专题四 培优点15 空间几何体的外接球

合集下载

专题——几何体的外接球和内切球问题

专题——几何体的外接球和内切球问题

B.112π
C.1 000π 9
D.5 000 10π 81
※内切球问题 1.正棱锥的内切球.
第一步:先现出内切球的截面图, E, H 分别是两个三角形的外心; 第二步:由 POE 相似于 PDH ,建立等式: OE PO ,解出 r
DH PD
2.任意多面体的内切球:等体积法,
例 3 非直二面角类型
(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
专题——几何体的外接球和内切球问题
※基础知识:
1.常见平面图形:正方形,长方形,正三角形的外接圆和内切圆
长方形(正方形)的外接圆半径为对角线长的一半,正方形的内切圆半径为边长的一半;
正三角形的内切圆半径: 3 a 6
外接圆半径: 3 a 3
面体的外接球的球心。 由定义,给出以下简单多面体外接球的球心的结论。
结论 1:正方体或长方体的外接球的球心就是其体对角线的中点,即其外接球的半径 R 满足:
2R2 a2 b2 c2 ,即 R a2 b2 c2
2 结论 2:正棱柱的外接球的球心是上下底面中心的连线的中点,即正棱柱的外接球的半径 R 为: R h 2 r 2 (其中 h 为正棱柱的侧棱长, r 是底面多边形的外接圆的半径)
(1)已知边长为 2 3 的菱形 ABCD 中,BAD 60 ,沿对角线 BD 折成二面角 A BD C 的大
小为120 的四面体,则该四面体的外接球的表面积为

第一步:先求出多面体的表面积和体积; 第二步:解出 r 3V S表
例 1、正方体的内切球与其外接球的体积之比为( )
球。
3.球的截面:
用一平面 去截一个球 O ,设 OO 是平面 的垂线段,O 为垂 足,且 OO d ,所得的截面是以球心在截面内的射影为圆心,以

空间几何体的外接球问题

空间几何体的外接球问题

A
解析:ΔABC为等边三角形,PA=PB=PC=3,
所以ΔPAB≅ ΔPBC≅ ΔPAC。
C
P
以PA,B PB,PC为过同一顶点的三条棱作正方体,
则正方体的外接球即为三棱锥P-ABC的外接球。
A
C
P
B
考点二 空间几何体的内切球
2、等体积法
训练:直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上, 若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等 于 20π.
在△ABC中AB=AC=2,∠BAC=120° C
解得
由正弦定理,可得△ABC外接圆半径r=2
AB
O
设此圆圆心为O',球心为O,在RT△OBO'中 C1
易得球半径 故此球的表面积为4πR2=20π
A1
B1
训练:已知正三棱锥的高为1,底面边长为2,内有一个球 与四个面都相切,则棱锥的内切球的半径为( D )
P
P
P
O
O
O
C
C
C
A
O1
D
A
O1
B
A
O1
B
B
图6
图7-1图8P来自PPA
O2 B
CB
D
O
A O2 O
A C
O2 D
B O
图8-1
图8-2
图8-3
方法点津3:顶点、底面外接圆的圆心与外接球球心三点共线
的锥体可以找“特征三角形”解决外接球问题。
考点一 空间几何体的外接球
堂小练
P C
O D A
B
考点一 空间几何体的外接球
考点一 空间几何体的外接球
2、构造法

空间几何体的外接球与内切球。专题汇编

空间几何体的外接球与内切球。专题汇编

空间几何体的外接球与内切球。

专题汇编本文介绍了空间几何体的外接球与内切球的定义、性质、结论和求解方法。

首先,球的定义是空间中到定点的距离等于定长的点的集合,简称球。

在此基础上,定义了外接球和内切球。

外接球是指一个多面体的各个顶点都在一个球的球面上,这个球是这个多面体的外接球;内切球是指一个多面体的各面都与一个球的球面相切,这个球是这个多面体的内切球。

其次,文章介绍了外接球的性质和结论。

其中,外接球的性质包括过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;过球心与小圆圆心的直线垂直于小圆所在的平面;球心在大圆面和小圆面上的射影是相应圆的圆心;在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心。

