福建省厦门市2018届高中毕业班第二次质量检查数学(文)试题 Word版含解析
高三数学-2018(文科)考试解答 精品

2018年厦门市高中毕业班适应性考试 数学(文科)试题参考答案及评分标准说明: 一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解答与本解答不同,可根据试题的主要内容比照评分标准制定相应的评分细则. 二、对计算题,当考生的解答 某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题:本题主要考查基础知识和基本运算. 1、D 2、A 3、C 4、B 5、D 6、B 7、A 8、A 9、C 10、B 11、C 12、D二、本大题共4个小题;每小题4分,共16分.本题主要考查基础知识和基本运算. 13、3214、160015、21 16、72三、解答题 17、本题考查三角函数的基本公式和平面向量等基本知识,要求学生能灵活运用所学知识解决问题.满分12分. 解:(1) ·=0 ∴ -1·y +cos x (3sin x +cos x )=0………………………………………2分 ∴y =3sin x ⋅cos x +cos 2x =23sin2x +21cos2x +21 …………………………………………4分=sin(2x +6π)+21∴f (x ) =sin(2x +6π)+21……………………………………………………………………6分(2) f (x )=1, ∴ sin(2x +6π)= 12 ……………………………………………………8分 又 x ∈[0 , 21π],∴6π≤2x +6π≤67π ,∴ 2x +6π=6π或2x +6π=65π…………10分∴x = 0或π3 ………………………………………………………………………………12分 18、本题主要考查等差数列的概念和性质,以及数列求和等基本运算,考查学生解决数列问题的基本技能.满分12分. 解:(1)}{n a 为等差数列2891-=+a a282591-==+∴a a a ,145-=∴a …………………………………………………2分 又202-=a 设{n a }的公差为d ,d a a 325+=∴,∴d=2, …………………………………………………………………4分 242-=∴n a n ……………………………………………………………………………6分(2)n n b a 2log = na nb 2=∴ na a a n nb b b T +⋅⋅⋅++=⋅⋅⋅⋅=∴21221 ……………………9分当0321=+⋅+++n a a a a 时,=n T 121=⋅⋅n b b b …………………………………10分即02)1(1=-+d n n na ,221-=a 23=∴n ,即n =23时, =n T 1 。
2018年福建省厦门市高考数学二模试卷(文科)(解析版)

2018年福建省厦门市高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={﹣1,0,1,2},B={x|x=2n,n∈Z},则A∩B=()A.{2}B.{0,2}C.{﹣1,0,2}D.∅2.(5分)复数z满足(2+i)z=|3﹣4i|,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知f(x)=x3+3x,a=20.3,b=0.32,c=log20.3,则()A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(c)<f(b)<f(a)D.f(c)<f(a)<f(c)4.(5分)如图所示的风车图案中,黑色部分和白色部分分别由全等的等腰直角三角形构成,在图案内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)等差数列{a n}的公差为1,a1,a2,a5成等比数列,则{a n}的前10项和为()A.50B.﹣50C.45D.﹣456.(5分)已知抛物线C:y2=4x的焦点为F,过F的直线与曲线C交于A,B两点,|AB|=6,则AB中点到y轴的距离是()A.1B.2C.3D.47.(5分)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,则下列命题正确的是()A.MN∥AP B.MN∥BD1C.MN∥平面BB1D1D D.MN∥平面BDP8.(5分)如图是为了计算S=的值,则在判断框中应填入()A.n>19?B.n≥19?C.n<19?D.n≤19?9.(5分)函数f(x)=sin(ωx+φ)(ω>0)的周期为π,f(π)=,f(x)在(0,)上单调递减,则φ的一个可能值为()A.B.C.D.10.(5分)设函数f(x)=,若f(x)≥f(1)恒成立,则实数a的取值范围为()A.[1,2]B.[0,2]C.[1,+∞)D.[2,+∞)11.(5分)已知某正三棱锥的侧棱长大于底边长,其外接球体积为,三视图如图所示,则其侧视图的面积为()A.B.2C.4D.612.(5分)设函数f(x)=x﹣e﹣x,直线y=mx+n是曲线y=f(x)的切线,则m+n的最小值是()A.B.1C.1﹣D.1二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知向量与的夹角为90°,||=1,||=2,则||=.14.(5分)已知x,y满足约束条件,则z=2x+y的最小值为.15.(5分)若双曲线C:(a>0,b>0)的渐近线与圆(x﹣2)2+y2=1无交点,则C的离心率的取值范围为.16.(5分)已知数列{a n}满足a1=1,a2=3,|a n﹣a n﹣1|=n(n∈N,n≥3),{a2n﹣1}是递增数列,{a2n}是递减数列,则a2018=.三、解答题:共70分。
(解析版)福建省厦门市2018届高中毕业班第二次质量检查

福建省厦门市2018届高中毕业班第二次质量检查试题数学(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】B【解析】分析:将集合中的元素,逐一验证是否属于集合即可.详解:因为集合,所以,故选B.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合. 本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.2. 复数满足,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:先利用复数模的公式求得,然后两边同乘以,利用复数运算的乘法法则化简,即可得结果详解:,,,在复平面内对应的点,在第四象限,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 已知,,则()A. B.C. D.【答案】C【解析】分析:根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,结合函数的单调性,从而可得结果.详解:由指数函数的性质可得,,由对数函数的性质可得,,,又,在上递增,所以,故选C.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.4. 如图所示的风车图案中,黑色部分和白色部分分别由全等的等腰直角三角形构成.在图案内随机取一点,则此点取自黑色部分的概率是()A. B. C. D.【答案】B【解析】分析:设小黑色三角形面积为,则整个在图案面积为,黑色部分总面积为,根据几何概型概率公式可得结果.详解:设小黑色三角形面积为,则整个在图案面积为,黑色部分总面积为,由几何概型概率公式可得,在点取自黑色部分的概率是,故选B.点睛:本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.5. 等差数列的公差为1,成等比数列,则的前10项和为()A. 50B.C. 45D.【答案】A【解析】分析:根据成等比数列列方程可求得首项,利用等差数列求和公式可得结果.详解:等差数列的公差为1,成等比数列,,即,解得,,故选A.点睛:本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.6. 已知拋物线的焦点为,过的直线与曲线交于两点,,则中点到轴的距离是()A. 1B. 2C. 3D. 4【答案】B【解析】分析:将点到焦点的距离转化为到准线的距离,可得,从而求出中点横坐标,进而可得结果.详解:由,得,设,等于点到准线的距离,同理,等于到准线的距离,,,中点横坐标为,中点到轴的距离是,故选B.