三年高考(2016-2018)数学(文)真题分类解析:专题08-导数与不等式
2018-2016三年高考真题文科数学专题分类汇编:参数方程和极坐标与不等式(解析附后)

2018-2016三年高考专题文科数学专题分类汇编:参数方程和极坐标与不等式(解析附后)考纲解读明方向法.2.绝对值不等式及不等式的证明均为高考的常考点.本章在高考中以解答题为主,往往涉及含有两个绝对值的问题,考查分类讨论、等价转化和数形结合等思想方法,分值约为10分,难度中等.2018年高考全景展示1.【2018C为参数)与该圆相交于A ,B ___________.2.【2018a =__________.3.【2018年江苏卷】在极坐标系中,直线l C 的方程为l 被曲线C 截得的弦长.4.【2018年文新课标I(1(25.【2018(1(26.【2018年文数全国卷II.(1(27.【2018年江苏卷】若x,y,z为实数,且x+2y+2z=68.【2018年文新课标I(1(29.【2018(1(210.【2018年文数全国卷II(1(22017年高考全景展示1.【2017天津,文11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.2.【2017北京,文11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP |的最小值为___________.3. 【2016年高考北京文数】在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于A ,B 两点,则||AB =______.4.【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l a.5.【2017课标1,文】已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.6. 【2017课标II ,文22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。
三年高考(2016-2018)数学(文)真题分项版解析——专题04 函数性质与应用(原卷版)

考纲解读明方向分析解读1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018的图像关于直线 )A.B.C.D.2.【2018. 2017年高考全景展示1.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 2.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则( ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称3.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是( )A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =4.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.5.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6x f x -=,则f (919)= .2016年高考全景展示1.【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( ) A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 2.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题3.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =4.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= ( ) (A )-2 (B )-1 (C )0 (D )25.【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+= .。
三年高考(2016_2018)高考数学试题分项版解析专题08导数与不等式、函数零点相结合文(含解析)

专题08导数与不等式、函数零点相结合文考纲解读明方向2018年高考全景展示1.【2018年浙江卷】已知函数f (x )=−ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 【答案】(Ⅰ)见解析(Ⅱ)见解析【解析】分析:(Ⅰ)先求导数,根据条件解得x 1,x 2关系,再化简f (x 1)+f (x 2)为,利用基本不等式求得取值范围,最后根据函数单调性证明不等式,(Ⅱ)一方面利用零点存在定理证明函数有零点,另一方面,利用导数证明函数在上单调递减,即至多一个零点.两者综合即得结论.所以g(x)在[256,+∞)上单调递增,故,即.由(Ⅰ)可知g(x)≥g(16),又a≤3–4ln2,故–g(x)–1+a≤–g(16)–1+a=–3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)–kx–a=0至多1个实根.综上,当a≤3–4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.点睛:利用导数证明不等式常见类型及解题策略:(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.2.【2018年全国卷Ⅲ文】已知函数.(1)求曲线在点处的切线方程;(2)证明:当时,.【答案】(1)切线方程是(2)证明见解析【解析】分析:(1)求导,由导数的几何意义求出切线方程。
(2)当时,,令,只需证明即可。
详解:(1),.因此曲线在点处的切线方程是.(2)当时,.令,则.当时,,单调递减;当时,,单调递增;所以.因此.点睛:本题考查函数与导数的综合应用,由导数的几何意义可求出切线方程,第二问当时,,令,将问题转化为证明很关键,本题难度较大。
三年高考(2016-2018)(文)真题分类解析:专题04-函数性质与应用-(数学)

考纲解读明方向1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018年全国卷Ⅲ文】下列函数中,其图像与函数的图像关于直线对称的是A. B.C.D.【答案】B【解析】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可。
详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点。
故选项B 正确.点睛:本题主要考查函数的对称性和函数的图像,属于中档题。
2.【2018年全国卷Ⅲ文】已知函数,,则________.【答案】点睛:本题主要考查函数的性质,由函数解析式,计算发现和关键,属于中档题。
2017年高考全景展示1.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C 【解析】试题分析:由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项. 【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小. 2.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C 【解析】【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =【答案】A【解析】由A,令()e 2x x g x -=⋅,11'()e (22ln )e 2(1ln )022x x x x xg x ---=+=+>,则()g x 在R 上单调递增,()f x 具有M 性质,故选A. 【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:①确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. (2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.4.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________. 【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.5.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6x f x -=,则f (919)= . 【答案】6 【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法 ①已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. ②已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.④应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2016年高考全景展示1.【2016高考北京文数】下列函数中,在区间(1,1)-上为减函数的是() A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 【答案】D 【解析】试题分析:由12()2xx y -==在R 上单调递减可知D 符合题意,故选D. 考点:函数单调性【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.2.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是()A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D 【解析】故选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等. 本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.3.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是()(A )sin y x =(B )ln y x = (C )e x y = (D )3y x =【答案】A 【解析】考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.4.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= () (A )-2 (B )-1 (C )0 (D )2 【答案】D 【解析】 试题分析: 当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又因为当11x -≤≤时,()()f x f x -=-,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5. 【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f-+=.【答案】-2【解析】考点:1.函数的奇偶性;2.函数的周期性.【名师点睛】本题考查函数的奇偶性与周期性.属于基础题,在涉及函数求值问题中,可利用周期性()()f x f x T=+,化函数值的自变量到已知区间或相邻区间,如果是相邻区间再利用奇偶性转化到已知区间上,再由函数式求值即可.。
三年高考(2016_2018)高考数学试题分项版解析专题08导数与不等式、函数零点相结合理(含解析)