文章还列举了各种空间几何体的外接球的结论,如长方体的外接球的球心在体对角线的交点处,圆柱体的外接球球心在上下两底面圆的圆心连一段中点处等。

最后,文章介绍了内切球的一个重要结论,即若球与平面相切,则切点与球心连线与切面垂直。

同时,文章还提到了勾股定理、正定理及余弦定理等求解三角形线段长度的方法。

经过剔除格式错误和删除有问题的段落,本文更加清晰明了地介绍了空间几何体的外接球与内切球的相关知识和方法。

2.内切球与多面体各面的距离相等,外接球与多面体各顶点的距离相等,类比于多边形的内切圆。

3.正多面体的内切球和外接球的球心重合。

4.正棱锥的内切球和外接球的球心都在高线上,但不一定重合。

5.求解内切球半径的基本方法有两种:一是构造三角形利用相似比和勾股定理,二是体积分割法,即等体积法。

6.与台体相关的内容在此略过。

7.八大模型之一是墙角模型,其中三条棱两两垂直,可以直接使用公式(2R)2=a2+b2+c2求出内切球半径R。

8.举例说明:(1)已知同一球面上正四棱柱的高为4,体积为16,则其内切球表面积为24π;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球表面积为9π;(3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM垂直MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

《空间几何体的外接球》(获奖教案)

《空间几何体的外接球》(获奖教案)

《空间几何体的外接球》教学设计一、课标要求三维空间是人类生存的现实空间,认识空间图形、培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的。

基本要求:1、认识柱、锥、台、球极其简单组合体的结构特征;2、了解球、棱柱、棱锥、台的表面积和体积的计算公式.二、教学分析:纵观近几年高考题,几何体的外接球问题在高考中既是考查的热点又是考查的难点。

与球有关的几何体问题能很好地考查学生的空间想象能力以及化归转化能力.本节课我们将着重研究三、教学目标1、掌握确定球心、求解半径的方法。

2、通过同类问题的变式探究,培养学生空间问题平面化、几何问题代数化的能力,深刻体会化归的数学思想;通过对问题难度的升级及总结,锻炼学生的几何直观和空间想象能力,培养学生的数学直观想象素养.四、教学重难点教学重点:会求正棱柱、正棱锥及一般三棱锥的外接球半径;教学难点:确定多面体外接球的球心并求出半径.五、教法分析本节课针对高三年级学生的认知特点,在遵循启发式教学原则的基础上,借助多媒体用讲授法、讨论法、练习法等教学方法,引导学生探索以正方体或长方体的顶点为顶点的三棱锥的结构特点,由浅入深的研究三棱锥与球相联系的桥梁。

本节课坚持以学生为主体,教学中让学生自主地“做数学”,将传统意义下的“学习”数学改变为“研究”数学。

从而,使传授知识与培养能力融为一体,在转变学习方式的同时学会数学地思考。

五、教学过程教学环节教学内容与问题设置设计意图复习回顾引入新课回顾下列知识:1.球的表面积公式:_________2.球的体积公式:______________3.长方体体对角线的求法:______________4.利用正弦定理求三角形外接圆的半径:____________5. 球的性质性质1:用一个平面去截球,截面是________;用一个平面去截球面,截线是_____。

大圆截面过________,半径等于_________;小圆截面不过______性质2: 球心和截面圆心的连线垂直于________.性质3: 球心到截面的距离 d 与球的半径R 及截面的半径r 下面的关系:____________知识准备。

高中数学空间几何体的外接球专题(附经典例题与解析)

高中数学空间几何体的外接球专题(附经典例题与解析)

高中数学空间几何体的外接球专题(附经典例题与解析)球的性质回顾:球心O和小圆O'的连线OO'垂直于圆O'所在平面。

外接球半径的求法是利用直角三角形的勾股定理,在Rt△OAO'中,OA^2=OO'^2+O'A^2.常见平面几何图形的外接圆半径(r)的求法:1.三角形:1) 等边三角形:内心、外心、重心、垂心、中心重合于一点。

外接圆半径通常结合重心的性质(2:1)进行求解:r=a*(2/3)^(1/2) (其中a为等边三角形的边长)。

2) 直角三角形:外接圆圆心位于斜边的中点处,r=斜边/2.3) 等腰三角形:外接圆圆心位于底边的高线(即中线)上。

r=a/(2sin(A/2)) (其中A为顶角)。

4) 非特殊三角形:可使用正弦定理求解,XXX)。

2.四边形:常见具有外接圆的四边形有正方形、矩形、等腰梯形。

其中正方形与长方形半径求解方法转化为直角三角形。

几何体的外接球球心与底面外心的连线垂直于底面,即球心落在过底面外心的垂线上。

练:2.半径为2的球的内接三棱锥P-ABC,PA=PB=PC=2,AB=AC=BC,则三棱锥的高为3.1.三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱AA1垂直于底面ABC,且AA1=4,则此三棱柱外接球的表面积为8π。

