,已知A 、a 、b ,确定此三角形解的个数. 1.教材提供的解决方案(1)当A 为直角或钝角时,若a b >,则有一解,若a b ≤,则无解; (2)当A 为锐角时,如下表此方案虽逻辑清晰、思维严谨,但分类较为抽象、繁琐,既不易记忆,又不易正确运用. 2.优化方案当A 为直角或钝角且a b ≤时无解. 其余情况下,计算sin sin b AB a =之值,参照下图进行判断即可:具体来说,是借助于sin B 的值与0、sin A 、1大小关系来确定三角形解的个数.如下表:3.原理(1)当A 为直角或钝角时,若0sin sin B A <<则a b >,故有一解,若a b ≤,则无解; (2)当A 为锐角时,如下表:例1 ABC ∆中,a =b =sin 2B =,则符合条件的三角形有( ) A .1个 B .2个C .3个D .0个解析 先利用正弦定理求出sin A 的值,再依a 与b 的大小,sin A 与sin B 的大小,就可迅捷判断三角形解的个数.依sin sin a B A b ==,1<< 即sin sin 1B A << 又b a <,知B 为锐角. 故符合条件的三角形,应选B .例2 在ABC ∆中,2a =,b x =,60A =,当x 取何值时,ABC ∆无解?有一解?有两解?解析 先利用正弦定理求出sin B 的值,再通过比较a 与b ,sin A 与sin B 的大小,就可一招制胜,巧妙解题.依sin sin 4b A B x a ==.若ABC ∆无解,则sin 1B >1x >, 得x >若ABC ∆有一解,则sin 1B =或0sin sin B A <≤, 1x =或0<≤,得x =02x <≤;若ABC ∆有二解,则sin sin 1A B <<,即124x <<, 得23x <<.综上所述,当x >ABC ∆无解;当x =02x <≤时,ABC ∆有一解;当2x <<时,ABC ∆有两解.巩固练习1.已知ABC ∆中,b =2c =,6C π=,若三角形有两解,则符合条件的三角形有( )A .1个B .2个C .3个D .0个2.(2015三门峡模拟)已知ABC ∆中,a x =,2b =,45B =,若三角形有两解,则x 的取值范围是( )A .2x >B .2x <C .2x <<.2x <<可见,利用正弦定理研究三角形解的个数时,若能先利用正弦定理求出某个角的正弦,再利用该正弦值与已知角的正弦值间的大小关系,相应的两边间的大小关系,就可出奇制胜,迅捷判断三角形解的个数.参考文献:[1] 张新生. 谈应用正弦定理讨论三角形解的个数[J]. 兵团教育学院学报, 2013,(3).。

解三角形中的多解问题

解三角形中的多解问题

解三角形中的多解问题解三角形中的多解问题是几何学中一个重要的概念。

在传统的平面几何中,一个三角形的三个角度和三条边是唯一确定的,也即三个已知量可以唯一确定一个三角形。

然而,在某些情况下,给定的条件并不能唯一确定一个三角形,而是存在多个可能的解,这就是多解问题。

多解问题主要存在于两种情况下:一是给定的条件不足以唯一确定一个三角形,二是在解三角形时引入了非唯一解的假设或方法。

这两种情况下,都需要我们进一步分析和探讨,以便获得准确的解答。

首先,让我们探讨第一种情况,即给定的条件不足以唯一确定一个三角形的情况。

一个明显的例子是只给出了三个角度,而未给出任何边长的情况。

根据三角形内角和定理,三角形的三个内角之和始终为180度。

因此,如果我们知道三个角度分别是60度、60度和60度,我们可以确定这是一个等边三角形。

然而,如果我们只知道三个角度分别是60度、60度和120度,由于存在多个三角形可以满足这三个角度,我们就无法唯一确定一个三角形。

在第二种情况下,我们会引入非唯一解的假设或方法来解三角形。

一个典型的例子是使用正弦定理来解直角三角形。

正弦定理表明,在一个任意的三角形ABC中,边长a、b、c和其相对应的角A、B、C之间满足以下关系:a/sin(A) = b/sin(B) = c/sin(C)在一个直角三角形中,我们可以使用正弦定理来解决未知的边长或角度。

然而,在这种情况下,我们通常会得到两个可能的解。

例如,如果我们知道一个直角三角形的两个边长分别为3和4,我们可以使用正弦定理求解第三个边长。

根据正弦定理,我们有:3/sin(A) = 4/sin(90°) = 5/sin(B)通过求解这个方程,我们得到两个可能的解:角A可以是30度或150度,角B可以是60度或120度。