专题08导数与不等式、函数零点相结合考纲解读明方向2018年高考全景展示1.【2018年全国卷Ⅲ理】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点,综上,.点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大。
2.【2018年理数全国卷II】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【答案】(1)见解析(2)【解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式,(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.3.【2018年江苏卷】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是[,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[,1).令,得θ=,当θ∈(θ0,)时,,所以f (θ)为增函数;当θ∈(,)时,,所以f (θ)为减函数,因此,当θ=时,f (θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.2017年高考全景展示1.【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数的零点满足()2112x x x x a e e --+-=-+,设()11x x g x ee--+=+,则()()211111111x x x x x x eg x eeee e ---+----'=-=-=,当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减,当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,设()22h x x x =-,当1x =时,函数取得最小值1-,若0a ->,函数()h x 与函数()ag x 没有交点,当0a -<时,()()11ag h -=时,此时函数()h x 和()ag x 有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用. 2.【2017课标1,理21】已知函数2()(2)x x f x ae a e x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,在对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)题,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a=-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈有2个零点,设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.所以a 的取值范围为(0,1).(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围.【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证有最小值两边存在大于0的点.3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
三年高考(2016-2018)高考数学试题分项版解析 专题01 集合 文(含解析)

专题01 集合文考纲解读明方向分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年新课标I卷文】已知集合,,则A. B. C. D.【答案】A点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.2.【2018年全国卷Ⅲ文】已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。
详解:由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
3.【2018年全国卷II文】已知集合,,则A. B. C. D.【答案】C【解析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.4.【2018年北京卷文】已知集合A={(|||<2)},B={−2,0,1,2},则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:,,,故选A.点睛:此题考查集合的运算,属于送分题.5.【2018年天津卷文】设集合,,,则A. B. C. D.【答案】C点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.6.【2018年浙江卷】已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】试题分析:分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 7.【2018年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:. 点睛:本题考查交集及其运算,考查基础知识,难度较小.2017年高考全景展示1.【2017课表1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【考点】集合运算.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 2.【2017课标II ,文1】设集合{1,2,3},{2,3,4}A B ==则AB =A. {}123,4,, B. {}123,, C. {}234,, D. {}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =,故选A.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 3.【2017课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为( )A .1B .2C .3D .4【答案】B【解析】由题意可得:{}2,4AB = ,A B 中元素的个数为2,所以选B.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 4.【2017天津,文1】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6} 【答案】B 【解析】试题分析:由题意可得:{}(){}1,2,4,6,1,2,4A B A B C =∴=.本题选择B 选项.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2017北京,文1】已知U =R ,集合{|22}A x x x =<->或,则U A =ð (A )(2,2)- (B )(,2)(2,)-∞-+∞(C )[2,2]- (D )(,2][2,)-∞-+∞ 【答案】C【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.6.【2017浙江,1】已知}11|{<<-=x x P , }20{<<=x Q ,则=Q PA .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A 【解析】试题分析:利用数轴,取Q P ,所有元素,得=Q P )2,1(-. 【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 7.【2017山东,文1】设集合{}11M x x =-<,{}2N x x =<,则M N =A.()1,1-B. ()1,2-C. ()0,2D. ()1,2 【答案】C【考点】 不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.8.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误. (3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2016年高考全景展示1. 【2016高考新课标1文数】设集合{}1,3,5,7A =,{}25B x x =剟,则A B =( )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【答案】B【解析】试题分析:集合A 与集合B 公共元素有3,5,}5,3{=B A ,故选B. 考点:集合的交集运算2.【2016高考新课标2文数】已知集合{123}A =,,,2{|9}B x x =<,则A B =( ) (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},,(D ){12}, 【答案】D 【解析】试题分析:由29x <得,33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D.考点: 一元二次不等式的解法,集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理. 3. [2016高考新课标Ⅲ文数]设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=( ) (A ){48}, (B ){026},,(C ){02610},,,(D ){0246810},,,,,【答案】C考点:集合的补集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.4. 【2016高考天津文数】已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B =( )(A )}3,1{ (B )}2,1{ (C )}3,2{(D )}3,2,1{【答案】A【解析】{1,3,5},{1,3}B A B ==,选A.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.5.【2016高考四川文科】设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( ) (A)6 (B) 5 (C)4 (D)3 【答案】B 【解析】试题分析:由题意,{1,2,3,4,5}AZ =,故其中的元素个数为5,选B.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.6. 【2016高考浙江文数】已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()ð=( ) A.{1} B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}【答案】C考点:补集的运算.【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.7.【2016高考北京文数】已知集合={|24}A x x <<,{|3B x x =<或5}x >,则A B =( )A.{|25}x x <<B.{|4x x <或5}x >C.{|23}x x <<D.{|2x x <或5}x >【答案】C 【解析】试题分析:由题意得,(2,3)A B =,故选C.考点: 集合交集【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.8. 【2016高考山东文数】设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð=( )(A ){2,6} (B ){3,6}(C ){1,3,4,5}(D ){1,2,4,6}【答案】A考点:集合的运算【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.9.【2016江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ____________. 【答案】{}1,2- 【解析】 试题分析:{1,2,3,6}{|23}{1,2}AB x x =--<<=-考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解。
三年高考(2016-2018)数学(文)真题分类解析:专题07-导数的应用