点睛:与抛物线焦点、准线有关的问题,一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决7. 如图,在正方体中,分别是的中点,则下列命题正确的是()A. B. C. 平面 D. 平面【答案】C【解析】分析:取中点,连接,可证明平面平面,进而可得结果. 详解:取中点,连接,由三角形中位线定理可得,面,由四边形为平行四边形得,面,平面平面,面,平面,故选C.点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.8. 如图是为了计算的值,则在判断框中应填入()A. B. C. D.【答案】A【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到输出,即可得到输出条件.详解:由程序框图可知,判断框中,若填,则输出,若填或,直接输出,应填,故选A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9. 函数的周期为,,在上单调递减,则的一个可能值为()A. B. C. D.【答案】D【解析】分析:由函数的周期为,求得,由结合在上单调递减,即可得结果.详解:由函数的周期为,得,,,或,令,或,,在不是单调函数,不合题意,故,故选D.点睛:本题主要通过已知三角函数的性质求解析式考查三角函数的性质,属于中档题.利用最值求出 ,用周期公式求出,利用特殊点求出,正确求是解题的关键.10. 设函数若恒成立,则实数的取值范围为()A. B. C. D.【答案】A【解析】分析:函数恒成立等价于是的最小值,根据分段函数的性质列不等式可得结果.详解:若恒成立,是的最小值,由二次函数性质可得对称轴,由分段函数性质得,得,综上,,故选A.....................................11. 已知某正三棱锥的侧棱长大于底边长,其外接球体积为,三视图如图所示,则其侧视图的面积为()A. B. 2 C. 4 D. 6【答案】D【解析】分析:根据正三棱锥的性质可得球心在正三棱锥的高上,由正棱锥的性质可得顶点在底面的射影是正三角形的中心,列方程可解得棱锥的高,从而可得结果.详解:设正三棱锥外接球的半径为,则,由三视图可得底面边长为,底面正三角形的高为,底面三角形外接圆半径为,由勾股定理得,得,侧视图面积为,故选D.点睛:本题主要考查三棱锥外接球问题,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接设出球心和半径,列方程求解.12. 设函数,直线是曲线的切线,则的最小值是()A. B. 1 C. D.【答案】C【解析】分析:设切点是,求出切线方程,可得,利用导数研究函数的单调性,根据单调性求出的最小值即可的结果.详解:设切点是,由是切线斜率,切线方程为,整理得,,记,当,递减;当,递增;故,即的最小值是故选C.点睛:本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性与最值,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量与的夹角为,,则__________.【答案】【解析】分析:将平方,把,代入化简,再开平方即可得结果.详解:向量与的夹角为,,,,,故答案为.点睛:平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).14. 已知满足约束条件则的最小值为__________.【答案】2【解析】分析:画出可行域,化为,平移直线,由图可得当直线经过时,有最小值,从而可得结果.详解:画出表示可行域,如图,由,可得,平行直线,由图知,当直线经过时,直线在轴上截距最小,此时最小为,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 若双曲线的渐近线与圆无交点,则的离心率的取值范围为__________.【答案】【解析】分析:根据圆心到直线的距离大于半径,列不等式,结合可得离心率的取值范围.详解:曲线的渐近线与圆无交点,圆心到直线的距离大于半径,即,,,,即的离心率的取值范围为,故答案为.点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点到直线的距离大于圆半径构造出关于的不等式,最后解出的范围.16. 已知数列满足,,是递增数列,是递减数列,则__________.【答案】【解析】分析:先判断,可得,,根据等差数列的通项公式可得结果.详解:是递增数列,,,,,又成立,由是递减数列,,同理可得,,,是首项为,公差为的等差数列,故,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角所对的边分别为,.(1)求;(2)若,的周长为,求的面积.【答案】(1)(2)【解析】分析:(1)由,根据正弦定理得,可得所以,从而可得结果;(2)由,可得,可求得,由此以,根据周长为可求得,从而可得结果.详解:(1)因为,由正弦定理得所以所以,且所以.(2)因为,所以,所以,,或解得:或因为,所以所以,所以因为,所以所以.点睛:以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18. 在如图所示的四棱锥中,底面为菱形,,为正三角形.(1)证明:;(2)若,四棱锥的体积为16,求的长.【答案】(1)见解析(2)【解析】分析:(1)由正三角形的性质可得,,根据线面垂直的判定定理可得平面,由线面垂直的性质可得结论;(2)根据勾股定理,,结合可得,平面,设,利用棱锥的体积公式列方程解得,由勾股定理可得的长.详解:(1)证明:取中点为,连接∵底面为菱形,,∴为正三角形,∴又∵为正三角形,∴又∵平面,平面,∴平面,∵平面,∴.(2)法一:设,则,在正三角形中,,同理,∴,∴,又∵,平面,平面,∴平面,∴,∴,∵∴∴.法二:设,则,在正三角形中,,同理,∴,∴,又∵,平面,平面,∴平面,∴,∴,连接,∵在中,,∴由余弦定理得,∴在中,.点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.19. 为提高玉米产量,某种植基地对单位面积播种数与每棵作物的产量之间的关系进行研究,收集了 11块实验田的数据,得到下表:技术人员选择模型作为与的回归方程类型,令,相关统计量的值如下表:由表中数据得到回归方程后进行残差分析,残差图如图所示:(1)根据残差图发现一个可疑数据,请写出可疑数据的编号(给出判断即可,不必说明理由);(2)剔除可疑数据后,由最小二乘法得到关于的线性回归方程中的,求关于的回归方程;(3)利用(2)得出的结果,计算当单位面积播种数为何值时,单位面积的总产量的预报值最大?(计算结果精确到0.01)附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为,,.【答案】(1)10(2)(3)【解析】分析:(1)可疑数据为第10组 ; (2)根据平均数公式可求出与的值,从而可得样本中心点的坐标,结合样本中心点的性质可得,进而可得关于的回归方程;(3)根据(2)的结果并结合条件,可得单位面积的总产量的预报值,变形后利用均值不等式求解即可.详解:(1)可疑数据为第10组 ;(2)剔除数据后,在剩余的10组数据中,,,所以,所以关于的线性回归方程为则关于的回归方程为;(3)根据(2)的结果并结合条件,单位面积的总产量的预报值当且仅当时,等号成立,此时,即当时,单位面积的总产量的预报值最大,最大值是1.83.点睛:求回归直线方程的步骤:①依据样本数据,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 过椭圆的右焦点作两条互相垂直的直线,直线与交于两点,直线与交于两点.当直线的斜率为0时,.(1)求椭圆的方程;(2)求四边形面积的取值范围.【答案】(1)(2)【解析】分析:(1)由得:,由,所以,从而可得椭圆的方程;(2)直线的方程为,则直线的方程为.设由,得,根据韦达定理、弦长公式求出的值,三角形面积公式可得,结合,利用函数的单调性求解即可.详解:(1)由已知得:将代入得,所以,所以所以椭圆;(2)①当直线—条的斜率为0,另一条的斜率不存在时,.②当两条直线的斜率均存在时,设直线的方程为,则直线的方程为.设由,得,(或:,)用取代得∴又,当且仅当取等号所以所以综上:四边形面积的取值范围是.点睛:本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.21. 