希尔伯特的23个问题-精选教学文档

合集下载

数学素材:希尔伯特的23个数学问题

数学素材:希尔伯特的23个数学问题

希尔伯特的23个数学问题湖南 黄爱民希尔伯特(Hilbert D ,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一.1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的“希尔伯特23个问题”.这23个问题涉及现代数学大部分重要领域,推动了二十世纪数学的发展.下面介绍部分问题给同学们.1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设.1938年,哥德尔证明了连续统假设和世界公认的策梅洛———弗伦克尔集合论公理系统的无矛盾性.1963年,美国数学家科亨证明连续统假设和策梅洛———弗伦克尔集合论公理是彼此独立的.因此,连续统假设不能在策梅洛———弗伦克尔公理体系内证明其正确性与否.希尔伯特第1问题在这个意义上已获解决.2.算术公理的相容性 欧几里得几何的相容性可归结为算术公理的相容性.希尔伯特曾提出用形式主义计划的证明论方法加以证明.1931年,哥德尔发表的不完备性定理否定了这种看法.1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性.1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决.3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等.M .W .德恩1900年即对此问题给出了肯定解答.4.两点间以直线为距离最短线问题 此问题提得过于一般.满足此性质的几何学很多,因而需增加某些限制条件.1973年,前苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决.《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决.5.物理学的公理化 希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学.1933年,前苏联数学家柯尔莫哥洛夫实现了将概率论公理化.后来在量子力学、量子场论方面取得了很大成功.但是物理学是否能全盘公理化,很多人表示怀疑.6.不可能用只有两个变数的函数解一般的七次方程 七次方程的根依赖于3个参数a b c ,,,即()x x a b c ,,.这个函数能否用二元函数表示出来?前苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964).但如果要求是解析函数,则问题尚未解决.7.舒伯特计数演算的严格基础 一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观解法.希尔伯特要求将问题一般化,并给以严格基础.现在已有了一些可计算的方法,但严格的基础迄今仍未确立.8.半正定形式的平方和表示 一个实系数n 元多项式对一切数组12()n x x x L ,,,都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的.9.用全等多面体构造空间 由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决.。

希尔伯特的23个问题

希尔伯特的23个问题



有很多重要的结果 1957年,中国数学家秦元勋和蒲富金具体给出了n=2 的方程具有至少3个成串极限环的实例。 1978年,中国的史松龄在秦元勋、华罗庚的指导下, 与王明淑分别举出至少有4个极限环的具体例子。 1983年,秦元勋进一步证明了二次系统最多有4个极限 环,并且是(1,3)结构,从而最终地解决了二次微 分方程的解的结构问题,并为研究希尔伯特第(16) 问题提供了新的途径。
15.舒伯特计数演算的严格基础

一个典型的问题是:在三维空间中有四条直线, 问有几条直线能和这四条直线都相交?舒伯特 给出了一个直观的解法。希尔伯特要求将问题 一般化,并给以严格基础。现在已有了一些可 计算的方法,它和代数几何学有密切的关系。 但严格的基础至今仍未建立。
16.代数曲线和曲面的拓扑研究
3.两等底等高四面体体积之相 等

只根据合同公理证明等底等高的两个四 面体有相等之体积是不可能的。 问题的意思是:存在两个等高等底的四 面体,它们不可能分解为有限个小四面 体,使这两组四面体彼此全等德思1900 年已解决。
4直线为两点间的最短距离

此问题提的一般。满足此性质的几何很 多,因而需要加以某些限制条件。1973 年,苏联数学家波格列洛夫宣布,在对 称距离情况下,问题获解决。
7.某些数的无理性和超越性

需证:如果α是代数数,β是无理数的代数数, 那么αβ一定是超越数或至少是无理数。苏联的 盖尔封特1929年、德国的施奈德及西格尔1935 年分别独立地证明了其正确性。但超越数理论 还远未完成。目前,确定所给的数是否超越数, 尚无统一的方法。
8.素数问题

