高数极限与函数等价代换公式
高数 第1章 极限计算方法总结

极限计算方法总结一、极限定义、运算法则和一些结果 1.定义:数列极限、函数极限,课本42页的表格必须认真填写并掌握。
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1lim2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞→q q n n 当等。
定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
2.极限运算法则定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim成立此时需≠=B BAx g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限(1) 1sin lim 0=→xx x (2) e x x x =+→10)1(lim ; e x xx =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。
(2)一定注意两个重要极限成立的条件。
例如:133sin lim0=→xxx ,e x xx =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。
4.等价无穷小定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-xe 。
说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高数公式(精简版)

高数公式集萃一、极限重要公式(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→−∞=−(7) (8)lim arc cot 0x x →∞=lim arc cot x x π→−∞= (9)lim 0xx e →−∞=(10) (11)lim x x e →+∞=∞0lim 1xx x +→= 二、常用等价无穷小关系(0x →)(1)sin x x (2)tan x x (3)arcsin x x (4)arctan x x (5)211cos 2x x − (6)()ln 1x x + (7) (8) (9)1x e − x a 1ln x a x − ()11x x ∂+−∂三、导数的四则运算法则(1) (2)()u v u v ′′±=±′()uv u v uv ′′′=+ (3)2u u v u v v ′′′−⎛⎞=⎜⎟⎝⎠v 四、基本导数公式⑴() ⑵0c ′=1x xμμμ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− x ⑼()xxe ′⑺()sec sec tan x x ′=⋅x ⑻()csc csc cot x x ′=−⋅e=⑽() ⑾()ln xxaa′=a 1ln x x ′= ⑿()1log ln x a x a′=⒀()arcsin x ′=⒁()arccos x ′= ⒂()21arctan 1x x ′=+ ⒃()21arc cot 1x x′=−+(17)′=五、微分运算法则⑴ ⑵ ⑶()d u v du dv ±=±()d cu cdu =()d uv vdu udv =+ ⑷2u vdu udvd v v −⎛⎞=⎜⎟⎝⎠六、微分公式与微分运算法则⑴ ⑵ ⑶()0d c =()1d xxdx μμμ−=()sin cos d x xd =x x x⑷ ⑸ ⑹()cos sin d x xd =−()2tan sec d x xd =()2cot csc d x xd =−x x x ⑺ ⑻ ⑼()sec sec tan d x x xd =⋅()csc csc cot d x x xd =−⋅()xxd e e dx =⑽ ⑾()ln x x d a a adx =()1ln d x dx x =⑿()1log ln x a d dx x a=⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =−+ 七、下列常用凑微分公式八、中值定理与导数应用:拉格朗日中值定理。
(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。
通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。
求函数极限的方法有很多种,以下是几种常见的方法。
对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。
例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。
当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。
例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。
洛必达法则是求未定式极限的重要方法。
如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。
例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。
对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。
通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。
例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。
夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。
如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。
例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。
高数微积分公式大全3篇

高数微积分公式大全第一篇:高数微积分公式大全(上)微积分是数学中的重要分支,也是物理、工程、经济等领域中不可或缺的工具。
下面将介绍一些高等数学中常用的微积分公式,包括极限、导数、微分等,供读者参考。
1. 极限极限是微积分中的基本概念,它描述的是函数在某一点附近的取值趋近于某个常数的情况。
极限公式如下:(1)左极限$$\lim_{x\to x_{0}^{-}}f(x)=A$$(2)右极限$$\lim_{x\to x_{0}^{+}}f(x)=A$$(3)无穷远处的极限$$\lim_{x\to \infty}f(x)=A$$(4)无穷小量$$\lim_{x\to x_{0}}\frac{f(x)}{g(x)}=0$$2. 导数导数是微积分中的重要概念,它描述的是函数在某一点处的变化率。
导数公式如下:(1)切线的斜率$$k=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} $$(2)函数的导数$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$3. 微分微分是微积分中的基本运算,它可以帮助我们研究函数的变化趋势。
微分公式如下:$$df=f'(x)dx$$其中,$dx$表示自变量$x$的微小变化量,$df$表示因变量$y$的微小变化量。
4. 泰勒公式泰勒公式是微积分中的重要定理,它可以帮助我们将一个函数表示为一系列多项式的和,从而简化函数的计算。
泰勒公式如下:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^{n} $$其中,$f^{(n)}(x)$表示函数$f(x)$的$n$阶导数。
5. 柯西-黎曼方程柯西-黎曼方程是复分析中的重要定理,它描述了复函数的导数和复共轭函数的关系。
柯西-黎曼方程如下:$$\frac{\partial u}{\partial x}=\frac{\partialv}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$$其中,$u(x,y)$和$v(x,y)$分别表示复函数$f(z)=u(x,y)+iv(x,y)$的实部和虚部。
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高数知识点