已知函数,.(1)讨论函数的单调性;(2)当时,恒成立,求实数的取值范围.【答案】(1)见解析(2)【解析】分析:(1) 求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)原不等式可化为,即,记,只需即可,分三种情况讨论,分别利用导数研究函数的单调性,利用单调性求出函数的最大值,利用最大值不大于零列不等式即可得结果. 详解:(1)依题意,①当时,,所以在上单调递增;②当时,,,且,令得,令得或,此时在上单调递增;在上单调递减综上可得,①时,在上单调递增;②当时,在上单调递增;在上单调递减(2)法一:原不等式可化为,即记,只需即可.①当时,由可知,,所以,命题成立.②当时,显然在上单调递减,所以所以在上单调递减,从而,命题成立.③当时,显然在上单调递减,因为,所以在内,存在唯一的,使得,且当时,即当时,,不符合题目要求,舍去.综上所述,实数的取值范围是.法二:原不等式可化为,即记,只需即可.可得,令,则所以在上单调递减,所以.时,,从而,所以,所以在上单调递减,所以,原不等式成立②当时,,,所以存在唯一,使得,且当时,,此时,在上单调递增,从而有,不符合题目要求,舍去.综上所述,实数的取值范围是.点睛:本题主要考查利用导数研究函数的单调性、求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在直角坐标系中,曲线,曲线(为参数).以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.【答案】(1),;(2)【解析】分析:(1)将曲线,曲线消去参数可得普通方程,然后利用即可得的极坐标方程;(2)将分别代入的极坐标方程可得,,,换元后,结合三角函数的有界性,利用二次函数的性质求解即可.详解:(1),∵,故的极坐标方程:.的直角坐标方程:,∵,故的极坐标方程:.(2)直线分别与曲线联立,得到,则,,则,∴令,则所以,即时,有最大值.点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.23. 已知函数,其中.(1)求函数的值域;(2)对于满足的任意实数,关于的不等式恒有解,求的取值范围.【答案】(1);(2)【解析】分析:(1)将函数,写成分段函数形式,判断函数的单调性,利用单调性可得函数的值域;(2)先利用作差法证明,再由,利用基本不等式可得,结合(1)可得,从而可得结果.详解:(1)∵,∴∴故.(2)∵,∴,∵,∴,∴.当且仅当时,,∴关于的不等式恒有解即,故,又,所以.点睛:转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,将“任意实数,关于的不等式恒有解”转化为“”是解题的关键.。
2018年5月厦门市高三质检数学(文)参考答案

厦门市2018届高中毕业班第二次质量检查数学(文科)参考答案及评分标准一、选择题:1~5BDCBA 6~10BCADA 11~12DC12.解:设切点是(,())P t f t ,由()1x f x e -'=+,P 处切线斜率()1tk f t e -'==+,所以P 处切线方程为()()()y f t f t x t '-=-,整理得(1)(1)t t y e x t e --=+-+,所以(1)(1)1t t t t m n e t e e --+=+-+=-,记()1t t g t e =-,所以1()tt g t e -'=,当1t <,()0g t '<;当1t >,()0g t '>;故min 1()(1)1g t g e==-.二、填空题:1314.215.)+∞16.1005-16.解:法一:因为1211,3,(,3)n n a a a a n n N n -==-=∈≥,所以可求出数列{}n a 为:1,3,6,2,7,1,8, ,观察得:{}2n a 是首项为3,公差为-1的等差数列,故20183(10091)(1)1005.a =+-⋅-=-法二:因为{}21n a -是递增数列,所以21210n n a a +-->,所以212221()()0n n n n a a a a +--+->,因为212n n +>,所以212221n n n n a a a a +-->-,所以2120(2)n n a a n +->≥,又3150a a -=>,所以2120(1)n n a a n +->≥成立。
由{}2n a 是递减数列,所以2220n n a a +-<,同理可得:22210(1)n n a a n ++-<≥,所以212222121,(22),n n n n a a n a a n +++-=+⎧⎨-=-+⎩所以2221n n a a +-=-,所以{}2n a 是首项为3,公差为-1的等差数列,故20183(10091)(1)1005.a =+-⋅-=-三、解答题:17.本题考查正弦定理、余弦定理、诱导公式、两角和与差正弦公式、三角形面积公式等基础知识;考查运算求解能力;考查函数与方程思想、化归与转化思想。
福建省厦门市2018届高中毕业班第二次质量检查文数试卷

2019年03月01日xx 学校高中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知集合{}1,3,9,27A =,3{|log ,}B y y x x A ==?,则A B ⋂= ( )A. {}1,3B. {}1,3,9C. {}3,9,27D. {}1,3,9,272.若复数满足(1)12i z i +?+,则z 等于( )A.12B. 2C. 32D. 2 3.已知1a =,2b =,且()a a b ⊥-,则向量a 与b 的夹角为( )A.4π B. 3π C. 23π D. 34π 4.已知角α的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线2y x =-上,则cos 2α= ( )A. 45-B. 35-C. 35D. 45 5.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则 C 的渐近线方程为( )A. 3y x =±B. 3y x =±C. 2y x =±D. 5y x =±6.已知 m ,n 是空间中两条不同的直线, α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A.若m α⊂,则m β⊥B.若m α⊂,n β⊂,则m n ⊥C.若m α⊄,m β⊥,则//m αD.若m αβ⋂=,n m ⊥,则n α⊥7.已知函数1()1x f x x +=-的图像在点(2,(2))f 处的切线与直线10ax y ++=平行,则实数a = ( )A. 2B.12C. 12- D. 2- 8.下列说法正确的是( )A.命题p ,q 都是假命题,则命题“p q ⌝∧”为真命题B. R ϕ∀∈,函数()sin(2)f x x ϕ=+都不是奇函数C.函数()sin 23f x x π⎛⎫=-⎪⎝⎭的图像关于512x π=对称 D.将函数sin 2y x =的图像上所有点的横坐标伸长到原来的2倍后得到sin 4y x =9.执行下面的程序框图,如果输入的48m =,36n =,则输出的k , m 的值分别为( )。
福建省厦门市2018届高中毕业班第二次质量检查数学(文)试题(含答案)

