分数与除法的关系教学反思
数学分数与除法教学反思(通用16篇)

数学分数与除法教学反思(通用16篇)数学分数与除法教学反思篇1本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。
这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。
具体说本节课有以下几个特点:一、直观演示是学生理解分数与除法的关系的前提。
由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。
3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。
教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的就是张。
把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。
学生操作经验的积累有效地突破了本节课的难点。
二、培养学生提出问题的意识与能力是培养学生创新精神的关键。
爱因斯坦曾说:提出一个问题比解决一个问题更重要。
学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。
本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。
比如学生展示完自己的分法后教师启发学生提出问题:a:你们是几块几块的分的?b:每人每次分得多少块饼?c:分了几次,共分了多少块?(就是3个块就是几块)d:怎样才能看出是几块?问题的提出针对性强,有利于学生把握数学的本质。
三、用发展的思维去理解所学的知识,注重了知识的系统性。
数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。
分数除法一教学反思6篇

分数除法一教学反思6篇分数除法一教学反思篇14月22日上午,是我校五年级的家长开放日,我上了一节《分数与除法》的公开课。
课后有幸得到了我的导师——广西师大熊宜勤教授的点评,由于当时时间比较紧,我们要赶到拱极小学去听黄智云老师的课,匆忙之中熊教授给我提出了两点宝贵意见:1.在重难点的突破上花的时间还不够.2.练习的设计量过多,没有很好的为本节课服务。
听了她的建议以后,我陷入了深深的反思之中。
是啊,都十几年的教龄了,怎么还会犯这样的错误呢?备课时,我只考虑到家长们要来听课,脑子里想得更多的是怎样才能把课上活?煞费苦心的创设了一个猪八戒分饼的情境,虽然这样能把整节课的教学内容串联在一起,整体感比较强,学生也很喜欢,但是却没有把例2中的重难点抓住。
我的本意原是想把课堂交给学生,引导学生进行具体操作,让学生在具体操作中得出3除以4的商,以明确每人分得的不满1块,可用分数来表示,让学生明白一块饼的就等于3块饼的。
可是在教学时,由于没有及时引导学生突出单位“1”,再加上没有使用展台操作,学生的理解就是没有那么到位。
接着,我在教学例2后,引导学生观察黑板上的几个算式,总结归纳出分数与除法的关系也只用了1分多钟的时间,很多学生印象还不够深刻就进入了练习环节,以至于后面的练习出现了卡壳现象。
回想自己的这一节课,真的是有太多不足的地方。
带着熊教授给我提出的问题,第二天,我聆听了苏文俊老师上的这节课。
课一开始,她就复习了上节课中我们学习的分数的意义和分数单位等内容,接着创设了分饼情境,(1)把6块饼平均分给2个同学,每人分得多少块?(2)把1块饼平均分给2个同学,每人分得多少块?(3)把1块饼平均分给3个同学,每人分得多少块?6÷21÷21÷3从数据上看,看得出都是苏老师精心设计的。
从商是整数到商可以用小数也可以用分数表示,到除不尽需要用分数表示的思路,充分地让学生体会到解决问题的策略。
在复习了把一个数平均分,用除法计算的同时,突出了知识间的联系。
《分数与除法的关系》教学反思2篇

《分数与除法的关系》教学反思2篇Reflection on the teaching of the relationship between fraction and division《分数与除法的关系》教学反思2篇前言:小泰温馨提醒,教学反思指教师对教育教学实践的再认识、再思考,并以此来总结经验教训,进一步提高教育教学水平,教师会从自己的教育实践中来反观自己的得失,通过教育案例、教育故事、或教育心得等来提高教学反思的质量。
本教案根据教学反思设计标准的要求和针对教学对象是小学生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
便于学习和使用,本文下载后内容可随意修改调整及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:《分数与除法的关系》教学反思2、篇章2:《分数与除法的关系》教学反思范文篇章1:《分数与除法的关系》教学反思以下是关于《分数与除法的关系》教学反思,欢迎阅读!分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。
这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。
如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3÷4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:1.通过实际操作感悟新知识在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。
接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。
《分数与除法》教学反思15篇

