平移的性质——图形的平移

合集下载

中考数学知识点:平移定义知识点

中考数学知识点:平移定义知识点

中考数学知识点:平移定义知识点
中考数学知识点:平移定义知识点
(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。

(2)平移的性质:
①对应点的连线平行(或共线)且相等
②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)
③对应角相等,对应角两边分别平行,且方向一致。

(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。

(4)平移的条件:图形的原来位置、方向、距离
(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。

几何变换的特点认识平移旋转和对称的性质

几何变换的特点认识平移旋转和对称的性质

几何变换的特点认识平移旋转和对称的性质几何变换的特点:认识平移、旋转和对称的性质几何变换是数学中对图形进行变换、移动或者改变形状的操作。

它是研究几何性质和图像的重要方法之一。

本文将重点讨论几何变换中的平移、旋转和对称三种基本变换,并阐述它们的特点和性质。

一、平移平移是指将图形在平面上沿着某个方向移动一定的距离,保持图形内部各点之间的相对位置不变。

平移的特点有:1. 平移是保形变换,即图形的形状不发生改变,只是位置发生了移动。

例如,一个正方形经过平移后仍然是一个正方形。

2. 平移是等距变换,即原图形和移动后的图形之间的距离保持不变。

例如,一个直角三角形经过平移后,各边之间的夹角大小不变。

3. 平移满足能够叠加的性质,即若干次平移变换的次序可以改变,但最终的结果是相同的。

例如,图形先向右平移再向上平移,与先向上平移再向右平移的结果是相同的。

二、旋转旋转是指将图形围绕某个点进行旋转,使得图形的各点相对于旋转中心点保持一定的角度不变。

旋转的特点有:1. 旋转同样是保形变换,即图形的形状不发生改变,只是位置和旋转方向发生变化。

例如,一个正三角形经过旋转后仍然是一个正三角形。

2. 旋转是等角变换,即旋转前后的角度大小保持不变。

例如,一个矩形经过旋转后,各个顶点之间的角度大小仍然相等。

3. 旋转也满足能够叠加的性质,即若干次旋转变换的次序可以改变,但最终的结果是相同的。

例如,图形先顺时针旋转90°再逆时针旋转90°,与先逆时针旋转90°再顺时针旋转90°的结果是相同的。

在旋转中,旋转中心点的选择对于结果有重要影响。

三、对称对称是指图形围绕某条直线或者点对称,使得图形在这条直线或者点上的两侧是完全相同的。

对称的特点有:1. 对称是保形变换,即图形的形状不发生改变,只是位置发生了变化。

例如,一个圆经过对称后仍然是一个圆。

2. 对称是等距变换,即对称前后图形内部各点之间的距离保持不变。

平移图形的相关性质和坐标的变化规律

平移图形的相关性质和坐标的变化规律

平移图形的相关性质和坐标的变化规律一、平移图形的定义与性质1.平移图形是指在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。