福建省厦门市2018届高中毕业班第二次质量检查试题数学(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,0,1,2,2,A B x x n n Z =-==∈,则A B ⋂=( ) A .{}2 B .{}0,2 C .{}1,0,2- D .∅2.复数z 满足()234i z i +=-,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知()33f x x x =+,0.3222,0.3,log 0.3a b c ===,则( ) A .()()()f a f b f c << B .()()()f b f c f a << C .()()()f c f b f a << D .()()()f b f a f c <<4.如图所示的风车图案中,黑色部分和白色部分分别由全等的等腰直角三角形构成.在图案内随机取一点,则此点取自黑色部分的概率是( )A .14 B .13C .23D .34 5.等差数列{}n a 的公差为1,125,,a a a 成等比数列,则{}n a 的前10项和为( ) A .50 B .50- C .45 D .45-6.已知拋物线2:4C y x =的焦点为F ,过F 的直线与曲线C 交于,A B 两点,6AB =,则AB 中点到y 轴的距离是( ) A .1 B .2 C .3 D .47.如图,在正方体1111ABCD A B C D -中,,,M N P 分别是1111,,C D BC A D 的中点,则下列命题正确的是( )A .//MN APB .1//MN BDC .//MN 平面11BBD D D .//MN 平面BDP 8.如图是为了计算11111234561920S =++++⨯⨯⨯⨯的值,则在判断框中应填入( )A .19?n >B .19?n ≥C .19?n <D .19?n ≤ 9.函数()()()sin 0f x x ωϕω=+>的周期为π,()12f π=,()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,则ϕ的一个可能值为( ) A .6π B .3π C .23π D .56π10.设函数()()21,1,ln ,1,x a x f x x x ⎧--≤⎪=⎨>⎪⎩若()()1f x f ≥恒成立,则实数a 的取值范围为( )A .[]1,2B .[]0,2C .[)1,+∞D .[)2,+∞ 11.已知某正三棱锥的侧棱长大于底边长,其外接球体积为1256π,三视图如图所示,则其侧视图的面积为( )A .32B .2C .4D .6 12.设函数()x f x x e -=-,直线y mx n =+是曲线()y f x =的切线,则m n +的最小值是( )A .1e- B .1 C .11e - D .311e +第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a 与b 的夹角为90︒,1,2a b ==,则a b -= . 14.已知,x y 满足约束条件1,3,1,x y x y x -≤⎧⎪+≤⎨⎪≥⎩则2z x y =+的最小值为 .15.若双曲线22220,1()0:x y C a b a b -=>>的渐近线与圆()2221x y -+=无交点,则C 的离心率的取值范围为 .16.已知数列{}n a 满足121,3a a ==,()1,3n n a a n n N n --=∈≥,{}21n a -是递增数列,{}2n a 是递减数列,则2018a = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,()()cos 2cos b A a c B π=--. (1)求B ;(2)若1,sin sin 2a b A C >=,ABC ∆的周长为33+,求ABC ∆的面积. 18.在如图所示的四棱锥P ABCD -中,底面ABCD 为菱形,60DAB ∠=︒,PAB ∆为正三角形.(1)证明:AB PD ⊥; (2)若62PD AB =,四棱锥的体积为16,求PC 的长. 19.为提高玉米产量,某种植基地对单位面积播种数x 与每棵作物的产量y 之间的关系进行研究,收集了 11块实验田的数据,得到下表:技术人员选择模型21y a bx =+作为y 与x 的回归方程类型,令21,i i ii u x y υ==,相关统计量的值如下表:由表中数据得到回归方程后进行残差分析,残差图如图所示:(1)根据残差图发现一个可疑数据,请写出可疑数据的编号(给出判断即可,不必说明理由);(2)剔除可疑数据后,由最小二乘法得到υ关于u 的线性回归方程u υβα=+中的0.03β=,求y 关于x 的回归方程; (3)利用(2)得出的结果,计算当单位面积播种数x 为何值时,单位面积的总产量w xy =的预报值最大?(计算结果精确到0.01)附:对于一组数据()()()1122,,,,,,n n u u u υυυ,其回归直线u υαβ=+的斜率和截距的最小二乘法估计分别为121ni ii n ii u nu unuυυβ==-⋅=-∑∑,u αυβ=-,30 5.48≈.20.过椭圆2222:1()0x E b b y a a +>>=的右焦点F 作两条互相垂直的直线12,l l ,直线1l 与E 交于,A B 两点,直线2l 与E 交于,C D 两点.当直线1l 的斜率为0时,42,22AB CD ==. (1)求椭圆E 的方程;(2)求四边形ABCD 面积的取值范围.21.已知函数()2ln 1f x x ax x =++-,()()11,x g x x e a R -=-∈. (1)讨论函数()f x 的单调性;(2)当1x ≥时,()()2a f x ax g x ⎡⎤-≤⎣⎦恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线221:14x C y +=,曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩(ϕ为参数).以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求12,C C 的极坐标方程;(2)射线l 的极坐标方程为()0θαρ=≥,若l 分别与12,C C 交于异于极点的,A B 两点,求OB OA的最大值.23.选修4-5:不等式选讲已知函数()2f x x x a =--+,其中0a >. (1)求函数()f x 的值域;(2)对于满足221b c bc ++=的任意实数,b c ,关于x 的不等式()()3f x b c ≥+恒有解,求a 的取值范围.试卷答案一、选择题1-5: BDCBA 6-10: BCADA 11、12:DC二、填空题13. 5 14. 2 15.23,3⎛⎫+∞ ⎪ ⎪⎝⎭16.1005- 三、解答题17. 解:(1)因为()()cos 2cos b A a c B π=--, 由正弦定理得()()sin cos sin 2sin cos B A A C B =-- 所以()sin 2sin cos A B C B +=所以1cos 2B =,且()0,B π∈所以3B π=.(2)因为23A C π+=,所以2311sin sin sin cos sin 3222A A A A A π⎛⎫⎛⎫-=⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以23sin cos cos A A A ⋅=,()cos 3sin cos 0A A A -=,cos 0A =或3tan 3A =解得:6A π=或2π 因为a b >,所以2A π=所以,6C π=所以3,22a cb a ==因为33a b c ++=+,所以2,1,3a c b === 所以13sin 22ABC S bc A ∆==.18.(1)证明:取AB 中点为O ,连接,,PO DO BD ∵底面ABCD 为菱形,60DAB ∠=︒, ∴ABD ∆为正三角形,DA DB = ∴DO AB ⊥又∵PAB ∆为正三角形, ∴PO AB ⊥又∵,DO PO O PO ⋂=⊂平面POD ,DO ⊂平面POD , ∴AB ⊥平面POD , ∵PD ⊂平面POD , ∴AB PD ⊥.(2)法一:设2AB x =,则6PD x =,在正三角形PAB ∆中,3PO x =,同理3DO x =, ∴222PO OD PD +=,∴PO OD ⊥,又∵,PO AB DO AB O ⊥⋂=,DO ⊂平面ABCD ,AB ⊂平面ABCD , ∴PO ⊥平面ABCD ,∴21233163P ABCD V x x -=⨯⨯=,∴2x =,∵//,AB CD AB PD ⊥ ∴CD PD ⊥ ∴()2222264210PC PD CD=+=+=.法二:设2AB x =,则6PD x =,在正三角形PAB ∆中,3PO x =,同理3DO x =, ∴222PO OD PD +=, ∴PO OD ⊥,又∵,PO AB DO AB O ⊥⋂=,DO ⊂平面ABCD ,AB ⊂平面ABCD , ∴PO ⊥平面ABCD ,∴21233163P ABCD V x x -=⨯⨯=,∴2x =,连接OC ,∵在OBC ∆中,2,4,120OB BC OBC ==∠=︒,∴由余弦定理得222cos12027OC OB BC OB BC =+-⋅⋅︒=, ∴在RT POC ∆中,()()22222327210PC PO OC =+=+=.19.