2013内科主治医师考试传染病学复习要点:细菌对抗菌药物的耐药性
医学微生物学之细菌的耐药性

细菌产生酶来分解或修饰抗菌药物, 使其失去活性。
细菌的抗菌药物外排机制
外排泵
细菌通过外排泵将抗菌药物排出细胞外,降低药物在细胞内的浓度。
膜通透性的改变
细菌改变膜的通透性,阻止抗菌药物进入细胞内。
03
耐药细菌的传播途径
医院内传播
医院是耐药细菌传播的主要场所之一 。
医务人员携带的耐药细菌可直接或间 接传播给患者。
噬菌体疗法
利用噬菌体特异性感染和裂解细 菌的特性,可以用于治疗某些耐 药细菌感染。
THANKS
感谢观看
患者之间的交叉感染:同一病区或同 一病房的患者之间可能因接触而发生 耐药细菌的交叉感染。
医疗器械和设备污染:如呼吸机、导 管、注射器等医疗用品,在使用过程 中可能被耐药细菌污染,导致感染。
社区传播
社区中,人与人之间的接触也 可能导致耐药细菌的传播。
社区中的老人、儿童、身体虚 弱者以及免疫系统受损的人更 容易感染耐药细菌。
医学微生物学之细菌的 耐药性
目 录
• 耐药性的定义与重要性 • 细菌的耐药机制 • 耐药细菌的传播途径 • 耐药性的防控策略 • 耐药性的未来展望
01
耐药性的定义与重要性
耐药性的定义
耐药性是指微生物对药物产生的耐受 和抵抗能力,使药物无法有效发挥杀 菌或抑制作用。
耐药性通常是由于基因突变或获得外 源性基因导致的,使微生物对某些抗 菌药物产生抗性。
耐药性的重要性
耐药性的出现使得一些常见感染病原体变得难以治疗,增加了疾病的治疗难度和 患者的死亡率。
耐药性的传播和扩散也对全球公共卫生造成严重威胁,成为当前医学领域亟待解 决的问题之一。
耐药性的影响
耐药性的出现使得一些原本容易治疗的感染病变得难以治愈 ,增加了患者的治疗时间和医疗费用。
耐药性细菌基础知识

耐药性细菌基础知识
耐药性细菌是指对抗生素及其他抗菌药物产生抗性的微生物。
这些细菌可以抵抗抗菌药物的作用,导致感染变得难以治疗。
耐药性细菌的原因
耐药性细菌的产生主要是由于以下几个原因:
1. 过度使用抗生素:长期、过度使用抗生素会导致细菌逐渐产
生抗药性。
2. 培养不合理:如果使用抗生素的方法不正确或不完整,细菌
会逐渐适应抗生素并产生抗药性。
3. 基因转移:细菌之间可以通过基因转移传递抗药性基因,导
致新的耐药性细菌产生。
耐药性细菌的危害
耐药性细菌对人类健康和医疗领域造成严重威胁,具体表现为:
1. 治疗困难:耐药性细菌使得一些常规使用的抗生素失去了效果,导致感染难以治疗,可能导致严重并发症或死亡。
2. 传播性强:耐药性细菌具有良好的传播性,可以通过人与人
之间的接触迅速传播,造成疫情爆发。
3. 增加医疗成本:治疗耐药性细菌感染需要使用更昂贵、毒性更大的抗生素,会增加患者和整个医疗系统的经济负担。
预防和控制耐药性细菌的措施
为了防止和控制耐药性细菌的蔓延,以下是一些重要的措施:
1. 合理使用抗生素:医生应根据患者的具体情况选择适当的抗生素,避免不必要的使用和滥用。
2. 加强感染控制:在医疗机构中,应加强感染控制措施,包括手卫生、消毒和隔离措施等,以减少传播。
3. 提高公众认知:加强公众对于耐药性细菌的认知和理解,推广正确使用抗生素的知识,促进合理用药。
以上是关于耐药性细菌基础知识的简要介绍,希望对您有所帮助。
参考文献:。
(整理)抗生素耐药性