本文介绍了三棱锥的外接球的求解方法,其中包括侧棱垂直底面的三棱锥、正三棱锥和侧面垂直于底面的三棱锥三种类型。

对于侧棱垂直底面的三棱锥,可以采用补形法或通过确定底面三角形的外心来求解外接球的半径。

补形法是指将该几何体转化为原三棱柱的外接球,从而求出外接球的半径。

而通过确定底面三角形的外心,则可以通过勾股定理求解外接球的半径。

对于正三棱锥,可以通过底面正三角形的边长来求解内切球的半径,然后再利用勾股定理求解外接球的半径。

对于侧面垂直于底面的三棱锥,则需要确定△ABC和△PAB的外心分别为O’和O’’,并通过勾股定理求解OO’的长度,从而求解外接球的半径。

空间几何体的外接球内切球问题

空间几何体的外接球内切球问题

空间几何体的外接球内切球问题空间几何体的外接球、内切球问题自己总结供参考红岩外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。

1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。

练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=?,则此球的表面积等于。

2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为。

3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为()A .π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。

练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为()A .26a π B .29a π C .212a π D .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于(A )4π (B )3π (C )2π (D )π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法练习1.在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC ====ABCD 的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径. 练习:1.正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EF S ABCD -的底面边长为1S A B C D 、、、、、E 、F 都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为_ C_ A_ O_ D _ BA B.13π C.23π D二.棱柱的外接球底面有外接圆的直棱柱才有外接球。

空间几何体的外接球与内切球问题(学生版)

空间几何体的外接球与内切球问题(学生版)

空间几何体的外接球与内切球问题目录一、必备秘籍二、典型题型题型一:内切球等体积法题型二:内切球独立截面法题型三:外接球公式法题型四:外接球补型法题型五:外接球单面定球心法题型六:外接球双面定球心法三、专项训练一、必备秘籍1.球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。