解:(1)可疑数据为第10组(2)剔除数据()10,0.25后,在剩余的10组数据中11101600100501010ii uu u =--===∑,1110144441010i i v v v =--===∑所以0.034500.03 2.5v u α=-⋅=-⨯= 所以v 关于u 的线性回归方程为0.03 2.5v u =+ 则y 关于x 的回归方程为212.50.03y x=+ (3)根据(2)的结果并结合条件,单位面积的总产量w 的预报值22.50.03xw x =+12.50.03x x=+1301.8332 2.50.03≤=≈⨯ 当且仅当2.50.03x x=时,等号成立,此时 2.55309.130.033x ==≈, 即当9.13x =时,单位面积的总产量w 的预报值最大,最大值是1.83. 20.解:(1)由已知得:222ABa ==将x c =代入22221x y a b +=得2b y a =±,所以22222222b b CD a ===,所以24b =所以椭圆22:184x y E +=(2)①当直线12,l l —条的斜率为0,另一条的斜率不存在时,114222822ACBD S AB CD =⋅=⨯⨯=. ②当两条直线的斜率均存在时,设直线AB 的方程为2x my =+, 则直线CD 的方程为12x y m=-+.设 ()()1122,,,A x y B x y 由222280x my x y =+⎧⎨+-=⎩,得()222440m y my ++-= ()()22216162321m m m ∆=++=+,2122242122m y y m m ∆+-==++ ()2212242112m AB m y y m +=+-=+(或:12122244,22m y y y y m m --+==++,()()()22212122421142m AB m y y y y m +⎡⎤=++-=⎣⎦+)用1m -取代m 得()222214214211212m m CD m m ⎛⎫+ ⎪+⎝⎭==++ ∴()()22224214*********ACBDm m S AB CD m m ++=⋅=⨯⨯++ ()()42422424221252168252252m m m m m m m m m ++++-=⨯=⨯++++2288225m m=-++又22224m m +≥,当且仅当1m =±取等号 所以[)22224,m m +∈+∞ 所以228648,82925ACBD S m m⎡⎫=-∈⎪⎢⎣⎭++ 综上:四边形ACBD 面积的取值范围是64,89⎡⎤⎢⎥⎣⎦.21.解:(1)依题意,()()2121210ax x f x ax x x x++'=++=>①当0a ≥时,()1210f x ax x '=++>,所以()f x 在()0,+∞上单调递增;②当0a <时,180a ∆=->,12118118,44a ax x a a----+-==,且120x x >>, 令()()()1220a x x x x f x x--'=>得21x x x <<,令()0f x '<得20x x <<或1x x >,此时()f x 在()21,x x 上单调递增;在()()210,,,x x +∞上单调递减 综上可得,①0a ≥时,()f x 在()0,+∞上单调递增;②当0a <时,()f x 在118118,44a a a a ⎛⎫-+---- ⎪ ⎪⎝⎭上单调递增; 在1181180,,,44a a a a ⎛⎫⎛⎫-+----+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭上单调递减 (2)法一:原不等式可化为()()20a f x ax g x ⎡⎤--≤⎣⎦,即()()1ln 110x a x x x e -+---≤ 记()()()1ln 11,1x h x a x x x e x -=+---≥,只需()0h x ≤即可. ①当0a ≤时,由1x ≥可知ln 10x x +-≥,()110x x e --≥, 所以()0h x ≤,命题成立. ②当102a <≤时,显然()111x h x a xe x -⎛⎫'=+- ⎪⎝⎭在[)1,+∞上单调递减, 所以()()1210h x h a ''≤=-≤所以()h x 在[)1,+∞上单调递减,从而()()10h x h ≤=,命题成立.③当12a >时, 显然()111x h x a xe x -⎛⎫'=+- ⎪⎝⎭在[)1,+∞上单调递减,因为()1210h a '=->,()2212221112222420222a h a a ae a a a -'=+-≤+-=-< 所以在()1,2a 内,存在唯一的()01,2x a ,使得()00h x '=,且当01x x <<时,()0h x '> 即当01x x <<时,()()10h x h >=,不符合题目要求,舍去. 综上所述,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.法二:原不等式可化为()()20a f x ax g x ⎡⎤--≤⎣⎦,即()()1ln 110x a x x x e -+---≤记()()()1ln 11,1x h x a x x x e x -=+---≥,只需()0h x ≤即可. 可得()21111111x x x e h x a xe a x x x --⎛⎫⎛⎫⎛⎫'=+-=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,令()21,11x x e m x a x x -=-≥+,则()()()2122201x x x x e m x x -++'=-<+ 所以()m x 在[)1,+∞上单调递减,所以()()112m x m a ≤=-. 12a ≤时,()10m ≤,从而()0m x ≤,所以()()110h x m x x ⎛⎫'=+≤ ⎪⎝⎭, 所以()h x 在[)1,+∞上单调递减,所以()()10h x h ≤=,原不等式成立 ②当12a >时,()10m >, ()()22121244m 20212121a a a a e a a a a a a a --=-<-=<+++, 所以存在唯一()01,2x a ∈,使得()00m x =,且当01x x <<时,()0m x >,此时()()110h x m x x ⎛⎫'=+> ⎪⎝⎭,()h x 在()01,x 上单调递增, 从而有()()10h x h >=,不符合题目要求,舍去.综上所述,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. 22.解:(1)221:44C x y +=,∵cos ,sin x y ρθρθ==, 故1C 的极坐标方程:()223sin 14ρθ+=.2C 的直角坐标方程:()2224x y -+=, ∵cos ,sin x y ρθρθ==,故2C 的极坐标方程:4cos ρθ=.(2)直线l 分别与曲线12,C C 联立,得到()223sin 14ρθθα⎧+=⎪⎨=⎪⎩,则2243sin 1OA α=+, 4cos ρθθα=⎧⎨=⎩,则2216cos OB α=, ∴()22224cos 3sin 1OBOA αα=+()()2244sin 3sin 1αα=-+令2sin t α=,则()()22244311284OBt t t t OA =-+=-++ 所以13t =,即3sin 3α=±时,OB OA 有最大值433. 23.解:(1)∵0a >,∴2a -<∴()2,22,22,2a x a f x x a a x a a +≤-⎧⎪=--+-<<⎨⎪--≥⎩故()[]2,2f x a a ∈--+.(2)∵()221024b c bc b c +⎛⎫-=-≥ ⎪⎝⎭,∴22b c bc +⎛⎫≤ ⎪⎝⎭, ∵()21b c bc +=+,∴()2212b c b c +⎛⎫+≤+ ⎪⎝⎭,∴223333b c -≤+≤. 当且仅当33b c ==时,()max 233b c +=,∴()max 323b c +=⎡⎤⎣⎦ 关于x 的不等式()()3f x b c +恒有解()()max max 3f x b c ⇔≥+⎡⎤⎡⎤⎣⎦⎣⎦ 即223a +≥,故232a ≥-,又0a >,所以232a ≥-.。
【高三数学试题精选】2018厦门市高中数学毕业第二次质量检查试题(理有答案)

∵是等差数列,则,即
解得
由于
∵,∴
(法二)∵是等差数列,差为,设
∴
∴对于均成立
则,解得,
(2)由
18(1)证明由是直角梯形,,
可得
从而是等边三角形,,平分
∵为的中点,,∴
又∵ห้องสมุดไป่ตู้∴平面
∵平面,∴平面平面
(2)法一作于,连,
∵平面平面,平面平面
∴与平面平面
∴为与平面所成的角,,
又∵,∴为中点,
以为轴建立空间直角坐标系,
,
设平面的一个法向量,
由得,
令得,
又平面的一个法向量为,
设二面角为,则
所求二面角的余弦值是
解法二作于点,连,
∵平面平面,平面平面
