溶解氧测定方法 国标
水质检测指标国标法

24【硝基苯类】 还原-偶氮光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)
25【苯胺类】 水质 苯胺类化合物的测定 N-(1-萘基)乙二胺偶氮分光光度法 GB/T11889-1989
26【游离氯】 水质 游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 GB/T11897-1989
10【总可滤残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年
11【总残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年
12【全盐量(溶解性固体)】 水质 全盐量的测定 重量法 HJ/T51-1质 钙和镁总量的测定 EDTA滴定法 GB/T7477-1987
36【铜】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987
37【锌】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987
38【铅】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987
水质各种项目检测国标方法综合版
关键字:水质监测,国标法,汇总
1 【pH值】 水质 pH值的测定 玻璃电极法GB/T6920-1986
2 【溶解氧】 水质 溶解氧的测定 电化学探头法 GB/T11913-1989
碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年
铬酸钡分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)
31【硫化物】 水质 硫化物的测定 亚甲基兰分光光度法 GB/T16489-1996
32【阴离子表面活性剂】 水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T7494-1987
bod的测定国标法

bod的测定国标法
BOD(生化需氧量)是指在一定温度和时间条件下,微生物需氧呼吸、生长分解有机物质所需的氧量。
BOD的测定是水质评价的重要指标之一,广泛应用于工业和生活废水排放控制、水处理过程监测等领域。
测定BOD的国标法是指按照国家标准GB 11914-89《水质-生化需
氧量的测定》规定的方法进行测定。
该方法采用生物法,即利用水中
的微生物活动进行有机物的氧化分解,测定反应前后水样中溶解氧含
量的差值即为BOD值。
具体操作步骤如下:
1.采样:在水样收集器中收集代表性水样,并将其送至实验室进
行测定。
注意保持水样的温度和氧气状态不变。
2.制备培养液:将适量的基础培养液按照比例配制成浓缩培养液,用生物柿子碱溶液稀释后即为培养液。
3.操作:将培养液加入接水瓶内,加入一定量的水样,根据温度
选取相应的培养时间。
放置于恒温箱内,培养完毕后取出样品,测定
反应前后水样中溶解氧含量的差值即为BOD值。
需要注意的是,在实验过程中需要控制温度、氧气含量、光照等
因素的影响,并排除其他可能干扰结果的因素。
同时需要记录实验过
程的数据和结果,以便进行后续分析和比对。
BOD的测定结果直接反应了水质中有机物的含量和微生物分解能力,可以为水质评价和水处理过程的调整提供参考。
因此,在实际操作中
需要严格按照国标法进行测定,并根据结果进行各种决策。
溶解氧测定方法国标

溶解氧测定方法国标1.引言:溶解氧是水质中重要的指标之一,影响着水中生物的代谢活动。
因此,溶解氧的测定方法的准确性和可靠性非常重要。
国际上,已经制定了一系列标准方法,包括ISO、ASTM等。
而国内,中国国家标准委员会也制定了溶解氧测定方法的国家标准,以确保测定结果的准确性和可比性。
2.国标的背景:3.国标的适用范围:国标适用于水体、废水、海洋环境、水处理设备中溶解氧浓度的测定。
4.测定原理:(根据国标初始内容进行详细描述,此处仅作简述)国标测定溶解氧的原理基于阴极极化法,通过在阴极上施加电势,使溶解氧氧化成为电流,从而通过测量电流的大小来计算出溶解氧的浓度。