这就是多解问题在解直角三角形时的一个常见情况。

除了上述两种情况,多解问题还可以出现在其他几何学问题中,例如解二次曲线与直线的交点或解三维几何体的重心等。

重点突破:判断三角形解的个数问题

重点突破:判断三角形解的个数问题
2 3 a sinA
0
=
b sinB
,即 1 =
2
3
3 3 sinB
∴B=60°或 B=120°. 故选:C . 点睛:本题主要考查正弦定理解三角形,属于简单题.在解与三角形有关的问题时,正弦定理、余弦定理是两个
主要依据. 解三角形时, 有时可用正弦定理, 有时也可用余弦定理, 应注意用哪一个定理更方便、 简捷一般来说 , 当条件中同时出现 ab 及b2 、a2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运 用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 5.D 【解析】分析:利用正弦定理即可得出. 详解:由正弦定理可得:
5 1 , B 1500 符合两解。选 D. 9 2
bsinA 0 , A 中 sinB 1, B 90 , 1 解, 不符。 C 中 sinB 2 1 , a
【点睛】
在己知两边一对角的题型中,有钝角或直角最多一解,己知角所对边为大边,最多一解,其余情况根据三角形内 角和 180 ,大边对大角来判断。 4.C【解析】分析:利用正弦定理求出 sinB,得出 B,利用内角和定理进行检验. 详解:由正弦定理得 ∴sinB= .π 2π π源自)B.2π 3
C.
π 3
D.
π 4
2.已知 ABC 中, a A. 0 个 B. 1个
0
2, b 3, A 45 ,则三角形的解的个数(
D. 0 个或 1个


C. 2 个
3.在 ABC 中,利用正弦定理理解三角形时,其中有两解的选项是( A. a 3, b 6, A 30 B. a 6, b 5, A 150 D. a

三角形解的个数问题

三角形解的个数问题

05
三角形解的个数问题的扩 展和深化
三角形解的个数问题的推广
要点一
推广到多边形
要点二
推广到组合优化
将三角形解的个数问题推广到多边形,研究多边形的可解 性、解的个数和最优解等问题。
将三角形解的个数问题看作是组合优化问题的一种,研究 其他组合优化问题的解法,如旅行商问题、排班问题等。
三角形解的个数问题的变种
详细描述
在几何问题中,三角形解的个数问题通常涉及到三角形边长和角度的条件约束。根据三角形的性质, 任意两边之和大于第三边,任意两边之差小于第三边。同时,角度的条件也会影响三角形解的个数。 通过分析这些条件,可以判断三角形解的个数。
三角函数中的三角形解的个数问题
总结词
三角函数中的三角形解的个数问题主要 涉及到三角函数的性质和图象,通过分 析三角函数的性质和图象,判断三角形 解的个数。
考虑三角形边的长度
在三角形解的个数问题中,可以考虑 三角形的边长限制,研究不同边长条 件下三角形的可解性。
考虑三角形角度
在三角形解的个数问题中,可以考虑 三角形的角度限制,研究不同角度条 件下三角形的可解性。
三角形解的个数问题与其他数学知识的结合
与几何学结合
将三角形解的个数问题与几何学知识相结合,研究几 何图形中的可解性问题,如多边形、曲面等。
与图论结合
将三角形解的个数问题与图论知识相结合,研究图论 中的可解性问题,如子图、路径、连通性等。
感谢您的观看
THANKS
三角形解的个数问题
目 录
• 三角形解的个数问题的定义和分类 • 三角形解的个数问题的基本定理和公式 • 三角形解的个数问题的应用实例 • 三角形解的个数问题的解题技巧和方法 • 三角形解的个数问题的扩展和深化

求解三角形个数的巧妙方法

求解三角形个数的巧妙方法

求解三角形个数的巧妙方法文章标题:求解三角形个数的巧妙方法导语:在数学中,三角形是一个重要的几何图形,研究三角形的性质和计算三角形的个数有助于我们深入了解几何学。