∴平面
∴为与平面所成的角,
又∵,∴为中点,
作于点,连,则平面,则,
则为所求二面角的平面角
由,得,∴,∴
19(1)依题意可得纯电动汽车地方财政补贴的分布列为
纯电动汽车2018年地方财政补贴的平均数为(万元)
2018厦门市高中数学毕业第二次质量检查试题(理有答案)
5福建省厦门市5不等式选讲
已知函数,其中
(1)求函数的值域;
(2)对于满足的任意实数,关于的不等式恒有解,求的取值范围
试卷答案
一、选择题
1-5 cABcA 6-10 DBBcc 11、12DD
二、填空题
13 14 15 2 16
三、解答题
17解(1)(法一)由,令,
所以有两个极值点就是方程有两个解,
即与的图像的交点有两个
∵,当时,,单调递增;当时,,单调递减有极大值
又因为时,;当时,
当时与的图像的交点有0个;
福建省厦门市2018届高中毕业班第二次质量检查数学(理)试题(解析版)

福建省厦门市2018届高中毕业班第二次质量检查试题数学(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,则图中阴影部分所表示的集合是()A. B. C. D.【答案】C【解析】分析:解二次不等式得集合A,由集合的运算得阴影部分.详解:由题意,,∴阴影部分为.故选C.2. 已知,则的值是()A. B. C. D.【答案】A【解析】分析:由诱导公式求得,再由同角关系式求得,最后由二倍角公式得.详解:,∵,∴,∴,故选A.点睛:本题考查的恒等变换,三角函数的诱导公式、同角间的三角函数关系、两角和与差的正弦(余弦、正切)公式、二倍角公式是解这类题常要用到的公式,需要熟练掌握.另外需要观察“已知角”和“未知角”之间的关系,寻找它们之间的联系,从而确定选用什么公式进行变形、化简.3. 若展开式的二项式系数之和为64,则展开式中的常数项是()A. 1215B. 135C. 18D. 9【答案】B【解析】分析:由二项式系数和求出指数,再写出展开式通项后可求得常数项.详解:由题意,,∴通项为,令,,∴常数项为,故选B..点睛:在展开式中二项式系数为,所有项的系数和为.要注意这两个和是不一样的,二项式系数和是固定的,只与指数有关,而所有项系数和还与二项式中的系数有关.4. 执行如图的程序框图,若输出的值为55,则判断框内应填入()A. B. C. D.【答案】C【解析】分析:模拟程序运行,观察变量的值可得结论.详解:程序运行中变量值依次为:;;;;;;;;;,此时应结束循环,条件应为.故选C.点睛:本题考查程序框图中的循环结构,解题时可模拟程序运行,由其中变量值的变化结论.,本题也可由程序得出其数学原理,然后研究得出.本题程序实质是求数列的和:,当为偶数时,,当为奇数时,,计算后可得=10时,,程序运行后=11,从而得出判断条件.5. 等边的边长为1,是边的两个三等分点,则等于( )A.B. C. D.【答案】A 【解析】分析:先为基底,把用基底表示后再进行数量积的运算. 详解:由已知,,故选A.点睛:本题考查平面向量的数量积运算,解题关键是选取基底,把其它向量都用基底表示,然后进行计算即可,因此也考查了平面向量基本定理,属于基础题.6. 从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( )A. B. C. D. 【答案】D【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球. 详解:.点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为.7. 《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的经验公式为:.弧田(如图1阴影部分)由圆弧和其所对弦围成,弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.类比弧田面积公式得到球缺(如图 2)近似体积公式:圆面积矢.球缺是指一个球被平面截下的一部分,厦门嘉庚体育馆近似球缺结构(如图3),若该体育馆占地面积约为18000,建筑容积约为340000,估计体育馆建筑高度(单位:)所在区间为( )参考数据:,,,,.A. B. C. D.【答案】B【解析】分析:根据所给近似体积公式分别计算时的体积近似值.详解:设体育馆建筑高度为,则,若,则;若,则,若,则,,∴,故选B.点睛:本题通过数学文化引入球缺体积近似公式,即吸引了学生的眼球,又培养了学生的兴趣,同时培养了学生的爱国情怀,是一道好题.8. 设满足约束条件且的最大值为8,则的值是()A. B. C. D. 2【答案】B【解析】分析:作出可行域,作出直线,平移直线可得最优解,由最优解可解值.详解:作出可行域,如图内部(含边界),作出直线,易知向上平移直线时,增大,所以当过点时,取最大值,由得,∴,解得.故选B.点睛:本题考查简单的线性规划问题,其解法如下:作出可行域,作出目标函数对应的直线,平移直线得最优解.9. 函数在区间单调递减,在区间上有零点,则的取值范围是()A. B. C. D.【答案】C【解析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式详解:当,,又∵,则,即,,由得,,∴,解得,综上.故选C.点睛:余弦函数的单调减区间:,增区间:,零点:,对称轴:,对称中心:,.10. 已知函数,若,则()A. B.C. D.【答案】C【解析】分析:利用导数研究函数的单调性,由指数函数与对数函数的性质得的大小,然后可得结论.详解:,当时,,递减,当时,,递增,∴是的最小值,又,∴且,∴,∴,故选C.点睛:比较函数值的大小,通常是利用函数单调性,象本题这种函数的单调性一般通过导数来研究,11. 抛物线的准线与轴的交点为,直线与交于两点,若,则实数的值是()A. B. C. D.【答案】D【解析】分析:由抛物线的焦点弦性质知,这个结论必须先证明(可用几何方法也可用代数方法),然后把用直线的倾斜角表示后求出,从而得斜率,还要注意对称性,应该有两解.详解:直线过抛物线的焦点,过分别作抛物线的准线的垂线,垂足分别为,由抛物线的定义知,又,∴,而,∴∽,∴,即,设直线的倾斜角为,若,则,,,由对称性也有. 故选D.点睛:关于的证明方法还可用代数方程证明:设方程为,代入得,设,则,,∴直线关于轴对称,即,由面积法或角平分线定理得.这实质是任意的抛物线的过焦点的弦的性质之一.12. 已知函数,若关于的方程有两个不等实根,且,则的最小值是()A. 2B.C.D.【答案】D【解析】分析:由导数得是增函数,则有且只有一解,因此方程有两解,则有两解,再由与性质可得结论.详解:,当时,,当时,,∴在上恒成立,∴是上的增函数.令,则有且只有一解,则要使方程有两解,只要有两解即可.由于在和上都是增函数,因此当时,有两解,设解为且,则,,,(如图),,,,令,,易知时,,时,,即时取得极小值也是最小值.故选D.点睛:本题考查导数在研究函数中的应用和函数的概念与性质,首先利用导数判断出函数是单调函数,从而方程有且只有一解,因此问题转化为方程有两个解,通过的图象得出两解的范围与表达式及的范围,然后可以把表表示出来,再由导数求出此关于的函数的最小值.本题还考查了逻辑思维能力、转化与化归思想,属于难题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知复数满足,则等于__________.【答案】【解析】分析:可先求出,再根据复数模的定义求出模.详解:由题意,则.故答案为.点睛:复数,由,本题也可根据模的性质求解:,.14. 斜率为2的直线被双曲线截得的弦恰被点平分,则的离心率是__________.【答案】【解析】分析:设出弦两端点的坐标,代入双曲线方程后作差可得的关系式,从而求得离心率.详解:设直线的与双曲线的两个交点为,则,两式相减得,即,又由已知,,∴,即,,所以.故答案为.点睛:设斜率为的直线与双曲线交于两点,弦的中点为,则,即.证明方法可用“点差法”.15. 某四面体的三视图如图所示,则该四面体高的最大值是__________.【答案】2【解析】分析:由三视图还原出几何体,分析结构图即可.详解:如图是原几何体,其在正方体中的位置,正方体棱长为2,则该四面体高的最大值为2.故答案为2.点睛:本题考查由三视图还原几何体问题,解题时必须掌握基本几何体的三视图,再由基本几何体得出一些组合体的三视图.16. 等边的边长为1,点在其外接圆劣弧上,则的最大值为__________.【答案】【解析】分析:引入一个参数,设,利用正弦定理把用表示,这样可把也用表示出来,然后由三角函数的性质可求得最大值.详解:设,则,外接圆半径为,在中,,同理,,,则.