5.实验设备和试剂:(根据国标初始内容进行详细描述,此处仅作简述)测定溶解氧所需的设备包括电解池、电极、电位计等。
试剂包括标准氧溶液、背景电解液等。
6.标准操作程序:(根据国标初始内容进行详细描述,此处仅作简述)国标中详细描述了测定溶解氧所需的标准操作程序,包括设备校准、样品处理、实验操作等步骤。
此外,国标还指出了实验误差的控制方法和测定结果的计算公式。
7.检测结果的验证:国标中描述了对测定结果的验证方法,包括用其他测定方法和设备进行对比测定,以验证国标方法的准确性和可靠性。
8.数据处理与质量控制:国标中要求,实验数据应进行统计和分析,检测结果需要进行质量控制。
国标还详细说明了防止和消除误差的方法,以确保测定结果的准确性和可比性。
9.结论:国标的制定,有助于标准化溶解氧的测定方法,使不同实验室和机构的测定结果具有可比性。
同时,国标还提供了操作规范和质量控制方法,以确保测定结果的准确性和可靠性。
总结:国家标准委员会制定了溶解氧测定方法的国家标准,该标准基于国际标准方法,详细描述了溶解氧测定方法的操作程序、设备和试剂的要求,以及测定结果的验证和质量控制方法。
该国标的制定,有助于确保溶解氧测定结果的准确性和可比性,进一步提高水质监测工作的科学性和规范性。
49种化学水处理水质项目检测国标方法汇总整理

各类水处理水质项目检测方法汇总1 【pH 值】水质pH 值的测定玻璃电极法GB/T6920-19862 【溶解氧】水质溶解氧的测定电化学探头法GB/T11913-1989碘量法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年3 【臭和味】文字描述法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年4 【侵蚀性二氧化碳】甲基橙指示剂滴定法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年5 【酸度】酸度指示剂滴定法《水和废水监测分析方法》( 第四版) 国家环保总局2002年6 【碱度( 总碱度、重碳酸盐和碳酸盐) 】酸碱指示剂滴定法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年7 【色度】水质色度的测定GB/T11903-19898 【浊度】水质浊度的测定GB/T13200-19919 【悬浮物(SS)】水质悬浮物的测定重量法GB/T11901-198910【总可滤残渣】重量法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年11【总残渣】重量法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年12【全盐量( 溶解性固体) 】水质全盐量的测定重量法HJ/T51-199913【总硬度( 钙和镁总量) 】水质钙和镁总量的测定EDTA 滴定法GB/T7477-198714【高锰酸盐指数】水质高锰酸盐指数的测定GB/T11892-198915【化学需氧量(COD)】水质化学需氧量的测定重铬酸盐法GB/T11914—198916【生物需氧量】水质生物需氧量的测定稀释与接种法GB/T7488—198717【氨氮】水质铵的测定纳氏试剂比色法GB/T7479-1987水杨酸-次氯酸盐光度法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年18【硝酸盐氮】水质硝酸盐氮的测定酚二磺酸分光光度法》GB/T7480-1987水质硝酸盐氮的测定紫外分光光度法》HJ/T346-200719【亚硝酸盐氮】《水质亚硝酸盐氮的测定分光光度法》GB/T7493-1987 20【六价铬】水质六价铬的测定二苯碳酸二肼分光光度法GB/T7467-1987 21【总氮】水质总氮的测定碱性过硫酸钾消解紫外分光光度法》GB/T11894-198922【总磷】水质总磷的测定钼酸铵分光光度法》GB/T11893-198923【磷酸盐】钼酸铵分光光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002年)24【硝基苯类】还原-偶氮光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002年)25【苯胺类】水质苯胺类化合物的测定N-(1-萘基) 