定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。

类型一球的内切问题(等体积法)例如:在四棱锥P-ABCD中,内切球为球O,求球半径r.方法如下:V P-ABCD=V O-ABCD+V O-PBC+V O-PCD+V O-PAD+V O-PAB即:V P-ABCD=13S ABCD⋅r+13S PBC⋅r+13S PCD⋅r+13S PAD⋅r+13S PAB⋅r,可求出r.类型二球的外接问题1、公式法正方体或长方体的外接球的球心为其体对角线的中点2、补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD) 3、单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P-ABC中,选中底面ΔABC,确定其外接圆圆心O1(正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2r=asin A);②过外心O1做(找)底面ΔABC的垂线,如图中PO1⊥面ABC,则球心一定在直线(注意不一定在线段PO1上)PO1上;③计算求半径R:在直线PO1上任取一点O如图:则OP=OA=R,利用公式OA2=O1A2+OO12可计算出球半径R.4、双面定球心法(两次单面定球心)如图:在三棱锥P-ABC中:①选定底面ΔABC,定ΔABC外接圆圆心O1②选定面ΔPAB,定ΔPAB外接圆圆心O2③分别过O1做面ABC的垂线,和O2做面PAB的垂线,两垂线交点即为外接球球心O.二、典型题型题型一:内切球等体积法1(22·23·全国·专题练习)正三棱锥P-ABC的三条棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为()A.1:3B.1:3+3C.3+1 :3D.3-1 :32(22·23下·朔州·阶段练习)正四面体的内切球、棱切球(与各条棱均相切的球)及外接球的半径之比为.3(23·24上·萍乡·期末)已知球O 是棱长为1的正四面体的内切球,AB 为球O 的一条直径,点P 为正四面体表面上的一个动点,则PA ⋅PB的取值范围为.4(22·23上·张家口·期中)球O 为正四面体ABCD 的内切球,AB =4,PQ 是球O 的直径,点M 在正四面体ABCD 的表面运动,则MP ⋅MQ的最大值为.5(22·23上·河南·阶段练习)已知正四面体ABCD 的棱长为12,球O 内切于正四面体ABCD ,E ,F 是球O 上关于球心O 对称的两个点,则AE ⋅BF的最大值为.6(22·23上·扬州·期中)中国古代数学名著《九章算术》中将底面为矩形且有一条侧棱垂直于底面的四棱锥称为“阳马”.现有一“阳马”的底面是边长为3的正方形,垂直于底面的侧棱长为4,则该“阳马”的内切球表面积为,内切球的球心和外接球的球心之间的距离为.题型二:内切球独立截面法1(23·24上·淮安·开学考试)球M 是圆锥SO 的内切球,若球M 的半径为1,则圆锥SO 体积的最小值为()A.43π B.423π C.83π D.4π2(22·23下·咸宁·期末)已知球O 内切于圆台(即球与该圆台的上、下底面以及侧面均相切),且圆台的上、下底面半径r 1:r 2=2:3,则圆台的体积与球的体积之比为()A.32B.1912C.2D.1963(22·23·全国·专题练习)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为.4(23·24上·佛山·开学考试)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的体积为4π3,当该圆锥体积取最小值时,该圆锥的表面积为.5(22·23下·成都·阶段练习)已知圆锥的底面半径为2,高为42,则该圆锥的内切球表面积为.题型三:外接球公式法1(16·17·全国·单元测试)若长方体从一个顶点出发的三条棱长分别为3,4,5,则该长方体的外接球表面积为 ()A.50πB.100πC.150πD.200π2(22·23·全国·专题练习)设球O 是棱长为4的正方体的外接球,过该正方体的棱的中点作球O 的截面,则最小截面的面积为()A.3πB.4πC.5πD.6π3(14·15上·佛山·阶段练习)正方体的外接球(正方体的八个顶点都在球面上)与其内切球(正方体的六个面都与球相切)的体积之比是.题型四:外接球补型法1(23·24上·成都·开学考试)在三棱锥P -ABC 中,PA =PB =PC =2,PA ⊥PB ,PA ⊥PC ,PB ⊥PC ,则该三棱锥的外接球的表面积为()A.43πB.12πC.48πD.323π2(22·23下·揭阳·期中)在三棱锥S -ABC 中,SA =BC =5,SB =AC =41,SC =AB =34,则该三棱锥的外接球表面积是()A.50πB.100πC.150πD.200π3(23·24上·成都·开学考试)已知四面体ABCD 满足AB =CD =3,AD =BC =5,AC =BD =2,且该四面体ABCD 的外接球的表面积是()A.2πB.6πC.6π11D.4π4(22·23下·黔西·阶段练习)正三棱锥P -ABC 的三条棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为.5(22·23下·黔西·期中)如图,已知在三棱锥P -ABC 中,PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,且PA =2PB =2PC =2,求该三棱锥外接球的表面积是.