本文将介绍一种巧妙的方法来求解三角形的个数,帮助读者更好地理解这一概念。

一、引言及背景知识三角形是由三条线段组成的几何图形,它的性质和种类非常丰富。

在数学中,研究三角形的个数是一项重要的任务,它可以帮助我们探索几何学的深度和广度。

在求解三角形的个数时,我们通常可以借助组合数学的知识和思想来进行计算。

组合数学是数学的一个分支,它研究的是离散结构和计数方法,在解决组合问题时具有广泛的应用。

二、传统方法及局限性分析传统方法中最常见的一种是暴力穷举法,即通过遍历三个点,判断它们是否构成一个三角形,并统计满足条件的三角形的个数。

然而,这种方法的局限性在于计算量巨大,特别是当点的个数增多时,穷举法的效率会急剧下降。

三、巧妙的方法——基于数学思想的求解在研究三角形的个数时,我们可以利用数学的思想和技巧来简化计算过程。

一种巧妙的方法是基于组合数学的知识,通过计算三个点之间的组合关系来求解三角形的个数。

下面将详细介绍这一方法。

1. 计算三边组合我们可以从给定的点集中选择3个点作为三角形的三个顶点,即三边的组合形式。

对于给定的n个点,我们可以通过组合数学中的排列组合知识得到三边组合的个数为C(n,3)。

2. 排除不构成三角形的情况然而,不是所有的三边组合都能构成一个三角形,因为三边不能共线。

我们还需要排除那些不满足三角形条件的组合。

根据数学的条件判别法,对于任意三个点a、b、c,如果它们满足以下条件之一,则它们不能构成一个三角形:- 三点共线:即三个点在同一条直线上;- 两边之和小于第三边:即两条边的长度之和小于第三条边的长度;通过判断三边组合是否满足以上条件,我们可以进一步筛选出能够构成三角形的组合,得到有效的三角形个数。

3. 总结和回顾性内容通过上述方法,我们可以求解三角形的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形解的个数问题 学了正、余弦定理后,不少同学为判断三角形的解的个数而烦恼.知道 3边,2
角1边,2边及其夹角时不会出现两解;在已知三角形的两边及其中一边的对角(即 “边边角”)的条件下解三角形时,解的个数有几个呢? 一解,二解还是无解?《必 修5》在第8页到第9页的“探究与发现”《解三角形的进一步讨论》有详细说明.即
在已知ABC 中的边长a , b 和角A ,且已知a , b 的大小关系,常利用正弦定理 求出sinB
的值,
① 若该值大于1,与sinB 1矛盾,则无解;
② 若该值小于或等于 1,则要考虑a , b 的大小关系及 A 为锐角还是钝角:
若A 是钝角,且该值小于 1,则有1解,若该值等于1,则无解;
若A 是锐角,且b a ,则有1解;
若b a ,且该值小于1,则有2解;b a ,且该值等于1,则有1解.
但分类层次多,分类种数多,注重形,又指定边角,不易被学生所接受.即本 节能理解,
操作应用起来也很不方便.下面提供“几招”供同学们选择,希望能帮 助同学们顺利破解. 第一招:大角对大边
在已知ABC 中的边长a , b 和角A ,且已知a , b 的大小关系,常利用正弦定理 结合“大
边对大角”
来判断三角形解的个数,一般的做法如下,首先利用大边对大角,判断出角
B 与角A A B sinA sinB 这是个隐含条件,在使用时我们要注意
第二招:二次方程的正根个数 一般地,在ABC 中的边长a , b 和角A ,常常可对角A 应用余弦定理,并将其整 理为关于
c 的一元 二次方程c 2 2bccosA b 2 a 2 0 ,若该方程无解或只有负数解,则该三角形无解;若 方程
有一个正数 解,则该三角形有一解;若方程有两个不等的正数解, 【例2】如图,在四边形ABCD 中,已知AD CD , BDA 60 , BCD 135,求 BC 的长.
解:在ABD 中,设BD x ,由余弦定理得142 x 2
由正弦定理,得 BC
BDsin CDB 16sin3° &2

的大小关系,然后求 出B 的值,根据三角函数的有界性求解._
【例1】在ABC 中,已知a -.3 , b ,2 , B 45,求A 、C 及c .
解:由正弦定理,得sinA
3si n 45 3 ,... R 45 90 , b a ,二 A 60 或 120 .
b V2 2 、、2 sin 75 、、6 2
_______ _______ . sin 45 2 , 、、2si n15 ■ 6 & sin 45 2
当A 60时,C
当A 120时,C
75 , 15 , bsin C sin B bsinC sin B 点评:在三角形中,a b 挖
掘.
B
sin BCD si n135
点评:已知三角形两边和其中一边的对角,我们可以采用正弦定理或余弦定理求解,从上述例子可以看出,
利用余弦定理结合二次方程来判断显得更加简捷.
第三招:画圆法
已知ABC中,A为已知角(90 ),先画出A,确定顶点A,再在A的一边上确定顶点C,使AC
边长为已知长度,最后以顶点C为圆心,以CB边长为半径画圆,看该圆与A的另一边是否有交点,如果
没有交点,则说明该三角形的解的个数为0;若有一个交点,则说明该三角形的解的个数为1;若有两个
交点,则说明该三角形的解的个数为2.
【例3】在ABC中,A 60 , a ,6 , b 3,则ABC解的情况()(A)无解(B)有一解(C)有两解C(D)不能确定解:在A的一边上确定顶点C,使AC b 3,作CAD 60 , b.. /、、以顶点C为圆心,以CB a胚为半径画圆,看该圆与AD没有交点,则说明该三角形的解的个数为0,故选A. ' D。

相关文档
最新文档