素数分布问题,尤其对黎曼猜想、哥德 巴赫猜想和孪生素共问题。 素数是一个很古老的研究领域。希尔伯 特在此提到黎曼猜想、哥德巴赫猜想以 及孪生素数问题。黎曼猜想至今未解决。

希尔伯特23个问题及解决情况[修订]

希尔伯特23个问题及解决情况[修订]

希尔伯特23个问题及解决情况[修订] 希尔伯特23个问题及解决情况1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。

在这具有历史意义的演讲中,首先他提出许多重要的思想: 正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。

正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。

希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。

” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。

只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。

”他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:清晰性和易懂性;虽困难但又给人以希望;意义深远。

同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。

就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。

编号问题推动发展的领域解决的情况1 连续统假设公理化集合论 1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。

即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。

2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。

数学的相容性问题至今未解决。

3 两等高等底的四面体体积之相等几何基础这问题很快(1900)即由希尔伯特的学生M.Dehn给出了肯定的解答。

4 直线作为两点间最短距离问题几何基础这一问题提得过于一般。

希尔伯特之后,许多数学家致力于构造和探索各种特殊的度量几何,在研究第四问题上取得很大进展,但问题并未完全解决。

希尔伯特23个问题及解决情况[修订]

希尔伯特23个问题及解决情况[修订]

希尔伯特23个问题及解决情况[修订] 希尔伯特23个问题及解决情况1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。

在这具有历史意义的演讲中,首先他提出许多重要的思想: 正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。

正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。

希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。

” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。

只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。

”他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:清晰性和易懂性;虽困难但又给人以希望;意义深远。

同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。

就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。

编号问题推动发展的领域解决的情况1 连续统假设公理化集合论 1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。

即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。

2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。

数学的相容性问题至今未解决。

3 两等高等底的四面体体积之相等几何基础这问题很快(1900)即由希尔伯特的学生M.Dehn给出了肯定的解答。

4 直线作为两点间最短距离问题几何基础这一问题提得过于一般。

希尔伯特之后,许多数学家致力于构造和探索各种特殊的度量几何,在研究第四问题上取得很大进展,但问题并未完全解决。

希尔伯特的23个问题(互动百科)

希尔伯特的23个问题(互动百科)

希尔伯特的23个问题(互动百科)
希尔伯特的23个问题
开放分类:数学数理逻辑科学自然科学
编辑词条分享
1900年,希尔伯特在巴黎的国际数学家大会上作了题为《数学问题》的演讲,提出了23道最重要的数学问题,这就是著名的希尔伯特的23个问题。

希尔伯特问题对推动20世纪数学的发展起了积极的推动作用。

在许多数学家努力下,希尔伯特问题中的大多数在20世纪中得到了解决。

希尔伯特问题中未能包括拓扑学、微分几何等领域,除数学物理外很少涉及应用数学,更不曾预料到电脑发展将对数学的产生重大影响。

20世纪数学的发展实际上远远超出了希尔伯特所预示的范围。

希尔伯特问题中的1-6是数学基础问题,7-12是数论问题,13-1 8属于代数和几何问题,19-23属于数学分析。

以下列出希尔伯特的23个问题:。

希尔伯特23个数学问题及其解决情况

希尔伯特23个数学问题及其解决情况

希尔伯特23个数学问题及其解决情况希尔伯特23个数学问题及其解决情况已有95 次阅读2011-10-3 21:02|个人分类:Mathematics&Statistics|系统分类:科研笔记|关键词:数学世纪亚历山大希尔伯特全世界希尔伯特(HilbertD.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。