题型五:外接球单面定球心法1(23·24上·汉中·模拟预测)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,O为△ABC 外接圆的圆心,O 为三棱锥P -ABC 外接球的球心,OQ ⊥PA ,则三棱锥P -ABC 的外接球O 的表面积为.2(23·24上·秦皇岛·开学考试)三棱锥P-ABC中,AB⊥BC,P在底面的射影O为△ABC的内心,若AB=4,BC=3,PO=5,则四面体PABC的外接球表面积为.3(22·23下·石家庄·阶段练习)已知球O是正四面体P-ABC的外接球,E为棱PA的中点,F是棱PB上的一点,且FC=2EF,则球O与四面体P-EFC的体积比为.4(22·23下·淄博·期末)已知四棱锥P-ABCD的底面ABCD是矩形,侧面PAD为等边三角形,平面PAD⊥平面ABCD,其中AD=2,AB=3,则四棱锥P-ABCD的外接球表面积为.题型六:外接球双面定球心法1(22·23上·抚州·期中)已知菱形ABCD的各边长为2,∠D=60°.如图所示,将△ACD沿AC折起,使得点D到达点S的位置,连接SB,得到三棱锥S-ABC,此时SB=3.若E是线段SA的中点,点F在三棱锥S-ABC的外接球上运动,且始终保持EF⊥AC则点F的轨迹的面积为.2(22·23·赣州·模拟预测)如图,正三角形ABC中,D,E分别为边AB,AC的中点,其中AB=4,把△ADE沿着DE翻折至△A DE的位置,得到四棱锥A -BCED,则当四棱锥A -BCED的体积最大时,四棱锥A -BCED外接球的球心到平面A BC的距离为.3(22·23下·湖南·期末)为加强学生对平面图形翻折到空间图形的认识,某数学老师充分利用习题素材开展活动,现有一个求外接球表面积的问题,活动分为三个步骤,第一步认识平面图形:如图(一)所示的四边形PABC中,AB=BC=2,PA=PC,∠ABC=60°,PA⊥PC.第二步:以AC为折痕将△PAC折起,得到三棱锥P-ABC,如图(二).第三步:折成的二面角P-AC-B的大小为120°,则活动结束后计算得到三棱锥P-ABC外接球的表面积为.三、专项训练一、单选题1(22·23下·河南·模拟预测)已知直六棱柱的所有棱长均为2,且其各顶点都在同一球面上,则该球的表面积为( ).A.16πB.20πC.24πD.25π2(22·23下·宁德·期中)正四面体ABCD的外接球的半径为2,过棱AB作该球的截面,则截面面积的最小值为()A.2π3B.4π3C.8π3D.3π3(23·24上·河北·开学考试)长方体的一个顶点上三条棱长是3,4,5,且它的八个顶点都在同一球面上,这个球的体积是()A.12523π B.1252π C.50π D.125π4(22·23下·临夏·期末)已知四棱锥P-ABCD的体积为83,侧棱PA⊥底面ABCD,且四边形ABCD是边长为2的正方形,则该四棱锥的外接球的表面积为()A.12πB.8πC.4πD.2π5(23·24上·广东·阶段练习)如图,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△AED,△BEF,△DCF分别沿DE,EF,DF折起,使得A,B,C三点重合于点A ,若三棱锥A -EFD的所有顶点均在球O的球面上,则球O的表面积为()A.2πB.3πC.6πD.8π6(23·24上·安徽·开学考试)在封闭的等边圆锥(轴截面为等边三角形)内放入一个球,若球的最大半径为1,则该圆锥的体积为()A.3πB.6πC.9πD.12π7(23·24上·莆田·阶段练习)三棱锥P-ABC中,△ABC是边长为23的正三角形,PA=4,PA⊥AB,D为BC中点且PD=5,则该三棱锥外接球的表面积为()A.16πB.32πC.48πD.64π8(22·23·九江·一模)三棱锥A-BCD中,△ABD与△BCD均为边长为2的等边三角形,若平面ABD ⊥平面BCD,则该三棱锥外接球的表面积为()A.8π3B.20π3C.8πD.20π二、填空题9(23·24·柳州·模拟预测)已知圆锥的底面直径为23,轴截面为正三角形,则该圆锥内半径最大的球的体积为.10(22·23·唐山·二模)已知某圆台的上、下底面的圆周在同一球的球面上,且圆台上底面半径为1,下底面半径为2,轴截面的面积为3,则该圆台的外接球的体积为.11(22·23·大同·模拟预测)四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P-ABC中,PA⊥平面ABC,PA=4,AB=BC=2,鳌臑P-ABC的四个顶点都在同一个球面上,则该球的表面积是.12(23·24上·辽宁·阶段练习)已知圆锥的底面半径为2,侧面展开图的面积为8π,则该圆锥的内切球的体积为.13(23·24上·成都·阶段练习)已知三棱锥S-ABC底面ABC是边长为2的等边三角形,平面SAB⊥底面ABC,SA=SB=2,则三棱锥S-ABC的外接球的表面积为.14(23·24上·遂宁·阶段练习)已知正三棱柱ABC-A1B1C1的六个顶点在球O1上,又球O2与此三棱柱的5个面都相切,则球O1与球O2的表面积之比为.15(22·23下·赣州·阶段练习)已知圆锥的内切球半径为1,若圆锥的侧面展开图恰好为一个半圆,则该圆锥的体积为.。