乙二胺偶氮分光光度法GB/T11889-198926【游离氯】水质游离氯和总氯的测定N,N-二乙基-1 ,4-苯二胺滴定法GB/T11897-198927【总氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-198928【氟化物】水质氟化物的测定离子选择电极法GB/T7484-198729【氯化物】水质氯化物的测定硝酸银滴定法GB/T11896-1987930【硫酸盐】水质硫酸盐的测定重量法GB/T11899-89铬酸钡分光光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002 年)31【硫化物】水质硫化物的测定亚甲基兰分光光度法GB/T16489-199632【阴离子表面活性剂】水质阴离子表面活性剂的测定亚甲蓝分光光度法GB/T7494-198733【石油类】水质石油类和动植物油的测定红外光度法GB/T 16488-199634【动植物油】水质石油类和动植物油的测定红外光度法GB/T 16488-1996 35【总铬】水质总铬的测定高锰酸钾氧化-二苯碳酰二肼分光光度法GB/T7466-1987火焰原子吸收分光光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002 年)36【铜】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 37【锌】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 38【铅】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 39【镉】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 40【镍】水质镍的测定火焰原子吸收分光光度法GB/T 11912-198941【钾】水质钾、钠的测定火焰原子吸收分光光度法GB/T 11904-198942【钠】水质钾、钠的测定火焰原子吸收分光光度法GB/T 11904-198943【钙】水质钙、镁的测定原子吸收分光光度法GB/T 11905-198944【镁】水质钙、镁的测定原子吸收分光光度法GB/T 11905-198945【铁】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-198946【锰】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-198947【溶解性铁】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-1989 48【银】水质银的测定火焰原子吸收分光光度法GB/T 11907-198949【甲醛】水质甲醛的测定乙酰丙酮分光光度法GB/T13197-1991。
溶解氧测定方法-国标

水质溶解氧得测定碘量法 GB 7489-87本方法等效采用国际标准ISO5813 1983本方法规定采用碘量法测定水中溶解氧由ﻫ于考虑到某些干扰而采用改进得温克勒(Winkler)法ﻫ1范围ﻫ碘量法就是测定水中溶解氧得基准方法在没有干扰得情况下此方法适用于各种溶解氧ﻫ浓度大于0、2mg/L与小于氧得饱与浓度两倍(约20mg/L)得水样易氧化得有机物如丹宁酸腐植酸与木质素等会对测定产生干扰可氧化得硫得化合物如硫化物硫脲也如同易于消ﻫ耗氧得呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法ﻫ亚硝酸盐浓度不高于15mg/L时就不会产生干扰因为它们会被加入得叠氮化钠破坏掉ﻫ如存在氧化物质或还原物质需改进测定方法见第8条、ﻫ如存在能固定或消耗碘得悬浮物本方法需按附录A 中叙述得方法改进后方可使用ﻫ2原理在样品中溶解氧与刚刚沉淀得二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰ﻫ中制得)反应酸化后生成得高价锰化合物将碘化物氧化游离出等当量得碘用硫代硫酸钠滴定法测定游离碘量3、1 硫酸溶液ﻫ小心3 