细菌的耐药性1.细菌对抗生素的耐药性分类耐药性分为两类,固有耐药性和获得性耐药性。
前者是染色体介导的代代相传的天然耐药性;后者多由质粒介导,也可由染色体介导,当微生物接触抗菌药物后,通过改变自身的代谢途径,从而避免被药物抑制或杀灭。
1.2耐药基因细菌特别是条件致病菌,因经常有机会与各种抗菌药物接触,故在细菌细胞内的质粒、染色体、转座子、整合子上可有耐药基因和多种耐药基因的积聚并借结合、转导和转化而在不同种细菌、革兰氏阳性菌和革兰氏阴性菌间彼此频繁交换,耐药基因一旦获得较长期存留,转座子和整合子(以及更小的DNA片段)由于分子量小和活动自如,所以在耐药基因转移和MDR形成中起主导作用。
1.3染色体和质粒介导产生的耐药菌需要指出的是,在正常情况下,由染色体介导而产生耐药性的细菌往往有一定缺陷,而质粒介导产生的耐药菌则与敏感菌一样,可迅速生长繁殖。
但质粒与染色体介导的耐药性,一般只发生于少数细菌中,难以与占压倒优势的敏感菌竞争,只有当敏感菌因抗菌药物的选择性压力而被大量杀灭后,耐药菌才得以迅速繁殖而成为优势菌,并导致各种感染的发生。
2.细菌耐药的机理抗生素成功使用的同时,也带来了严重的细菌耐药性问题,目前已成为全球性的难题。
细菌产生耐药性可能是基于以下几种机制。
2.1水解酶和修饰酶水解和修饰抗生素⑴水解酶:如β-内酰胺酶可水解β-内酰胺类抗生素⑵修饰酶(钝化酶或合成酶):可催化某些基团结合到抗生素的羟基或氨基上,使抗生素灭活。
多数对氨基糖甙类抗生素耐药的革兰氏阴性杆菌能产生质粒介导的钝化酶。
2.2细菌体内靶位结构的改变如青霉素结合蛋白(PBPs) 的改变是革兰氏阳性菌耐药的主要机制;链霉素耐药株的细菌核蛋白体30s 亚基上链霉素受体P10 蛋白质发生改变等。
2.3其它原因⑴细菌泵出系统增多、增强,以排出已进入细菌内的药物;⑵细胞膜主动转运减少;⑶建立了新的代谢途径;⑷细菌对磺胺类药的耐药则可能系对药物具有拮抗作用的底物PABA的产生增多所致。
抗菌药物的耐药性

抗菌药物的耐药性抗菌药物的耐药性1.细菌耐药性的产生细菌的耐药性可分为:①天然或突变产生的耐药性,即染色体遗传基因介导的耐药性;②获得耐药性或质粒介导的耐药性。
后者所带的耐药基因易于传播,在临诊上占有极为重要的地位。
几乎所有致病菌均具有耐药质粒。
细菌染色体突变产生细菌耐药性,与药物存在无关,这种突变的频率极低。
临诊上耐药菌的产生,主要是耐药质粒(R因子)的转移和抗菌药物“选择性抑制”所致。
持有R因子的细菌,主要是大肠杆菌等肠道菌,在与某一种药物频繁接触中,敏感菌株受到“药物选择作用”产生抑制时,耐药菌株得以繁殖,呈现耐药。
另外,敏感菌株中有少数细菌具有一定的适应力,在药物抗菌强度不足(浓度低下或疗程不够)以杀灭或抑制时,细菌可改变自身生化过程,或调整酶系统确立新的代谢途径,进行繁殖、生长,获得耐药性。
因此,长时间滥用、不合理应用抗菌药物会导致耐药菌株的发生与扩大。
细菌MIC值的升高预示耐药性产生,即使用常规剂量也不能有效地达到抑菌作用。
增大剂量有些抗菌药也难以达到预想的效果,有时对动物机体还会产生难以预料的毒副作用。
因此,在选用药物时要密切关注本地区猪场或本猪场对各抗菌药的使用频率和耐药现状。
2.防止细茼耐药性的措施(l)合理选用抗菌药物临诊选用抗菌药物应严格掌握适应证。
只有明确药物对病原菌有效时,才使用抗菌药物。