几类空间几何体的外接球问题的解法

几类空间几何体的外接球问题的解法

解:要使函数存在2个零点,需使ìíîïïïïf (1)=1-a +b ≥0,f (2)=4-2a +b ≥0,Δ≥0,1≤a 2≤2,绘制如图3所示的可行域(可行域为箭头所指的曲边三角形).对z =(x -a )2+(y -b )2变形,可得z +94=a 2+æèöøb -322,则将问题转化为求点(0,32)到可行域内任意一点(a ,b )距离的平方的最值.从图3中可以看出点(0,32)到直线1-a +b =0的距离即为(0,32)到可行域内任意一点(a ,b )的最小距离,利用点到直线的距离公式d =||Ax 0+By 0+C A 2+B 2,得d =522.则≥522,解得z ≥78.所以a 2+b 2-3b 取值范围为éëöø78,+∞.对于目标函数为z =(x -a )2+(y -b )2型的目标函数,我们可以依据(x -a )2+(y -b )2的几何意义,把问题转化为求可行域内动点P (x ,y )与定点A (a ,b )距离的平方的最值,从而求出z 的范围.综上所述,利用线性规划模型解答含参二次函数问题有如下几个步骤:1.根据题意建立不等式组,将其视为线性约束条件;2.将所求目标设为目标函数,将其变形为直线的截距式、两点的距离;3.画出可行域;4.在可行域内寻找使得直线的纵截距、动点到定点的距离取最值的点;5.将最值点的坐标代入求得问题的答案.同学们在解题的过程中要注意根据题意建立线性规划模型,利用线性规划模型来提升解答含参二次函数问题的效率.(作者单位:宁夏育才中学)空间几何体的外接球问题是高考试卷中的重要题型,主要考查球空间几何体的性质、面积公式、体积公式.此类问题的难度系数较大,要求同学们具备较强的空间想象能力和逻辑思维能力.本文介绍几种常见空间几何体的外接球问题的题型及其解法,以帮助同学们破解此类问题.类型一:三条棱两两互相垂直的三棱锥的外接球问题该类型的三棱锥具有明显的特征:三条棱两两互相垂直.我们可以抓住该特征,将其看作长方体、正方体的一部分,构造出一个完整的长方体、正方体.将三条棱看作长方体、正方体的三条边,于是三棱锥的外接球的直径等于长方体、正方体的对角线.求出三棱锥的外接球的半径、直径,空间几何体的外接球问题便可顺利获解.类型二:一条侧棱垂直于一个底面的三棱锥的外接球问题我们可将该三棱锥看作直棱柱的一部分,将其补成一个直棱柱,再将其补成一个圆柱,如图1、2、3、4所示,那么三棱锥的外接球即为圆柱的外接球.直棱柱的上、下底面为三角形,且三角形的外接圆的直径为a sin A =b sin B =c sin C =2r ,上下底面的距离为OO 1=12PA(此时PA 垂直与底面),则有①(2R )2=PA 2+(2r )2,即2R =PA 2+(2r )2;②R 2=r 2+OO 12,即R =r 2+OO 12,这样便建立了PA 与三棱锥的外接球之间的关系,进方法集锦图341图5图6例2.已知三棱锥S-ABC的所有顶点都在球O 球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA ,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为_____.解:如图7,连接AO,OB,∵SC为球O的直径,∴O为SC的中点,∵SA=AC,SB=BC,∴AO SC,BO⊥SC,平面SCA∩平面SCB=SC的表面积为S=4πR=4π×3图7该三棱锥的两个平面相互垂直,根据已知条件证明AO⊥然后构造三角形,找出三棱锥的外接球半径与三棱锥的棱之间的关系,通过解三角形求得三根据球的表面积公式求得球由两个直角三角形构成的三棱锥的外接解答该类型问题的关键是抓住特征:.我们可以通过解直角三角形求得三图8由两个全等三角形或等腰三角形构成的三棱锥的外接球问题在求解该类型外接球问题时,我们要灵活运用全等三角形或等腰三角形的性质,关注中点为全等三角形或等腰三角形,和ΔA ′BD 的外心H 1和图9例3.三棱锥P -ABC △PAC 和△ABC 均为边长为棱锥外接球的半径.解:如图10,设O 1,O 2由题意可知O 2H =13由勾股定理可得R 2=8图11类型七:直棱柱、圆柱的外接球问题直棱柱、圆柱的外接球问题较为简单,球的球心为高线的中点,如图12所示,所以我们很容=1=1.再设小圆图12图13例4.已知三棱柱ABC -A 1B 1C 1的底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为______.解:设球半径为R ,上,下底面中心为M ,N ,由题意,外接球心为MN 的中点,设为O ,,得R =OA =3,由勾股定理可知,OM =1,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优点15 空间几何体的外接球