2.平移不改变图形的形状和大小,只是改变图形的位置。

3.平移图形中,对应点、对应线段和对应角都保持平行且相等。

4.平移具有传递性,即若图形A经过平移变成图形B,图形B经过平移变成图形C,则图形A经过平移直接变成图形C。

5.在平移过程中,图形与原图形重合的点、线段和角,分别称为对应点、对应线段和对应角。

二、坐标的变化规律1.坐标系的平移:当坐标系整体向某个方向平移时,所有点的坐标都相应地增加或减少相同的数值。

2.点的平移:一个点在平面内平移,其实质是该点的坐标发生变化。

若点P(x,y)沿x轴平移a个单位,沿y轴平移b个单位,则平移后点的坐标为P’(x+a,y+b)。

3.直线的平移:一条直线平移时,其上的所有点的坐标都按照上述点的平移规律变化。

4.圆的平移:一个圆平移时,其上所有点的坐标同样按照上述点的平移规律变化。

5.其它图形的平移:其它平面图形平移时,其上所有点的坐标也按照上述点的平移规律变化。

三、平移图形的实际应用1.尺规作图:在尺规作图中,平移是一种基本的作图方法,可以用来构造已知图形。

2.图形变换:在计算机图形学、动画制作等领域,平移是实现图形变换的基本操作。

3.地图导航:在地图导航中,平移是实现地图缩放、查看不同区域的基本方法。

4.设计制图:在工程设计、建筑设计等领域,平移可以帮助设计者快速定位和调整图形。

四、平移图形的判定与证明1.判定:若两个图形在形状、大小上完全相同,只是位置不同,则这两个图形一个是另一个的平移。

2.证明:通过证明两个图形对应的点、线段和角相等,可以证明两个图形是平移关系。

五、平移图形的练习与巩固1.绘制:绘制不同形状的图形,并尝试进行平移,观察平移后的图形特点。

2.变换:将已知图形进行平移变换,求出平移后的坐标或位置。

3.应用:结合实际问题,运用平移图形的相关性质解决问题。

平移与旋转的性质

平移与旋转的性质

平移与旋转的性质在数学中,平移和旋转是常见的几何变换操作。

它们分别意味着通过移动对象的位置或者旋转对象的方向来改变它们的形状或者位置。

本文将介绍平移和旋转的性质,并探讨它们在实际生活中的应用。

一、平移的性质平移是指在平面或者空间中按照规定的方向和距离,将图形的每个点都沿着相同的路径移动。

以下是平移的一些性质:1. 平移不改变图形的大小和形状,只改变了图形的位置。

例如,一张纸条平移到桌子上的另一边,纸条的形状和长度都没有发生改变。

2. 平移是保持图形内部的相对位置不变的变换。

也就是说,图形中的每一对点之间的距离和角度关系在平移前后保持不变。

3. 平移可以自由进行组合。

即使将多个图形进行平移操作,它们之间的相对位置关系仍然保持不变。

平移在日常生活中有广泛的应用。

例如,在矿山中,把挖掘出来的矿石通过平移方式运输到生产线的下一个环节,可以提高工作效率并减少人力成本。

此外,在城市规划中,规划师可以通过平移建筑物或者道路来优化城市的布局。

二、旋转的性质旋转是指围绕着一个中心点,按照一定的角度将图形沿着一个圆周或者轴线进行转动。

以下是旋转的一些性质:1. 旋转同样不改变图形的大小和形状,只改变了图形的方向。

如果我们旋转一个正方形,它仍然是正方形,只是方向改变了。

2. 旋转可以改变图形中点与点之间的距离和角度关系。

例如,旋转一个矩形,原先垂直的边可能会变为斜边。

3. 旋转也可以进行组合操作。

多个图形进行旋转后,它们的相对位置关系可能发生变化。

旋转在现实生活中也有广泛的应用。

例如,在建筑设计中,设计师可以通过旋转建筑物的平面图,探索不同的视角和光线照射下的外观效果,以便于更好地优化设计。

此外,在工业生产中,机械加工时的旋转切削操作可以使得切削工具更均匀地削减工件,提高加工质量。

总结起来,平移和旋转是常见的几何变换操作,它们在数学中具有一些共同的性质。

平移只改变图形的位置而不改变形状,而旋转不仅改变位置,还改变方向。

图形的平移和旋转知识点

图形的平移和旋转知识点

图形的平移和旋转【图形的平移】(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.1, 【典型例题】例 1.如图,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D ,试确定顶点 B 对应点的位置,以及旋转后的三角形.分析:绕 C 点旋转,A 点的对应点是 D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角即∠BCB′=ACD, 又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定 B′的位置,如图所示.解:(1)连结 CD(2) 以 CB 为一边作∠BCE,使得∠BCE=∠ACD(3) 在射线 CE 上截取 CB′=CB则 B′即为所求的 B 的对应点.(4) 连结 DB′则△DB′C 就是△ABC 绕 C 点旋转后的图形.例 2.如图,四边形 ABCD 是边长为 1 的正方形,且 DE= 1 ,4△ABF 是△ADE 的旋转图形.(1) 旋转中心是哪一点?(2) 旋转了多少度?(3) AF 的长度是多少?(4) 如果连结 EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到. △ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是 A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是 D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE= 1412 (1)2 4∴AE= = 4∵对应点到旋转中心的距离相等且 F 是 E 的对应点∴AF= 174(4)∵∠EAF=90°(与旋转角相等)且 AF=AE ∴△EAF 是等腰直角三角形.【图形的旋转】(1) 旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。