试剂ﻫ分折中仅使用分析纯试剂与蒸馏水或纯度与之相当得水ﻫ地把500mL 浓硫酸(ρ= 1、84g/mL)在不停搅动下加入到500mL水ﻫ注:若怀疑有三价铁得存在则采用磷酸(H3PO4ρ=1、70g/mL)3、2 硫酸溶液c(1/2H2SO4)=2mol/L3、3碱性碘化物叠氮化物试剂ﻫ注:当试样中亚硝酸氮含量大于0、05mg/L而亚铁含量不超过1mg/L时为防止亚硝酸氮对测定结果得干涉需在试样中加叠氮化物叠氮化钠就是剧毒试剂若已知试样中得亚硝酸盐低于0、05mg/L 则可省去此试剂a、操作过程中严防中毒ﻫb、不要使碱性碘化物叠氮化物试剂(3、3)酸化因为可能产生有毒得叠氮酸雾ﻫ将35g得氢氧化钠(NaOH)[或50g得氢氧化钾(KOH)]与30g碘化钾(KI)[或27g 碘化钠(NaI)]溶解在大约50mL 水中,单独地将1g 得叠氮化钠(NaN3)溶于几毫升水中,将上述二种溶液混合并稀释至100mL,溶液贮存在塞紧得细口棕色瓶子里,经稀释与酸化后在有指示剂(3、7)存在下本试剂应无色、3、4无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)ﻫ可用450g/L 四水二价氯化锰溶液代替过滤不澄清得溶液3、5 碘酸钾c(1/6KIO3) 10mmol/L标准溶液在180℃干燥数克碘酸钾(KIO3) 称量3、567±0、003g 溶解在水中并稀释到1000mL。
bod国标检测方法

bod国标检测方法摘要:一、Bod国标检测方法简介二、Bod国标检测方法的原理及步骤三、Bod国标检测方法的应用领域四、Bod国标检测方法的优缺点五、我国在Bod国标检测方法的发展与应用正文:一、Bod国标检测方法简介Bod国标检测方法,全称为“生物需氧量测定方法”,是一种用于测定水中有机物生物降解能力的标准方法。
该方法起源于20世纪70年代,在我国得到了广泛的应用,并被纳入国家环保标准。
Bod国标检测方法的主要目的是评估水体中有机物的污染程度,为水资源的合理利用和污染防治提供科学依据。
二、Bod国标检测方法的原理及步骤Bod国标检测方法的原理是利用微生物在有机物存在下进行生物降解,通过测定微生物生长过程中消耗的氧气量来反映水体中有机物的含量。
具体步骤如下:1.准备样品:从水体中采集水样,并尽快进行分析。
2.接种微生物:将水样接种到含有特定微生物的培养基中,使其在恒定条件下生长。
3.培养:将接种后的培养基置于恒温培养箱中,培养一段时间(通常为5天)。
4.测定氧气消耗量:通过测定培养前后培养基中氧气的浓度变化,计算出有机物的生物降解量。
5.计算Bod值:根据氧气消耗量,计算出水体的Bod值,用于评价水体中有机物的污染程度。
三、Bod国标检测方法的应用领域Bod国标检测方法在我国环境保护、水文地质、城市污水监测等领域具有广泛的应用。
通过Bod值的分析,可以了解水体中有机物的污染程度,为水资源管理和污染防治提供数据支持。
四、Bod国标检测方法的优缺点优点:操作简便、快速、成本低廉,能较好地反映水体中有机物的污染状况。
缺点:受水体中无机物、温度、溶解氧等因素的影响较大,对于高浓度有机物的水体,检测结果可能不准确。
五、我国在Bod国标检测方法的发展与应用近年来,我国在Bod国标检测方法的研究与应用方面取得了显著成果。
不仅在方法标准上不断完善,还研发了一系列配套设备,如便携式Bod测定仪,提高了检测效率和准确性。
溶解氧测定方法 国标

水质溶解氧的测定碘量法 GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由于考虑到某些干扰而采用改进的温克勒(Winkler)法1 范围碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉如存在氧化物质或还原物质需改进测定方法见第8 条如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用2 原理在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠滴定法测定游离碘量3 试剂分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水3.1 硫酸溶液小心地把500mL 浓硫酸(ñ 1.84g/mL)在不停搅动下加入到500mL 水注若怀疑有三价铁的存在则采用磷酸(H3PO4 ñ 1.70g/mL)3.2 硫酸溶液c(1/2H2SO4) 2mol/L3.3 碱性碘化物叠氮化物试剂注当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去此试剂a. 