《分数与除法》教学反思15篇《分数与除法》教学反思1首先通过课前谈话解决了分数除法的意义。
接下去重点来研究第一环节分数除以整数的计算方法,我出示了这样一道例题:城西中心小学占地约为9/10公顷,如果按面积平均分成三块不同的区域,每块区域占地多少公顷?题目一出,学生马上就把算式列出来了,9/10÷3,怎么计算呢?通过四人小组讨论合作,最终相出了好几种方法。
如9/10÷3=0.9÷3=0.3(公顷)9/10÷3=(9/10_1/3)÷(3_1/3)=3/10(公顷)9/10÷3=9/10_1/3=3/10(公顷)(因为把一块地看作一个整体,平均分成三块,其中的一块就占了这块的1/3,所以直接乘以1/3)等一些方法,通过比较最终得出9/10÷3=9/10_1/3=3/10(公顷)这种方法简便。
接着我把9/10该为10/11,让他们再用自己发现的方法进行计算。
结果学生们发现还是用这种方法简便,10/11÷3=10/11_1/3=10/33(公顷),最后,让他们观察、讨论、交流9/10÷3=9/10_1/3=3/10(公顷)与10/11÷3=10/11_1/3=10/33(公顷)这两题的计算方法,学生们发现除以整数等于乘以整数的倒数。
第二环节解决一个数除以分数的计算方法。
我把例题该为城西中心小学占地约为9/10公顷,如果每块区域占地为3/10公顷,平均分成几块不同的区域?有了第一题的基础,大部分学生马上就想到9/10÷3/10=9/10_10/3=3(块),我问他们,为什么其他方法不用了呢?学生们说马上异口同声的回答,如果你在把9/10换成10/11的话,小数不行,除数转化为1麻烦,反正只要乘以它的倒数就行了。
接着我又问如果老师把9/10公顷换成1公顷,你认为又该怎么计算呢?学生们说还是乘以它的倒数。
分数与除法教学反思15篇

分数与除法教学反思15篇分数与除法教学反思1《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。
在讲这节课之前,本来以为是很简单的一节课,学生在理解分数与除法的关系时也一定会很容易,唯一的难点是用除法的意义理解分数的意义,我想只要借助实物圆形纸片给学生演示一下,学生就会理解了,但当我讲完这节课后,才发现我的想法太简单了,我把学生想象成理想化的学生了,这部分知识虽然有一部分学生理解了,但仍有一部分学生在用除法的意义理解分数还很困难。
在这节课的教学中,我觉得有以下几方面值得我去思考:一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。
但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。
二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。
在教学“把3张饼平均分给4个同学,每个同学应分多少张饼?”时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。
在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。
三、小组的全员参与不够。
在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。
分数与除法的教学反思(汇总10篇)

分数与除法的教学反思(汇总10篇)分数与除法的教学反思第1篇分数与除法是五年级下册第四单元分数意义中的内容,是建立在除法意义的平均分和把一个物体或多个物体看做单位“1”进行平均分概念的基础上进行教学的。
这部分知识加深和扩展了学生对分数意义的理解,同时也为后面讲解假分数以及把假分数化成整数或带分数做好准备。
在本节课的教学中,我首先选择恰当的切入点,从解决简单问题入手,提出了这样几个问题:把6张饼平均分给3个人,每人分到几张饼?把一张饼平均分给2个人,每人分到几张饼?把1张饼平均分给3个人,每人分到几张饼?在此基础上,观察三个算式和得数,得出结论:一张饼的1/3是1/3张饼。
为促进学生主动沟通知识间的内在联系做了一个思路引领。
其次充分展现学生的思维过程,以加深学生对知识的理解。
我在这里提出了新的问题:如果把3张饼平均分给4位同学,每人分到几张饼?怎样列式?结果每人分到几张饼呢?请同学们借助手中的学具,分一分、拼一拼,看看到底每人分到多少张饼呢?这一问题的解决过程,既是本节课教学的重点,又是学生理解的难点。
我让学生亲自动手分一分,拼一拼,并让学生展示分的过程和分得的结果是怎样的,学生出现了不同的分法和结果。
我在这里引导学生展开讨论,使学生在实际操作交流中,对知识的内在联系有了更好的理解。
本节课的教学中,我围绕分饼的方法展开交流,引发学生不断的数学思考,促进学生在动手操作,主动思考中沟通知识间的内在联系,帮助学生不断扩展已有的知识结构,加强了思维深刻性的培养。
在教学新课时,学生说的很好,我应该最后再引导学生完整的说出:每人分到这张饼的1/4,3张饼的1/4就是3/4张饼,即3张饼的1/4展开后就是一张饼的3/4。
而我在课前的预设中是有这个环节的,结果在教学中,把这个环节落下了。
在今后的教学质量中,应尽量把数学课上的更扎实有效,使学生的数学思维能力和学习能力得到更好的发展和提高。
分数与除法的教学反思第2篇分数与除法的关系是在学习了分数的意义后进行的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。
数学分数除法的教学反思四篇