他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。

希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。

希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。

他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。

1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的“希尔伯特23个问题”。

1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。

当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。

1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。

由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。

下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况:(1)康托的连续统基数问题。

1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。

1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF 集合论公理系统的无矛盾性。

1963年,美国数学家科恩(P.Choen)证明连续统假设与ZF公理彼此独立。

希尔伯特的23个问题教材课程

希尔伯特的23个问题教材课程
解决的情况 公理化集合论 1963年,Paul J.Cohen 在下述意义下
证明了第一个问题是不可解的.即连续统假设的真伪不可 能在Zermelo_Fraeቤተ መጻሕፍቲ ባይዱkel公理系统内判定
3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不
可分解为有限个小四面体,使这两组四面体彼此全等.M· W·德恩1900年即对此问题给出了肯定解答.
解决的情况 某些数的无理性与超越性 超越数论 1934年
A.O.temohm 和Schneieder各自独立地解决了这问题的后 半部分.
8.素数问题 包括黎曼猜想、哥德巴赫猜想及孪生素数问题等.一
般情况下的黎曼猜想仍待解决.哥德巴赫猜想的最佳结果 属于陈景润(1966),但离最解决尚有距离.目前孪 生素数问题的最佳结果也属于陈景润.
《中国大百科全书》说,在希尔伯特之后,在构造与探 讨各种特殊度量几何方面有许多进展,但问题并未解决.
解决的情况 直线作为两点间最短距离问题 几何基础 这一问题提
得过于一般.希尔伯特之后,许多数学家致力于构造和探 索各种特殊的度量几何,在研究第四问题上取得很大进展, 但问题并未完全解决.
5.一个连续变换群的李氏概念,定义这个群的函数不假 定是可微的
11.系数为任意代数数的二次型 H·哈塞(1929)和C·L·西格尔(1936
,1951)在这个问题上获得重要结果.
解决的情况 系数为任意代数数的二次型 二次型理论 H.Hasse(1929)
和C. L.Siegel(1936,1951)在这问题上获得了重要的结果.
12.将阿贝尔域上的克罗克定理推广到任意的代数有理域 上去
经过漫长的努力,这个问题于1952年由Gleason, Montqomery , Zipping等人最后解决,答案是肯定的.

希尔伯特23个数学难题

希尔伯特23个数学难题

希尔伯特23个数学难题1. 哥德巴赫猜想:任意大于2的偶数都可以表示成两个质数之和。

2. 佩尔方程:找出满足 x² - ny² = 1 的自然数解,其中 n 是一个给定的正整数。

3. 费尔马小定理:如果 p 是一个质数,那么对于任意整数 a,a^p - a 都是 p 的倍数。

4. 黎曼猜想:所有非平凡的自然数零点都位于复平面上的某一直线上,即 "黎曼 Zeta 函数的非平凡零点的实部等于 1/2"。

5. 庞加莱猜想:任何大于1的整数都可以表示成至多四个自然数的平方和。

6. 费马大定理:对于任意大于2的整数 n,方程 x^n + y^n = z^n 没有正整数解。

7. 罗宾逊算术:是否存在一个算术表达式,可表示为解 x^n + y^n = z^n,其中 n、x、y、z 都是多项式函数?8. 连续平面切片问题:一个单位区间上的无限个单位半径圆,是否一定能够被切割为有限个片,从而使得每个片的周长之和无上限?9. 康托对角线证明了无穷的数量比可数的数量更多,这一论断是否成立?10. 佛馬定理:给定一个序列 a0, a1, a2, ...,是否存在一个多项式 P(x) ,使得对于所有 n,P(n)和 a(n) 在整数环上取得相等的值?11. 黑洞信息悖论:如果一个物体掉入黑洞的话,它的信息会丢失吗?12. 度量空间完备性:对于一个给定的度量空间,是否所有的柯西序列都收敛于该空间的内点?13. 矩阵剖析:对于一个给定的方块矩阵,是否可以逐步剖析为若干个小方块,而每个小方块都可以分解为若干个更小的方块?14. 程序终止:是否存在一个通用的算法,可以判断任意给定程序是否会在有限的步骤内终止?15. 旅行推销员问题:对于给定的城市和距离,是否存在一个最短的闭合路径,使得旅行推销员途经每个城市一次,然后返回起点?16. 负二次定理:是否存在一个实数 a,满足 a * a = -1 ?17. 确定性因素分解:是否存在一个确定性的多项式时间算法,用于将大整数因式分解?18. 最短超球面问题:给定一组点,是否可以找到一个最小的超球面,将这些点全部覆盖?19. 生物学中的形态发生:如何解释、理解和预测生物体的形态发生过程?20. 难以判定的问题:是否存在一个问题,无法通过任何算法,以有限步骤确定其答案的正确性?21. 最大连续子序列和问题:给定一个整数序列,找出具有最大和的连续子序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