操作过程中严防中毒b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾将35g的氢氧化钠(NaOH)[或59g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)]溶解在大约50mL 水中单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中将上述二种溶液混合并稀释至100mL溶液贮存在塞紧的细口棕色瓶子里经稀释和酸化后在有指示剂(3.7)存在下本试剂应无色3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液在180 干燥数克碘酸钾(KIO3) 称量3.567 0.003g 溶解在水中并稀释到1000mL将上述溶液吸取100mL 移入1000mL 容量瓶中用水稀释至标线3.6 硫代硫酸钠标准滴定液c(Na2S2O3) 10mmol/L3.6.1 配制将 2.5g 五水硫代硫酸钠溶解于新煮沸并冷却的水中再加0.4g 的氢氧化钠(NaOH) 并稀释至1000mL溶液贮存于深色玻璃瓶中3.6.2 标定在锥形瓶中用100~150mL 的水溶解约0.5g 的碘化钾或碘化钠(KI 或NaI) 加入5mL2mol/L 的硫酸溶液(3.2),混合均匀加20.00mL 标准碘酸钾溶液(3.5) 稀释至约200mL 立即用硫代硫酸钠溶液滴定释放出的碘当接近滴定终点时溶液呈浅黄色加指示剂(3.7) 再滴定至完全无色硫代硫酸钠浓度(c mmol/L)由式(1)求出= 6´20´1.66¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼1Vc式中V 硫代硫酸钠溶液滴定量mL每日标定一次溶液3.7 淀粉新配制10g/L 溶液注也可用其他适合的指示剂3.8 酚酞1g/L 乙醇溶液3.9 碘约0.005mol/L 溶液溶解4~5g 的碘化钾或碘化钠于少量水中加约130mg 的碘待碘溶解后稀释至100mL3.10 碘化钾或碘化钠4 仪器除常用试验室设备外还有4.1 细口玻璃瓶容量在250~300mL 之间校准至1mL 具塞温克勒瓶或任何其他适合的细口瓶瓶肩最好是直的每一个瓶和盖要有相同的号码用称量法来测定每个细口瓶的体积5 操作步骤5.1 当存在能固定或消耗碘的悬浮物或者怀疑有这类物质存在时按附录A 叙述的方法测定或最好采用电化学探头法测定溶解氧5.2 检验氧化或还原物质是否存在如果预计氧化或还原剂可能干扰结果时取50mL 待测水加2 滴酚酞溶液(3.8)后中和水样加0.5mL 硫酸溶液(3.2) 几粒碘化钾或碘化钠(3.10)(质量约0.5g)和几滴指示剂溶液(3.7)如果溶液呈蓝色则有氧化物质存在如果溶液保持无色加0.2mL 碘溶液(3.9) 振荡放置30s 如果没有呈蓝色则存在还原物质进一步加碘溶液可以估计8.2.3 中次氯酸钠溶液的加入量有氧化物质存在时按照8.1 中规定处理有还原物质存在时按照8.2 中规定处理没有氧化或还原物时按照5.3 5.4 5.5 中规定处理5.3 样品的采集除非还要作其他处理样品应采集在细口瓶中(4.1) 测定就在瓶内进行试样充满全部细口瓶注在有氧化或还原物的情况下需取二个试样(见8.1.2.1 和8.2.3.1).5.3.1 取地表水样充满细口瓶至溢流小心避免溶解氧浓度的改变对浅水用电化学探头法更好些在消除附着在玻璃瓶上的气泡之后立即固定溶解氧(见5.4)5.3. 