高数知识点总结1.函数定义:x 经过对应法则f 唯一确定y三要素:定义域、值域和对应法则基本性质:单调性、奇偶性、周期性、有界性基本初等函数:反对幂指三复合函数:函数套函数y =f(g (x ))(注意复合次序及取值范围) 初等函数:由常数和基本的初等函数经过有限次的四则运算和有限次的复合步骤形成的一个式子的函数2.极限(1)定义:当自变量在某个变化的过程中,函数无限的接近某一个常数A ,则收敛,lim x→?f (x )=A (2)左右极限:左右极限存在且相等,则极限存在。
(3)求极限的方法:①四则运算(直接代入)②C 0或C ∞型:利用无穷大与无穷小的关系C 0=∞,C ∞=0 ③00型:去零因子(因式分解或有理化)、洛必达法则(上下求导) ④∞∞型:看最高次项、洛必达法则 ⑤无穷小的性质(有界变量与无穷小量的乘积是无穷小量) ⑥等价无穷小替换(只能乘积因子)0~sin ~arcsin ~tan ~arctan ~ln(1)~1x x x x x x x x e →+-当时,,211cos ~.2x x -⑦两个重要极限:lim x→0sinx x=1(适用于含三角函数的00) lim x→∞(1+1x)x =e (1∞ 型的幂指函数) 3.函数的连续性(1)定义:0lim 0x y ∆→∆=,极限值=函数值 (2)单侧连续:左连续且右连续⇔连续(3)间断点:①第一类间断点:左右极限都存在可去间断点(左右相等但不等于此处函数值)、 跳跃间断点(左右不相等)②第二类间断点:(左右极限至少有一个不存在) 无穷间断点、振荡间断点4.导数(变化率问题):(1)定义:增量比值取极限,极限存在即可导lim △x→0△y △x =A几何意义:切线的斜率单侧导数:左导右导存在且相等,则可导(2)常用导数公式(基本的初等函数求导) 复合函数求导: x u x y y u '''=⋅(外导*内导)隐函数求导: 参数方程求导:''d ()=d ()t t y y t x t x ψϕ'='5.导数的应用(1)单调性:()0f x '>单增,()0f x '<单减(2)极值:(驻点和不可导点为可能极值点) 法一:f ′(x )左负右正取极小,f ′(x )左正右负取极大 法二:f ′′(x 0)<0时, f(x)在x 0处取得极大值;f ′′(x 0)>0时, f(x)在x 0处取得极小值(3)最值:比较端点值和极值出最值(4)凹凸性:()0f x ">,则在[],a b 上为凹的;()0f x "<,则在[],a b 上为凸的. 拐点:其横坐标是()0f x "=的点或()f x 二导不存在的点. 微分:00|()()x x dy f x x f x dx =''=∆=6.不定积分:(1)定义:原函数的全体()d ()f x x F x C =+⎰几何意义:积分曲线族(2)不定积分的计算:①直接积分法②换元积分法:第一类还原法(凑微分法)()()(())()d (())d ()()d ()(())u x g x dx f x x x f x x f u u F u C F x Cϕϕϕϕϕϕ='====+=+⎰⎰⎰⎰第二类还原法 1()()d (())()d t x f x x f t t tψψψ-='=⎰⎰(根式代换、三角代换、倒数代换)③分部积分法: d d u v uv v u =-⎰⎰(反对幂指三,谁在前谁设为u )7.定积分:(1)定义:分割、近似、求和、取极限,极限存在即可积01()d lim ()nb i i a i I f x x f x λξ→===∆∑⎰ 几何意义:曲边梯形的面积(2)性质:线性性、依区间可加性:()d ()d ()d b c ba a c f x x f x x f x x =+⎰⎰⎰ 几何度量性:∫cdx =c(b −a)ba保号性、保序性、积分绝对值不等式、估值定理:()()d ()b a m b a f x x M b a -≤≤-⎰ 积分中值定理:至少存在一点[,]a b ξ∈,使得 ()d ()()ba f x x fb a ξ=-⎰.(3)定积分的计算:(求原函数,算增量)直接积分法、换元积分法、分部积分法+微积分基本公式 ()()|()()bba a f x dx F x Fb F a ==-⎰。