凡属可用可不用时尽量不用;如使用一种抗菌药有效时,就不用同时联合用两种抗菌药;能用窄谱抗菌药物抑制病原菌时,就不要用广谱抗菌药,也不要轻意选择联合用药。
(2)合理用药途径与疗程尽量减少细菌接触药物的机会,不宜滥用抗菌药作预防用药或局部用药,应根据给药途径和药物动力学特征选择适当的剂量,剂量要足够,疗程要恰当,以保持有效的抗菌药血药浓度,控制耐药性发展,要避免长期用药。
(3)联合与交替用药对耐药菌株应采用联合用药或选用对该菌株敏感的抗菌药,尽量选用不易产生耐药的抗菌药。
在老的抗菌药有效时,尽量避免过度使用新抗菌药。
细菌的耐药性

抗菌药物的作用靶位
第一节 细菌的耐药性
细菌耐药性( 细菌耐药性(bacterial drug resistance) ) 多重耐药性( 多重耐药性(multidrug resistance) )
一、临床常见的耐药菌
金黄色葡萄球菌 革兰阴性杆菌 肠球菌 结核分支杆菌 肺炎链球菌 流感嗜血杆菌 淋病奈瑟菌
耐甲氧西林金黄色葡萄球菌(MRSA) 耐甲氧西林金黄色葡萄球菌
• MRSA毒性并不比普通的金黄色葡萄球菌更强, 毒性并不比普通的金黄色葡萄球菌更强, 毒性并不比普通的金黄色葡萄球菌更强 但由于其抗甲氧西林, 但由于其抗甲氧西林,使得治疗更为困难 • MRSA可产生特殊的青霉素结合蛋白,它不容易 可产生特殊的青霉素结合蛋白, 可产生特殊的青霉素结合蛋白 与甲氧西林结合,可完成细胞壁合成, 与甲氧西林结合,可完成细胞壁合成,从而产生 抗药性 • 对万古霉素治疗敏感
多重耐药结核分支杆菌
• 多重耐药结核菌正在全球迅速蔓延 • 耐多药结核病患者感染的结核杆菌体外被证实 至少对一线两种药物(异烟肼、利福平) 至少对一线两种药物(异烟肼、利福平)耐药 • 对人类是一个严峻的挑战
二、细菌耐药的生化机制
减少药物吸收 增加药物排出(外排泵) 增加药物排出(外排泵) 多重耐药
要 点
• 掌握:细菌耐药性的分类;细菌耐药性和多重耐 掌握:细菌耐药性的分类; 药性的概念: 药性的概念: • 了解:抗菌药物的杀菌机制,耐药的生化机制分 了解:抗菌药物的杀菌机制, 子机制。 子机制。 • 了解:常见的耐药菌有哪些? 了解:常见的耐药菌有哪些?
第八章
抗菌药物与细菌耐药性
滥用抗生素
自然选择学说
• 实际上我们是用抗菌药物对细菌进行了一次自然 选择; 选择;
(整理)抗生素耐药性

细菌的耐药性1.细菌对抗生素的耐药性分类耐药性分为两类,固有耐药性和获得性耐药性。
前者是染色体介导的代代相传的天然耐药性;后者多由质粒介导,也可由染色体介导,当微生物接触抗菌药物后,通过改变自身的代谢途径,从而避免被药物抑制或杀灭。
1.2耐药基因细菌特别是条件致病菌,因经常有机会与各种抗菌药物接触,故在细菌细胞内的质粒、染色体、转座子、整合子上可有耐药基因和多种耐药基因的积聚并借结合、转导和转化而在不同种细菌、革兰氏阳性菌和革兰氏阴性菌间彼此频繁交换,耐药基因一旦获得较长期存留,转座子和整合子(以及更小的DNA片段)由于分子量小和活动自如,所以在耐药基因转移和MDR形成中起主导作用。
1.3染色体和质粒介导产生的耐药菌需要指出的是,在正常情况下,由染色体介导而产生耐药性的细菌往往有一定缺陷,而质粒介导产生的耐药菌则与敏感菌一样,可迅速生长繁殖。