2 从配水系统管路中取水样将一惰性材料管的入口与管道连接将管子出口插入细口瓶的底部(4.1)用溢流冲洗的方式充入大约10 倍细口瓶体积的水最后注满瓶子在消除附着在玻璃瓶上的空气泡之后立即固定溶解氧(见5.4)5.3.3 不同深度取水样用一种特别的取样器内盛细口瓶(4.1) 瓶上装有橡胶入口管并插入到细口瓶的底部(4.1)当溶液充满细口瓶时将瓶中空气排出避免溢流某些类型的取样器可以同时充满几个细口瓶5.4 溶解氧的固定取样之后最好在现场立即向盛有样品的细口瓶中加1mL 二价硫酸锰溶液(3.4)和2mL碱性试剂(3.3) 使用细尖头的移液管将试剂加到液面以下小心盖上塞子避免把空气泡带入若用其他装置必须小心保证样品氧含量不变将细口瓶上下颠倒转动几次使瓶内的成分充分混合静置沉淀最少5min 然后再重新颠倒混合保证混合均匀这时可以将细口瓶运送至实验室若避光保存样品最长贮藏24h5.5 游离碘确保所形成的沉淀物已沉降在细口瓶下三分之一部分慢速加入 1.5mL 硫酸溶液(3.1)[或相应体积的磷酸溶液(见3.1 注)] 盖上细口瓶盖然后摇动瓶子要求瓶中沉淀物完全溶解并且碘已均匀分布注若直接在细口瓶内进行滴定小心地虹吸出上部分相应于所加酸溶液容积的澄清液而不扰动底部沉淀物5.6 滴定将细口瓶内的组分或其部分体积(V1)转移到锥形瓶内用硫代硫酸钠(3.6)滴定在接近滴定终点时加淀粉溶液(3.7)或者加其他合适的指示剂6 结果计算溶解氧含量c1(mg/L)由式(2)求出:C1=Mr*V2*C*f1/(4V1)式中Mr——氧的分子量Mr=32V1 ——滴定时样品的体积mL 一般取V1 100mL 若滴定细口瓶内试样则V1=V0c ——硫代硫酸钠溶液(3.6)的实际浓度mol/Lf1=V0/(V0-V')式中V0——细口瓶(4.1)的体积mLV' ——二价硫酸锰溶液(3.4)(1mL)和碱性试剂(3.3)(2mL)体积的总和结果取一位小数。
BOD测定的几点建议

BOD测定的几点建议BOD作为水处理中比较紧要的指标之一,也是大家关注的必测指标之一。
依据我所了解的学问,给大家一些建议,希望在选择bod测定仪的时候不要被一些厂家给忽悠了。
BOD一般指BOD5,也就是我们所说的生化需氧量(BOD),是一种环境监测指标,重要用于监测水体中有机物的污染情况。
一般有机物都可以被微生物分解,但是微生物在水中分解有机物时,需要消耗氧气。
假如水中的溶解氧不足以供应微生物的需要,水体就处于污染状态。
BOD是与环境保护有关的指标。
BOD的测量方法包括:先说一些流行的方法,然后介绍国标方法和一些注意要点。
1、生物传感器法一种比较流行的方法,重要是由国内一些公司开发出来的,并渐渐被认可。
原理:测量水中BOD的微生物传感器由氧电极和微生物菌膜构成,其原理是当含有饱和溶解氧的样品进入流通池中与微生物传感器接触,水样中可生化降解的有机物受到微生物菌膜中居中的作用,削减了扩散到氧电极表面的氧质量。
当水样中可生化降解的有机物向菌膜扩散的速度(质量)达到恒定时,此时扩散到氧电极表面上的氧气质量也达到恒定,从而产生恒定电流。
由于恒流与水样中可生化降解的有机物浓度的差值与氧气的削减量具有定量关系,因此可以相应地换算出水中的生化需氧量。
优点:维护简单,只需定期更换微生物膜和输液管;成本低,耗材价格低,结构简单,无易损件。
缺点是一般比较适合地表水,不适合重金属或其他有毒污染物。
2、活性污泥曝气降解法将温度掌控在30℃35℃,用活性污泥强制曝气降解样品2小时,用重铬酸钾消解生物降解后的样品,测定生物降解前后的化学计量需氧量,差值为BOD。
依据与标准方法的对比试验结果,可换算成BOD5值。
3、测压法在密闭的培育瓶中,水样中的溶解氧被微生物消耗掉,微生物产生的CO2相当于呼吸作用所消耗的氧气。
当CO2被汲取时,使密闭系统的压力降低,可以得到依据压力测得的压降求出水样的BOD值。
4、标准稀释法这种方法是比较经典也是较常用的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水质溶解氧的测定碘量法 GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由于考虑到某些干扰而采用改进的温克勒(Winkler)法1 范围碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉如存在氧化物质或还原物质需改进测定方法见第8 条如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用2 原理在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠滴定法测定游离碘量3 试剂分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水3.1 硫酸溶液小心地把500mL 浓硫酸(ñ1.84g/mL)在不停搅动下加入到500mL 水注若怀疑有三价铁的存在则采用磷酸(H3PO4 ñ 1.70g/mL)3.2 硫酸溶液c(1/2H2SO4) 2mol/L3.3 碱性碘化物叠氮化物试剂注当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去此试剂a. 