平移和旋转

平移和旋转

第二讲平移与旋转一、新知讲解(一)1、平移的定义:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移.它是一种变换.2、平移的两个要素:(1)平移的方向(2)平移的距离.3、平移的性质:(1)平移不改变图形的形状和大小;(2)对应线段平行且相等;(3)对应角相等;(4)对应点所连的线段平行且相等(或在一条直线上).4、平移的实质:是图形上每一个点都沿同一个方向移动了相同的距离。

(二)1、旋转的定义:在平面内,把一个图形绕一个定点,沿某个方向转动一定的角度,这样的图形运动叫做旋转.2、图形旋转的三个要素:(1)旋转中心;(2)旋转方向;(3)旋转角度.3、旋转的性质:(1)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。

(2)对应线段相等,对应角相等;(3)对应点到旋转中心的距离相等;(4)图形中的每一点都绕着旋转中心旋转同样大小的角度.(5)对应点与旋转中心连线的夹角都是旋转角.4、平移与旋转的异同:区别:从定义分析;联系:都是全等变换。

即两种变换下对应线段相等,对应角相等二、典例分析例1、如图将ABC ∆沿直线AB 向右平移后到达BDE ∆的位置,若 100,50=∠=∠ABC CAB ,则CBE ∠的度数为____________.【变式练习】1、如图,在Rt △ABC 中,∠C =90°,BC =3cm ,AC =4cm ,将△ABC 沿BC 方向平移1cm ,得到△A 'B 'C '.求四边形ABC 'A '的面积.2.如上图,已知△ABC 中,∠ABC =90°,边BC =12cm ,把△ABC 向下平移至△DEF 后,AD =5cm ,GC =4cm ,请求出图中阴影部分的面积.3、在边长为1的小正方形网格中,AOB ∆的顶点均在格点上(1)、B 点关于y 轴的对称点坐标为____________;(2)、将AOB ∆向左平移3个单位长度得到111B O A ∆,请画出111B O A ∆;(3)、在(2)的条件下,1A 的坐标为____________.4、如图,B A ,的坐标为)1,0(),0,2(,若将线段AB 平移至11B A ,则b a +的值为( )A 、2B 、3C 、4D 、5例二、如图,在三角形ABC 中,90BAC ∠=︒,4cm AB =,5cm =BC ,3cm AC =,将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF ,且AC 与DE 相交于点G ,连接AD .(1)阴影部分的周长为______cm ;(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm ,则a 的值为______.变式:1、如图,△ABC 中,13AC BC ==,把△ABC 放在平面直角坐标系xOy 中,且点A ,B 的坐标分别为(2,0),(12,0),将△ABC 沿x 轴向左平移,当点C 落在直线8y x =−+上时,线段AC 扫过的面积为_______ .2、如图,在ABC 中,已知 7BC =,点 E F ,分别在边AB BC ,上,将BEF △沿直线 EF 折叠,使点B 落在点D 处,DF 向右平移若干单位长度后恰好能与边AC 重合, 连结AD ,若311AC AD −=,则 3AC AD +的值为________ .例三、如图,∠MAN=45°,点C在射线AM上,AC=10,过C点作CB⊥AN交AN 于点B,P为线段AC上一个动点,Q点为线段AB上的动点,且始终保持PQ =PB.(1)如图1,若∠BPQ=45°,求证:△ABP是等腰三角形;(2)如图2,DQ⊥AP于点D,试问:此时PD的长度是否变化?若变化,请说明理由;若不变,请计算其长度;(3)当点P运动到AC的中点时,将△PBQ以每秒1个单位的速度向右匀速平移,设运动时间为t秒,B点平移后的对应点为E,求△ABC和△PQE的重叠部分的面积.例四、(武侯)如图,每个小方格都是边长为1个单位长度的小正方形,ABC ∆的三个顶点都在格点上.(1)、将ABC ∆向右平移3个单位长度,画出平移后对应的111C B A ∆.(2)、将ABC ∆绕点O 旋转 180,画出旋转后对应的222C B A ∆.(第一题图) (第二题图)变式:(锦江)如图,ABC ∆三个顶点的坐标分别为()11,−A ,()24,−B ,()43,−C .(1)、请画出ABC ∆向右平移5个单位长度后得到111C B A ∆;(2)、请画出ABC ∆关于原点对称的222C B A ∆;(3)、在x 轴上求作一点P ,使PAB ∆的周长最小,并直接写出点P 的坐标.例五、如图,在ABC ∆中, 90=∠C , 70=∠BAC ,将ABC ∆绕点A 顺时针旋转 70,B ,C 旋转后对应点分别是'B 和'C ,连接'BB ,则'ABB ∠的度数是( )A 、 35B 、 40C 、 45D 、 55变式:如图,P 是等边ABC ∆内的一点,且3=PA ,4=PB ,5=PC ,将ABP ∆绕点B 顺时针旋转 60到QBC ∆位置.连接PQ ,则以下结论错误的是( )A 、 60=∠QPB B 、 90=∠PQC C 、 150=∠APBD 、 135=∠APC (例3图) (例3变式)例六、如图,在△ABC 和△DCE 中,AC =BC ,DC =EC ,∠ACB =∠DCE =90°,将△DCE 绕点C 旋转(0°<∠ACD <180°),连接BD 和AE :(1)求证:△BCD ≌△ACE ;(2)试确定线段BD 和AE 的数量关系和位置关系;(3)连接AD 和BE ,在旋转过程中,△ACD 的面积记为S 1,△BCE 的面积记为S 2,试判断S 1和S 2的大小,并给予证明.变式:如图,在正方形ABCD 中,F E ,分别是CD BC ,边上的点满足AF AE DF BE EF 、,+=分别与对角线BD 交于.,N M(1)、求证:︒=∠45EAF (2)、求证:222DN BM MN +=例七:(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE =90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题:如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?。