希尔伯特的23个问题
希尔伯特(Hilbert D,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。

他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。

希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。

希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。

他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。

1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的希尔伯特23个问题。

1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。

当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。

1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。

由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。

下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况:
1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。

1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔
集合论公理系统的无矛盾性。

1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。

因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。

希尔伯特第1问题在这个意义上已获解决。

2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。

希尔伯特曾提出用形式主义计划的证明论方法加以证明。

1931年,哥德尔发表的不完备性定理否定了这种看法。

1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。

1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。

3.两个等底等高四面体的体积相等问题
问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。

M.W.德恩1900年即对此问题给出了肯定解答。

4.两点间以直线为距离最短线问题此问题提得过于一般。

满足此性质的几何学很多,因而需增加某些限制条件。

1973
年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。

《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。

5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。

6.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。

1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。

后来在量子力学、量子场论方面取得了很大成功。

但是物理学是否能全盘公理化,很多人表示怀疑。

7.某些数的无理性与超越性 1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数0 ,1,和任意代数无理数证明了的超越性。

8.素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。

一般情况下的黎曼猜想仍待解决。

哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。

目前孪生素数问题的最佳结果也属于陈景润。

9.在任意数域中证明最一般的互反律该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。

10.丢番图方程的可解性能求出一个整系数方程的整数根,称为丢番图方程可解。

希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。

11.系数为任意代数数的二次型 H.哈塞(1929)和C.L.西格尔(1936,1951)在这个问题上获得重要结果。

12.将阿贝尔域上的克罗克定理推广到任意的代数有理域上去这一问题只有一些零星的结果,离彻底解决还相差很远。

13.不可能用只有两个变数的函数解一般的七次方程七次方程的根依赖于3个参数a、b、c,即x=x (a,b,c)。

这个函数能否用二元函数表示出来?苏联数学家阿诺尔德解
决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964)。

但如果要求是解析函数,则问题尚未解决。

14.证明某类完备函数系的有限性这和代数不变量问题有关。

1958年,日本数学家永田雅宜给出了反例。

15.舒伯特计数演算的严格基础一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?
舒伯特给出了一个直观解法。

希尔伯特要求将问题一般化,并给以严格基础。

现在已有了一些可计算的方法,它和代数几何学不密切联系。

但严格的基础迄今仍未确立。

16.代数曲线和代数曲线面的拓扑问题这个问题分为两部分。

前半部分涉及代数曲线含有闭的分枝曲线的最大数目。

后半部分要求讨论的极限环的最大个数和相对位置,其中X、Y是x、y的n次多项式.苏联的彼得罗夫斯基曾宣称证明了n=2时极限环的个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。

17.半正定形式的平方和表示一个实系数n元多项式对一切数组(x1,x2,...,xn) 都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的。

18.用全等多面体构造空间由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决。

19.正则变分问题的解是否一定解析对这一问题的研究很少。

C.H.伯恩斯坦和彼得罗夫斯基等得出了一些结果。

20.一般边值问题这一问题进展十分迅速,已成为一个很大的数学分支。

目前还在继续研究。

21.具有给定单值群的线性微分方程解的存在性证明已由希尔伯特本人(1905)和H.罗尔(1957)的工作解决。

22.由自守函数构成的解析函数的单值化它涉及艰辛的黎曼曲面论,1907年P.克伯获重要突破,其他方面尚未解决。

23.变分法的进一步发展出这并不是一个明确的数学问题,只是谈了对变分法的一般看法。

20世纪以来变分法有了很大的发展。

这23问题涉及现代数学大部分重要领域,推动了20世纪数学的发展。

相关文档
最新文档