操作过程中严防中毒b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾将35g的氢氧化钠(NaOH)[或59g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)] 溶解在大约50mL 水中单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中将上述二种溶液混合并稀释至100mL溶液贮存在塞紧的细口棕色瓶子里经稀释和酸化后在有指示剂(3.7)存在下本试剂应无色3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液在180 干燥数克碘酸钾(KIO3) 称量3.567 0.003g 溶解在水中并稀释到1000mL将上述溶液吸取100mL 移入1000mL 容量瓶中用水稀释至标线3.6 硫代硫酸钠标准滴定液c(Na2S2O3) 10mmol/L3.6.1 配制将2.5g 五水硫代硫酸钠溶解于新煮沸并冷却的水中再加0.4g 的氢氧化钠(NaOH) 并稀释至1000mL溶液贮存于深色玻璃瓶中3.6.2 标定在锥形瓶中用100~150mL 的水溶解约0.5g 的碘化钾或碘化钠(KI 或NaI) 加入5mL2mol/L 的硫酸溶液(3.2),混合均匀加20.00mL标准碘酸钾溶液(3.5) 稀释至约200mL 立即用硫代硫酸钠溶液滴定释放出的碘当接近滴定终点时溶液呈浅黄色加指示剂(3.7) 再滴定至完全无色硫代硫酸钠浓度(c mmol/L)由式(1)求出= 6´20´1.66¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼1Vc式中V 硫代硫酸钠溶液滴定量mL每日标定一次溶液3.7 淀粉新配制10g/L 溶液注也可用其他适合的指示剂3.8 酚酞1g/L 乙醇溶液3.9 碘约0.005mol/L 溶液溶解4~5g 的碘化钾或碘化钠于少量水中加约130mg 的碘待碘溶解后稀释至100mL3.10 碘化钾或碘化钠4 仪器除常用试验室设备外还有4.1 细口玻璃瓶容量在250~300mL 之间校准至1mL 具塞温克勒瓶或任何其他适合的细口瓶瓶肩最好是直的每一个瓶和盖要有相同的号码用称量法来测定每个细口瓶的体积5 操作步骤5.1 当存在能固定或消耗碘的悬浮物或者怀疑有这类物质存在时按附录A 叙述的方法测定或最好采用电化学探头法测定溶解氧5.2 检验氧化或还原物质是否存在如果预计氧化或还原剂可能干扰结果时取50mL 待测水加2 滴酚酞溶液(3.8)后中和水样加0.5mL 硫酸溶液(3.2) 几粒碘化钾或碘化钠(3.10)(质量约0.5g)和几滴指示剂溶液(3.7)如果溶液呈蓝色则有氧化物质存在如果溶液保持无色加0.2mL 碘溶液(3.9) 振荡放置30s 如果没有呈蓝色则存在还原物质进一步加碘溶液可以估计8.2.3 中次氯酸钠溶液的加入量有氧化物质存在时按照8.1 中规定处理有还原物质存在时按照8.2 中规定处理没有氧化或还原物时按照5.3 5.4 5.5 中规定处理5.3 样品的采集除非还要作其他处理样品应采集在细口瓶中(4.1) 测定就在瓶内进行试样充满全部细口瓶注在有氧化或还原物的情况下需取二个试样(见8.1.2.1 和8.2.3.1).5.3.1 取地表水样充满细口瓶至溢流小心避免溶解氧浓度的改变对浅水用电化学探头法更好些在消除附着在玻璃瓶上的气泡之后立即固定溶解氧(见5.4)5.3. 