但质粒与染色体介导的耐药性,一般只发生于少数细菌中,难以与占压倒优势的敏感菌竞争,只有当敏感菌因抗菌药物的选择性压力而被大量杀灭后,耐药菌才得以迅速繁殖而成为优势菌,并导致各种感染的发生。
2.细菌耐药的机理抗生素成功使用的同时,也带来了严重的细菌耐药性问题,目前已成为全球性的难题。
细菌产生耐药性可能是基于以下几种机制。
2.1水解酶和修饰酶水解和修饰抗生素⑴水解酶:如β-内酰胺酶可水解β-内酰胺类抗生素⑵修饰酶(钝化酶或合成酶):可催化某些基团结合到抗生素的羟基或氨基上,使抗生素灭活。
多数对氨基糖甙类抗生素耐药的革兰氏阴性杆菌能产生质粒介导的钝化酶。
2.2细菌体内靶位结构的改变如青霉素结合蛋白(PBPs) 的改变是革兰氏阳性菌耐药的主要机制;链霉素耐药株的细菌核蛋白体30s 亚基上链霉素受体P10 蛋白质发生改变等。
2.3其它原因⑴细菌泵出系统增多、增强,以排出已进入细菌内的药物;⑵细胞膜主动转运减少;⑶建立了新的代谢途径;⑷细菌对磺胺类药的耐药则可能系对药物具有拮抗作用的底物PABA的产生增多所致。
细菌对抗菌药物的耐药性

细菌对抗菌药物的耐药性
药物耐药性是一种非常严重的医学问题,对细菌而言也是如此。
细菌耐药性就是指细菌对抗菌药物产生了抗性,即失去了对抗菌药物的效力或有限度地减少了其效力。
最近几十年来,随着抗生素的大量使用和滥用,越来越多的细菌对抗菌药物产生了耐药性,严重威胁到人类的健康。
细菌耐药性的机制包括以下几个方面:
1)突变:细菌在受到抗菌药物的抑制压力时,会发生突变,
从而产生耐药性;
2)基因转移:细菌拥有可以高度传递基因信息的功能,因此
允许细菌传播耐药性基因;
3)抗生素降解:一些细菌拥有能够分解抗生素的酶,从而可
以抵抗含有抗生素的医药产品;
4)药物转运:有些细菌携有特定的药物转运体,可以从细菌
体内输入药物,使抗菌药物产生耐药性。
为了应对细菌耐药性的威胁,需要采取有效的应对措施。
首先,应限制对抗菌药物的使用,并严格控制抗生素的使用。
诊断细菌感染时应尽量使用定量的抗生素敏感性测试,以准确测定细菌是否产生了耐药性,以及选择最有效的抗生素来抑制细菌。
其次,应建立强制性监管措施,确保医院和其他临床用药行为的合理性。
此外,应开展全面的耐药性研究,深入研究细菌耐
药性的形成机制,并探讨新型抗菌药物的发现和合理使用。
综上所述,细菌耐药性是一种严重的医学问题,需要采取有效的应对措施。
通过加强监管,合理使用抗菌药物,进行有效的耐药性研究,最终能够更好地抑制细菌耐药性的发生和发展,从而保护人类的健康。
细菌耐药性

细菌耐药性细菌耐药性(Resistance to Drug )又称抗药性,系指细菌对于抗菌药物作用的耐受性,耐药性一旦产生,药物的化疗作用就明显下降。
耐药性根据其发生原因可分为获得耐药性和天然耐药性。
自然界中的病原体,如细菌的某一株也可存在天然耐药性。
当长期应用抗生素时,占多数的敏感菌株不断被杀灭,耐药菌株就大量繁殖,代替敏感菌株,而使细菌对该种药物的耐药率不断升高。
目前认为后一种方式是产生耐药菌的主要原因。
为了保持抗生素的有效性,应重视其合理使用。
折叠产生原因细菌耐药性是细菌产细菌耐药性的现象,产生原因是细菌在自身生存过程中的一种特殊表现形式。
天然抗生素是细菌产生的次级代谢产物,用于抵御其他微生物,保护自身安全的化学物质。
人类将细菌产生的这种物质制成抗菌药物用于杀灭感染的微生物,微生物接触到抗菌药,也会通过改变代谢途径或制造出相应的灭活物质抵抗抗菌药物。