数学分数除法的教学反思四篇数学分数除法的教学反思四篇分数除法教学反思1 分数除法教学是整个小学阶段应用题教学的重、难点之一。
一个数除以分数是在一个数除以整数的基础上,继续学习一个数除以分数的方法。
如何推导分数除法的计算方法,有多种方法。
例如:利用商不变规律进行推导;利用等式的基本性质进行推导;利用逆运算关系和分数的基本性质进行推导;联系实际问题分析、推导等。
而教材选用的是最后一种,意在结合具体的情景,通过线段图的分析,让学生明白算理。
而在以前的教学中,我习惯让学生通过大量的例子归纳方法,让学生经历从特殊到一般的归纳过程。
所以,在第一次教学时我先让学生计算两组比较简单的算式,并且引导学生对算式进行观察、比较和分析,让学生通过猜想尝试验证,发现一个数除以分数和乘这个分数的倒数的结果都相等。
然后进行练习,学生学习效果也不错,教学过程一切自然流畅。
清晰地记得去年教学此内容时,下课后,一个学生问我:“老师,一个数除以分数为什么要乘这个分数的倒数呢?”这句话引起了我的反思。
是啊!一个数除以分数的算理还没有讲清楚呢?因为一直以来都是这样教学,只是通过猜想、尝试、验证、归纳一个数除以分数和乘这个分数的倒数的结果相等,也就把计算法则作为一个规定硬性地塞给了孩子,而忽视了算理的教学,这种学生只知其然而不知其所以然。
翻阅教材,发现教材是通过画线段图让学生来明白算理,注重的算理的教学,忽视猜想、尝试、验证、归纳这种数学思想的渗透。
如何让两者有机的结合起来呢?既能让学生明白算理又让学生渗透这种数学方法呢?经过仔细反思之后,今年我在教学此内容时,调整了我的教学过程。
我在学生猜想、尝试、验证、归纳出一个数除以分数等于乘这个分数的倒数的结果后,我抛出了这个问题:一个数除以分数为什么要乘以这个数的倒数呢?学生思考,讨论。
汇报时学生开始大部分围绕因为结果相等来总结。
此时我再结合线段图对学生进行算理的教学,大部分同学们恍然大悟,都露出了灿烂的笑容。
人教版数学五年级下册第22课分数与除法的关系教案与反思(精推3篇)

人教版数学五年级下册第22课分数与除法的关系教案与反思(精推3篇)〖人教版数学五年级下册第22课分数与除法的关系教案与反思第【1】篇〗教学目标:1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:一、旧知铺垫(课件出示)1、计算下面,直接写出得数×4×3×2×6÷4÷3÷2÷62、列式,说清数量关系小明2小时走了6km,平均每小时走多少千米(速度=路程÷时间)二、新知探究(一)、例3,1、实物投影呈现例题情景图。
理解题意,列出算式:2÷÷2、探索整数除以分数的计算方法:(1)2÷如何计算引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2km这个条件(将线段平均分成3份,其中2份表示的就是小时走的路程)(3)引导学生讨论交流:已知小时走了2km,要求1小时走了多少千米可以先算什么,再算什么(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×再求3个小时走了多少千米,算式:2××3(5)综合整个计算过程:2÷=2××3=2×(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数与除法的关系教学反思
分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。
这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。
如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3÷4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:
1.通过实际操作感悟新知识
在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。
接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。
并让小组派代表上台展示分的过程。
学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了3÷4=3/4的算理。
2、使学生清楚为什么要用分数来表示除法算式的结果
在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。
1÷3= 8÷9= 2÷6= 让学生把计算结果写在练习本上,比比看谁先算完。
结果有的学生一两秒钟就举起了手,而有的学生费了很长时间才写出了计算结果。
汇报之后,引导学生思考:1÷3=0.333……与1÷3=1/3 8÷9= 0.88……与8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。
这时告诉学生,以后计算两个整数相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
3、借机引申,为后续学习做好铺垫
第一次向学生介绍分率与数量的区别。
如①“把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?”②"把2米长的绳子平均分成7段,每段长是这根绳子的几分之几?每段长多少米"③"把4千克盐平均分成5份,每份重量是盐的总数的几分之几/每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1÷4=1/4 1÷7=1/7 1÷5=1/5。
而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。
前三道题第二问的算法分别是1÷4=1/4(张)2÷7=2/7 (米)4÷5=4/5(千克)
此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的铺垫作用。
4、让学生自主建构新知识
当学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,引导学生把数字换成它们的名称:被除数÷除数=被除数/除数。
这时候,再让学生在练习本上用字母a、b表示除法与分数的关系。
多数学生写下:a÷b=a/b,老师拿一名稍差学生的板书出来,故意表扬这位同学。
正表扬却突然转身给这名学生作业后面一个大叉号。
正当同学们都诧异的时候?问为什么错了?这时几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,追问:“为什么b不能等于0?”。
我继续用课堂中的例题把1张饼平均分给4个人,每人分得这块蛋糕的1/4为例,让学生说说这个分数中的‘4’表示什么?”“如果把‘4’换成‘0’呢?”学生恍然大悟:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。
在用字母表示分数与除法的关系时----“a÷b=a/b(b≠0)”学生经常会忘记,
这里的b不能为0。
通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,所以在分数中分母不能为0的道理。
这里并不直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。
而是通过分析一个分数的实际意义让学生充分理解分数中的分母表示平均分的份数,所以分母不能为“0”的道理。
本节课的不足之处:虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有引导学生总结出来。
除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。