空间几何体的外接球是高中数学的重难点.我们可以通过对几何体的割补或寻求几何体外接球的球心两大策略求解此类问题.
例1 半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( ) A.5π∶6 B.6π∶2 C .π∶2 D .5π∶12 答案 B
解析 将半球补成球,同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体恰好是球的内接长方体,那么这个长方体的对角线就是它的外接球的直径.设正方体的棱长为a ,球体的半径为R ,则(2R )2=a 2+a 2+(2a )2,即R =
62a ,∴V 半球=12×43πR 3=23π×⎝⎛⎭⎫62a 3=62πa 3,V 正方体=a 3,∴V 半球∶V 正方体=62
πa 3∶a 3=6π∶2,故选B. 例2 在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为( )
A.12512π
B.1259π
C.1256π
D.1253
π 答案 C
解析 如图,取AC 的中点O ,显然OA =OB =OC =OD ,故点O 为四面体ABCD 的外接球的球心,
∴R =12AC =52
, ∴V 球=43
×π×⎝⎛⎭⎫523=1256π. 例3 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A.81π4 B .16π C .9π D.27π4
答案 A
解析 如图,正四棱锥P -ABCD 的底面中心为H .
在底面正方形ABCD 中,AH =2, 又PH =4, 故在Rt △P AH 中,
P A =
PH 2+AH 2 =42+(2)2=3 2.
则由正四棱锥的性质可得,其外接球的球心O 在PH 所在的直线上,设其外接球的直径为PQ =2r .
又A 在正四棱锥外接球的球面上,所以AP ⊥AQ .
又AH ⊥PH ,由射影定理可得P A 2=PH ×PQ ,
故2r =PQ =P A 2PH =(32)24=92,所以r =94
. 故该球的表面积为S =4πr 2=4π×⎝⎛⎭⎫942=81π4.
解决此类问题的关键在于利用几何体的结构特征确定球的球心,利用球的截面的性质,球心和球的截面的中心连线垂直于截面.结合相关几何量之间的数量关系可确定球心.
1.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )
A .π B.3π4 C.π2 D.π4
答案 B
解析 球心到圆柱的底面的距离为圆柱高的12
,球的半径为1,则圆柱底面圆的半径r =
1-⎝⎛⎭⎫122=32,故该圆柱的体积为V =π×⎝⎛⎭
⎫322×1=3π4. 2.在四面体ABCD 中,AB ,AC ,AD 两两垂直,AB =3,AD =2,AC =5,则该四面体外接球的表面积为________.
答案 12π
解析 将四面体补成三条棱长分别为3,2,5的长方体,则此长方体外接球的直径2R =3+4+5=23,
∴该四面体外接球的表面积为4πR 2=12π.
3.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________. 答案 36π
解析 如图,SC 为球O 的直径,O 为球心,
因为SA =AC ,所以AO ⊥SC ,
同理SB =BC ,所以BO ⊥SC ,BO ∩AO =O ,所以SC ⊥平面ABO .
又平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,AO ⊥SC ,AO ⊂平面SAC , 所以AO ⊥平面SBC ,所以AO ⊥BO .
设球的半径为R ,则AO =BO =SO =CO =R ,
所以V 三棱锥S -ABC =2×13S △ABO ×SO =2×13×12×AO ×BO ×SO =13
R 3=9,所以R =3, 所以球O 的表面积为S =4πR 2=36π.
4.类比圆的内接四边形的概念,可得球的内接四面体的概念,已知球O 的一个内接四面体A -BCD 中,AB ⊥BC ,BD 过球心O ,若该四面体的体积为1,且AB +BC =2,则球O 的表面积的最小值为________.
答案 38π
解析 在Rt △ABC 中,由AB ⊥BC ,且AB +BC =2,
得2=AB +BC ≥2AB ·BC ,得AB ·BC ≤1, 当且仅当AB =BC =1时,AB ·BC 取最大值1, ∵BD 过球心O ,且四面体A -BCD 的体积为1,
∴三棱锥O -ABC 的体积为12
, 则O 到平面ABC 距离的最小值为1213×12
×1=3, 此时△ABC 的外接圆的半径为
22, 则球O 的半径的最小值为32+⎝⎛
⎭⎫222=192, ∴球O 的表面积的最小值为4π×⎝⎛⎭⎫1922=38π.。

相关文档
最新文档