当时,的最大值为.点睛:本题考查解三角形的应用,解题关键是建立三角函数的模型,题中点P在劣弧AB上移动,因此选为变量,把面积和表示的函数,结合三角函数知识求得最大值.解决此类问题必须掌握两角和与差的正弦(余弦)公式、二倍角公式、正弦函数的性质、三角形的面积公式等知识,本题同时考查了学生的运算求解能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2)【解析】分析:(1)已知数列是等差数列,因此由已知先求出,利用成等差数列求出参数,从而可得数列的通项公式;(2)把变形为,从而用分组求和与裂项相消求和法求得其前项和.详解:(1)(法一)由,令,得到∵是等差数列,则,即解得:由于∵,∴(法二)∵是等差数列,公差为,设∴∴对于均成立则,解得,(2)由18. 已知四棱锥的底面是直角梯形,,,为的中点,.(1)证明:平面平面;(2)若与平面所成的角为,求二面角的余弦值.【答案】(1)见解析;(2)【解析】分析:(1)在直角梯形中,由已知得是等边三角形,这样结合可得,再有,因此有平面,从而可证面面垂直;(2)只要作于点,则可得平面,从而得是中点,,计算得,以为坐标轴建立空间直角坐标系,写出各点坐标,求出平面和平面的法向量,由法向量的夹角的余弦值得二面角的余弦值.详解:(1)证明:由是直角梯形,,可得从而是等边三角形,,平分∵为的中点,,∴又∵,∴平面∵平面,∴平面平面(2)法一:作于,连,∵平面平面,平面平面∴与平面平面∴为与平面所成的角,,又∵,∴为中点,以为轴建立空间直角坐标系,,设平面的一个法向量,由得,令得,又平面的一个法向量为,设二面角为,则所求二面角的余弦值是.解法二:作于点,连,∵平面平面,平面平面∴平面∴为与平面所成的角,又∵,∴为中点,作于点,连,则平面,则,则为所求二面角的平面角由,得,∴,∴.点睛:在立体几何中求空间角(异面直线所成的角,直线与平面所成的角,二面角)常常是建立空间直角坐标系,写出各点坐标,求出直线的方向向量和平面的法向量,由空间向量的夹角与空间角的关系,采用向量法求得空间角.19. 某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程的行业标准,予以地方财政补贴.其补贴标准如下表:2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程,得到频率分布直方图如图所示.用样本估计总体,频率估计概率,解决如下问题:(1)求该市纯电动汽车2017年地方财政补贴的均值;(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:(同一组数据用该区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台;交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台. 该企业现有两种购置方案:方案一:购买100台直流充电桩和900台交流充电桩;方案二:购买200台直流充电桩和400台交流充电桩.假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润日收入日维护费用)【答案】(1)3.95;(2)见解析【解析】分析:(1)由频率分布直方图求出补贴分别是3万元,4万元,4.5万元的概率,即得概率分布列,然后可计算出平均值;(2)由频数分布表计算出每天需要充电车辆数的分布列,分别计算出两种方案中新设备可主观能动性车辆数,从而得实际充电车辆数的分布列,由分布列可计算出均值,从而计算出日利润.详解:(1)依题意可得纯电动汽车地方财政补贴的分布列为:纯电动汽车2017年地方财政补贴的平均数为(万元)(2)由充电车辆天数的频数分布表得每天需要充电车辆数的分布列:若采用方案一,100台直流充电桩和900台交流充电桩每天可充电车辆数为(辆)可得实际充电车辆数的分布列如下表:于是方案一下新设备产生的日利润均值为(元)若采用方案二,200台直流充电桩和400台交流充电桩每天可充电车辆数为(辆)可得实际充电车辆数的分布列如下表:于是方案二下新设备产生的日利润均值为(元) 点睛:本题考查统计与概率的相关知识,如频率分布直方图,随机变量的分布列,期望,分布表等,考查数据处理能力,运用数据解决实际问题的能力.20. 椭圆的左、右焦点分别为,离心率为,为的上顶点,的内切圆面积为. (1)求的方程;(2)过的直线交于点,过的直线交于,且,求四边形面积的取值范围.【答案】(1);(2)【解析】分析:(1)由离心率得,由圆面积得圆半径,而的面积,一方面等于,另一方面等于,两者相等得,再结合可解得,得椭圆方程;(2)利用可求得两直线交点的轨迹是单位圆,单位圆在椭圆内部,即点M在椭圆内部,因此有,下面分两类求面积,一类是中有一个斜率不存在,求得面积为6,第二类是中斜率都存在,设为,,由直线与椭圆方程联立消元后可得,,同理方程为,得,这样就表示为的函数,变形注意先把作变整体变形,然后用换元变为的函数,最后可求得的范围.详解:(1)设内切圆的半径为,则,得设椭圆的焦距,则,又由题意知,所以,所以,结合及,解得,所以的方程为.(2)设直线的交点为,则由知,点的轨迹是以线段为直径的圆,其方程为.该圆在椭圆内,所以直线的交点在椭圆内,从而四边形面积可表示为.①当直线与坐标轴垂直时,.②当直线与坐标轴不垂直时,设其方程为,设,联立,得,其中,,所以.由直线的方程为,同理可得.所以.令,所以,令,所以,从而.综上所述,四边形面积的取值范围是.点睛:本题以椭圆与直线的位置关系为背景,以椭圆的轨迹方程为主要考查内容,考查观察分析、推理论证、数学运算等数学能力,考查数形结合、转化与化归、函数与方程等数学思想.对直线与椭圆相交问题,本题中的解法常称为“设而不求”.21. 设函数,.(1)当时,函数有两个极值点,求的取值范围;(2)若在点处的切线与轴平行,且函数在时,其图象上每一点处切线的倾斜角均为锐角,求的取值范围.【答案】(1);(2)【解析】分析:(1)求得导函数,题意说明有两个零点,即有两个解,或直线与函数的有两个交点,可用导数研究的性质(单调性,极值等),再结合图象可得的范围;(2)首先题意说明,从而有且,其次时,恒成立,因此的最小值大于0,这可由导数来研究,从而得出的范围.详解:(1) )当时,,,所以有两个极值点就是方程有两个解,即与的图像的交点有两个.∵,当时,,单调递增;当时,,单调递减.有极大值又因为时,;当时,.当时与的图像的交点有0个;当或时与的图像的交点有1个;当时与的图象的交点有2个;综上.(2)函数在点处的切线与轴平行,所以且,因为,所以且;在时,其图像的每一点处的切线的倾斜角均为锐角,即当时,恒成立,即,令,∴设,,因为,所以,∴,∴在单调递增,即在单调递增,∴,当且时,,所以在单调递增;∴成立当,因为在单调递增,所以,,所以存在有;当时,,单调递减,所以有,不恒成立;所以实数的取值范围为.点睛:本题考查函数的单调性、极值、零点、函数与方程、不等式等基础知识,考查运算求解、推理论证能力,考查数形结合、分类与整合、转化与化归等数学思想.解题时转化的方法有多种多样,第(1)小题人等价转化还可这样转化求解:当时,,,令,①时,,∴在单调递增,不符合题意;②时,令,,∴在单调递增;令,,∴在单调递减;令,∴又因为,,且,所以时,有两个极值点.即与的图像的交点有两个.22. 在直角坐标系中,曲线,曲线(为参数).以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.【答案】(1),;(2)【解析】分析:(1)将曲线,曲线消去参数可得普通方程,然后利用即可得的极坐标方程;(2)将分别代入的极坐标方程可得,,,换元后,结合三角函数的有界性,利用二次函数的性质求解即可.详解:(1),∵,故的极坐标方程:.的直角坐标方程:,∵,故的极坐标方程:.(2)直线分别与曲线联立,得到,则,,则,∴令,则所以,即时,有最大值.点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.23. 已知函数,其中.(1)求函数的值域;(2)对于满足的任意实数,关于的不等式恒有解,求的取值范围.【答案】(1);(2)【解析】分析:(1)将函数,写成分段函数形式,判断函数的单调性,利用单调性可得函数的值域;(2)先利用作差法证明,再由,利用基本不等式可得,结合(1)可得,从而可得结果.详解:(1)∵,∴∴故.(2)∵,∴,∵,∴,∴.当且仅当时,,∴关于的不等式恒有解即,故,又,所以.