2 从配水系统管路中取水样将一惰性材料管的入口与管道连接将管子出口插入细口瓶的底部(4.1)用溢流冲洗的方式充入大约10 倍细口瓶体积的水最后注满瓶子在消除附着在玻璃瓶上的空气泡之后立即固定溶解氧(见5.4)5.3.3 不同深度取水样用一种特别的取样器内盛细口瓶(4.1) 瓶上装有橡胶入口管并插入到细口瓶的底部(4.1)当溶液充满细口瓶时将瓶中空气排出避免溢流某些类型的取样器可以同时充满几个细口瓶5.4 溶解氧的固定取样之后最好在现场立即向盛有样品的细口瓶中加1mL 二价硫酸锰溶液(3.4)和2mL碱性试剂(3.3) 使用细尖头的移液管将试剂加到液面以下小心盖上塞子避免把空气泡带入若用其他装置必须小心保证样品氧含量不变将细口瓶上下颠倒转动几次使瓶内的成分充分混合静置沉淀最少5min 然后再重新颠倒混合保证混合均匀这时可以将细口瓶运送至实验室若避光保存样品最长贮藏24h5.5 游离碘确保所形成的沉淀物已沉降在细口瓶下三分之一部分慢速加入1.5mL 硫酸溶液(3.1)[或相应体积的磷酸溶液(见3.1 注)] 盖上细口瓶盖然后摇动瓶子要求瓶中沉淀物完全溶解并且碘已均匀分布注若直接在细口瓶内进行滴定小心地虹吸出上部分相应于所加酸溶液容积的澄清液而不扰动底部沉淀物5.6 滴定将细口瓶内的组分或其部分体积(V1)转移到锥形瓶内用硫代硫酸钠(3.6)滴定在接近滴定终点时加淀粉溶液(3.7)或者加其他合适的指示剂6 结果计算溶解氧含量c1(mg/L)由式(2)求出:C1=Mr*V2*C*f1/(4V1)式中Mr——氧的分子量Mr=32V1 ——滴定时样品的体积mL 一般取V1 100mL 若滴定细口瓶内试样则V1=V0c ——硫代硫酸钠溶液(3.6)的实际浓度mol/L f1=V0/(V0-V')式中V0——细口瓶(4.1)的体积mLV' ——二价硫酸锰溶液(3.4)(1mL)和碱性试剂(3.3)(2mL)体积的总和结果取一位小数。
7 精密度分别在四个实验室内自由度为10 对空气饱合的水(范围在8.5~9mg/L)进行了重复测定得到溶解氧的批内标准差在0.03~0.05mg/L 之间8 特殊情况8.1 存在氧化性物质8.1.1 原理通过滴定第二个试验样品来测定除溶解氧以外的氧化性物质的含量以修正第6 条中得到的结果8.1.2 步骤8.1.2.1 按照5.3 中规定取二个试验样品8.1.2.2 按照5.4 5.5 5.6 中规定的步骤测定第一个试样中的溶解氧。
8.1.2.3 将第二个试样定量转移至大小适宜的锥形瓶内加1.5mL 硫酸溶液(3.1)[或相应体积的磷酸溶液(见3.1 注)] 然后再加2mL 碱性试剂(3.3)和1mL 二价硫酸锰溶液(3.4) 放置5min用硫代硫酸钠(3.6)滴定在滴定快到终点时加淀粉(3.7)或其他合适的指示剂8.1.3 结果计算溶解氧含量c2(mg/L)由式(4)给出:C2=MrV2*C*f/(4v1)-MrV4C/(4V3)式中Mr V1 V2 c 和f1 与第6 条中含义相同V3 ——盛第二个试样的细口瓶体积mLV4 ——滴定第二个试样用去的硫代硫酸钠的溶液(3.6)的体积mL8.2 存在还原性物质8.2.1 原理加入过量次氯酸钠溶液氧化第一和第二个试样中的还原性物质测定一个试样中的溶解氧含量测定另一个试样中过剩的次氯酸钠量8.2.2 试剂在第三条中规定的试剂和8.2.2.1 次氯酸钠溶液约含游离氯4g/L 用稀释市售浓次氯酸钠溶液的办法制备用碘量法测定溶液的浓度8.2.3 操作步骤8.2.3.1 按照5.3 中规定取二个试样8.2.3.2 向这二个试样中各加入1.00mL(若需要可加入更多的准确体积)的次氯酸钠溶液(8.2.2.1)(见5.2 注) 盖好细口瓶盖混合均匀一个试样按5.4 5.5 和5.6 中的规定进行处理另一个按照8.1.2.3 的规定进行8.2.4 结果计算溶解氧的含量c3(mg/L)由式(5)给出C3=Mr*V2*C*f2/(4*V1)-Mr*V4*C/[4(V3-V5)]式中Mr V1 V2 和c 与第6 条含义相同V3 和V4 与8.1.3 含义相同V5 加入到试样中次氯酸钠溶液的体积mL(通常V5 1.00mL);f2=V0/(V0-V5-V')式中V'与第6 条含义相同V0 ——盛第一个试验样品的细口瓶的体积mL 9 试验报告试验报告包括下列内容a. 参考了本国家标准b. 对样品的精确鉴别c. 结果和所用的表示方法d. 环境温度和大气压力e. 测定期间注意到的特殊细节f. 本方法没有规定的或考虑可任选的操作细节。
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。