平移的概念性质及应用

平移的概念性质及应用

C 'A',∠B 的对应角∠ B', B′ ∠C 的对应角是∠ C' .
3.在5×5的方格纸中,将图1中的图形N平移,平
移后的位置如图2所示,那么正确的平移方法是
先向下平移2格,再向左平移1格
.
课堂小结
平移的概念
1.平移前后的图形的形状和大小
平移 平移的性质
完全相同;
2.对应线段平行且相等.
平移作图
学习目标
1.理解平移的定义及性质;(重点) 2.会利用平移的性质进行简单的作图.
导入新课
观察思考 仔细观察下面一些美丽的图案,它们有什么共同的特点?能 否根据其中的一部分绘制出整个图案?
讲授新课
一 平移的概念 如何在一张半透明的纸上,画出一排形状和大小如图的 胡巴呢?
“胡巴”的形状、大小、位置在运动前后是否发生了变化? 形状不变,大小不变,位置改变
1.关键在于按要求作出对应点; 2.然后,顺次连结对应点即可.
作业:
❖ 1.课本30页第3题 ❖ 2.完成配套练习册上相应的练习题
当堂练习
1.在下面的六幅图案中,②③④⑤⑥中可以由图案
①通过平移得到的是
( ③)
解析:由平移的概念可知,②③④⑤⑥中能由① 通过平移得到的只有③.
2.如图,将△ABC平移到△A'B'C'的位置.填写下列
各对应元素.
C
A B
C' A′
点C的对应点是点 C',线段 BC的对应线段是段 B' C,' 线段CA 的对应线段是线段
三、平移作图
例 如图,平移三角形ABC,使点A移到了点A′.
画出平移后的三角形A′B′C′.
A

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.探究图形的平移
如图5,若再增加一个点C,连接△ABC,平移△ABC.
问1:如何描述△ABC的平移?
生1:平移方向:点A到点A’;距离:线段AA’的长度.
生2:平移方向:点B到点B’;距离:线段BB’的长度.
生3:平移方向:点C到点C’;距离:线段CC’的长度.
图5
问2:这三位同学描述的平移相同吗?为什么?
答:相同;因为平移时,图形上所有点的平移方向都相同,平移距离都相等。

问3:连接对应点的线段AA’、BB’、CC’之间有何关系?
答:位置上平行或共线,大小相等。

性质1:图形平移后,连接对应点的线段平行(或共线)且相等.
操作:几何画板验证连接对应点的线段间的相等关系。

问4:想一想,线段AB与线段A’B’大小有何关系?你能说一说原因吗?
答:相等,因为平移只是将图形的位置改变了,图形的形状不会发生改变。

性质2:图形只改变图形的位置,不改变图形的形状和大小。

相关文档
最新文档