点睛:转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,将“任意实数,关于的不等式恒有解”转化为“”是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省厦门市2018届高中毕业班第二次质量检查试题数学(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合)【答案】B.B.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是. 本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.2. 复数满足)A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D则化简,即可得结果D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. )【答案】C【解析】分析:结合函数的单调性,从而可得结果.详解:由指数函数的性质可得,由对数函数的性质可得,C.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.4. 如图所示的风车图案中,黑色部分和白色部分分别由全等的等腰直角三角形构成.在图案内随机取一点,则此点取自黑色部分的概率是()【答案】B根据几何概型概率公式可得结果.由几何概型概率公式可得,B.点睛:本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.5. 等差数列110项和为()A. 50B.【答案】A成等比数列列方程可求得首项结果.1A.点睛:本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数二求三”,通过列方程组所求问题可以迎刃而解.6. 两点,)A. 1B. 2C. 3D. 4【答案】B【解析】分析:将点到焦点的距离转化为到准线的距离,可得.,故选B.点睛:与抛物线焦点、准线有关的问题,一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决7. 分别是的是()【答案】C.C.点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.8. )【答案】A【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到输出.详解:由程序框图可知,判断框中,若填或,直接输出A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9. ,,为()D.【答案】D【解析】分析:上单调递减,即可得结果.或,令,或,,在不是单调函数,,故选点睛:本题主要通过已知三角函数的性质求解析式考查三角函数的性质,属于中档题.利用最用周期公式求出.10. )B. C.【答案】A【解析】分析:根据分段函数的性质列不等式可得结果.的最小值,A.....................................11.视图的面积为()【答案】D【解析】分析:根据正三棱锥的性质可得球心在正三棱锥的高上,由正棱锥的性质可得顶点在底面的射影是正三角形的中心,列方程可解得棱锥的高,从而可得结果.详解:由三视图可得底面边长为,得侧视图面积为 D.点睛:本题主要考查三棱锥外接球问题,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:(的长);②若((为;③可以转化为长方体的外接球;④特殊几何体可以直接设出球心和半径,列方程求解.12. ,直线的切线,则)【答案】C的最小值即可的结果.记,,递减;的最小值是 C.点睛:本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性与最值,属于难题.求曲线切线方程的一般步骤是:(1处的切线与处导数不存在,切线方;(2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. ..的夹角为,用以下几个方面:(1)求向量的夹角,;(2)求投影,(3向量垂直则的模(平方后需求.14. 的最小值为__________.【答案】2【解析】分析:画出可行域,.详解:,可得点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 若双曲线范围为__________.【解析】分析:根据圆心到直线的距离大于半径,列不等式,结合值范围.到直线的距离大于半径即的离心率的取值范围为,故答案为点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点到直线的距离大于圆半径构造出关于的不等式,最后解出的范围.16. 已知数列是递增数列,.【解析】分析:,.是首项为,公差为三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1(2的周长为.【答案】(1)(2)(2,可求得,由此以可求得,从而可得结果.详解:(1(2)因为,或,所以点睛:以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18. .(1)证明(216.【答案】(1)见解析(2【解析】分析:(1,由线面垂直的性质可得结论;(2)根据勾股定理,.详解:(1为菱形,,(2,,点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)(3)(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.19. 与每棵作物的产量究,收集了 11块实验田的数据,得到下表:相关统计量的值如下表:由表中数据得到回归方程后进行残差分析,残差图如图所示:(1)根据残差图发现一个可疑数据,请写出可疑数据的编号(给出判断即可,不必说明理由);(2(3)利用(2为何值时,单位面积的总产量预报值最大?(计算结果精确到0.01)附:其回归直线【答案】(1)10(2)3【解析】分析:(1)可疑数据为第10组 ; (2)根据平均数公式可求出(3)根据(2均值不等式求解即可.详解:(1)可疑数据为第10组 ;(210组数据中,所以,;(3)根据(2)的结果并结合条件,单位面积的总产量时,单位面积的总产量的预报值最大,最大值是1.83.点睛:求回归直线方程的步骤:①依据样本数据,确定两个变量具有线性相关关系;②计算回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20.与交于两点.当直线0(1)求椭圆(2.【答案】(12【解析】分析:(1(2的方程为,则直线的方程为设,得单调性求解即可.详解:(1得,所以;(2)①当直线—条的斜率为0,另一条的斜率不存在时,②当两条直线的斜率均存在时,设直线的方程为设,得(或:又,当且仅当所以综上:四边形面积的取值范围是点睛:本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.21. 已知函数(1(2.【答案】(1)见解析(2【解析】分析:(1) ,分两种情况讨论的范围,在定义域内,分别令增区间,(2)原不等式可化分三种情况讨论,分别利用导数研究函数的单调性,利用最大值不大于零列不等式即可得结果.详解:(1,所以在上单调递增;,得,得或综上可得,上单调递减(2)法一:...,.法二:.,则所以在上单调递减,所以.,所以所以所以存在唯一,使得,且当从而有,不符合题目要求,舍去.点睛:本题主要考查利用导数研究函数的单调性、求函数的最值以及不等式恒成立问题,属)成立;② 数形结合上方即可);.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. .以坐标原点轴的正半轴为极轴建立极坐标系.(1(2)若分别与值.【答案】(1(2【解析】分析:(1即可得(2三角函数的有界性,利用二次函数的性质求解即可.详解:(1(2)直线分别与曲线,则,时,有最大值.点睛:参数方程主要通过代入法或者已知恒等式(如这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.23. 已知函数(1)求函数(2)的不等式求的取值范围.【答案】(1(2【解析】分析:(1(2,再由1,从而可得结果.详解:(1,∴.,∴,∴时,,∴的不等式恒有解点睛:转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.,关于的不等式.。