分类(intrins细菌耐药性resistance)和获得性耐药(acquired resistance)。
固有耐药性又称天然耐药性,是由细菌染色体基因决定、代代相传,不会改变的,如链球菌对氨基糖苷类抗生素天然耐药;肠道G-杆菌对青霉素天然耐药;铜绿假单胞菌对多数抗生素均不敏感。
获得性耐药性是由于细菌与抗生素接触后,由质粒介导,通过改变自身的代谢途径,使其不被抗生素杀灭。
如金黄色葡萄球菌产生β-内酰胺酶而耐药。
细菌的获得性耐药可因不再接触抗生素而消失,也可由质粒将耐药基因转移个染色体而代代相传,成为固有耐药。
病理机制细菌产生灭活抗细菌耐药性酶使抗菌药物失活是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前即被酶破坏而失去抗菌作用。
这些灭活酶可由质粒和染色体基因表达。
β-内酰胺酶:由染色体或质粒介导。
对β-内酰胺类抗生素耐药,使β-内酰胺环裂解而使该抗生素丧失抗菌作用。
β-内酰胺酶的类型随着新抗生素在临床的应用迅速增长,详细机制见β-内酰胺类抗生素章。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细菌也可通过染色体遗传基因的突变而获得耐药性,此突变可自主发生,也可经理化因素诱发。
突变率大多极低,每106—3个细菌约可有一个细菌突变而转呈耐药。
突变耐药菌可经染色体分裂将耐药性传给后一代,其发生与消失均和药物接触无关。
染色体中介的耐药性常可使细菌细胞发生结构改变,致抗菌药物不易渗入菌体内,或使抗菌药物不能作用于靶位。
1.灭活酶的形成各种μ—内酰胺酶(包括青霉素酶、头孢菌素酶等)、乙酰转移酶、磷酸转移酶、腺嘌呤转移酶等均属于灭活酶。
目前临床上所分离的金葡萄大多属青霉素酶产生菌,但该酶只能水解青霉素G、氨苄青霉素、羧苄青霉素等的μ—内酰胺环,而对异恶唑类青霉素、头孢菌素类的μ—内酰胺环则基本无作用。
革兰阴性杆菌所产生的各种μ—内酰胺酶,大部分对旧一代青霉素和头孢菌素类具破坏作用。
氯霉素可为金葡菌、表皮葡萄球菌、D 组链球菌、革兰阴性杆菌等产生的乙酰转移酶所灭活。
氨基糖甙类可为乙酰转移酶、磷酸转移酶和核苷转移酶所钝化,改变或坡坏后的抗生素即不能再与细菌核糖体结合而失去活性。
2.细菌外膜透性的改变细菌的细菌壁和细菌膜为天然屏障,使许多抗菌药物无以进入而作用于靶位。
革兰阳性菌对多粘菌素类耐药,主要因其难以通过坚厚的胞壁。
氨基糖甙类不易透过肠球菌的胞壁,但当与阻碍胞壁合成的μ—内酰胺类合用时即易进入。
革兰阴性菌的磷脂或脂多糖一蛋白所形成的细胞膜,不利于很多抗菌药物(包括青霉素G)的透入。
由质粒中介的细菌细胞膜透性改变,使某些抗菌药物如四环素类、氯霉素、磺胺药、氨基糖甙类等难以进入耐药菌的细胞内发挥抗菌作用。
3.其它作用劳动纪律位或核糖体中某些蛋白成分的变化、对抗菌药物具拮抗作用的细菌代谢产物的增多也可使细菌产生耐药性。
耐药质粒的传递一般有转导、转化、接合和转座四种形式。
金葡菌间的耐药传递主要通过噬菌体的转导,肠道革兰阴性杆菌间则主要通过细菌间的结合。
转座子系由DNA片断形成的遗传单位,见于质粒,转座子可自—DNA遗传座位转移至另一遗传座位。
转座子插入部位缺少特异性。
可插入复制子的多个部位,故耐药性散播极为迅速。
1 2 下页。