考纲解读明方向分析解读1.会利用导数研究函数单调性,掌握求函数单调区间方法.2.掌握求函数极值与最值方法,解决利润最大、用料最省、效率最高等实际生产、生活中优化问题.3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.命题探究练扩展2018年高考全景展示1.【2018年新课标I卷文】已知函数.(1)设是极值点.求,并求单调区间;(2)证明:当时,.【答案】(1) a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.详解:(1)f(x)定义域为,f ′(x)=a e x–.由题设知,f ′(2)=0,所以a =.从而f (x )=,f ′(x )=.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥时,f (x )≥.设g (x )=,则 当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )最小值点.故当x >0时,g (x )≥g (1)=0.因此,当时,.点睛:该题考查是有关导数应用问题,涉及到知识点有导数与极值、导数与最值、导数与函数单调性关系以及证明不等式问题,在解题过程中,首先要保证函数生存权,先确定函数定义域,之后根据导数与极值关系求得参数值,之后利用极值特点,确定出函数单调区间,第二问在求解时候构造新函数,应用不等式传递性证得结果.2017年高考全景展示1.【2016高考四川文科】已知a 函数3()12f x x x =-极小值点,则a = ( ) (A)-4 (B) -2 (C)4 (D)2 【答案】D 【解析】考点:函数导数与极值.【名师点睛】本题考查函数极值.在可导函数中函数极值点0x 是方程'()0f x =解,但0x 是极大值点还是极小值点,需要通过这点两边导数正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点,2.【2017浙江,7】函数y=f (x )导函数()y f x '=图像如图所示,则函数y=f (x )图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【考点】 导函数图象【名师点睛】本题主要考查导数图象与原函数图象关系:若导函数图象与x 轴交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 正负,得出原函数)(x f 单调区间. 3.【2017课标1,文21】已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 单调性;(2)若()0f x ≥,求a 取值范围.【答案】(1)当0a =,)(x f 在(,)-∞+∞单调递增;当0a >,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <,()f x 在(,ln())2a-∞-单调递减,在(ln(),)2a -+∞单调递增;(2)34[2e ,1]-.【解析】(2)①若0a =,则2()xf x e =,所以()0f x ≥.【考点】导数应用【名师点睛】本题主要考查导数两大方面应用:(一)函数单调性讨论:运用导数知识来讨论函数单调性时,首先考虑函数定义域,再求出)('x f ,有)('x f 正负,得出函数)(x f 单调区间;(二)函数最值(极值)求法:由确认单调区间,结合极值点定义及自变量取值范围,得出函数)(x f 极值或最值.4.【2017课标II ,文21】设函数2()(1)x f x x e =-. (1)讨论()f x 单调性;(2)当0x ≥时,()1f x ax ≤+,求a 取值范围.【答案】(Ⅰ)在(,1-∞- 和(1)-+∞单调递减,在(11--单调递增(Ⅱ)[1,)+∞【解析】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间(2)对a 分类讨论,当a ≥1时,()(1)(1)1x f x x x e x a x =-+≤+≤+,满足条件;当0a ≤时,取200000()(1)(1)11x f x x x ax =>-+=>+,当0<a <1时,取0x =,20000()(1)(1)1f x x x ax >-+>+.试题解析:(1)2()(12)x f x x x e '=--令()0f x '=得1x =-当(,1x ∈-∞-时,()0f x '<;当(1x ∈--+时,()0f x '>;当(1)x ∈-+时,()0f x '<所以()f x 在(,1-∞- 和(1)-+∞单调递减,在(11--单调递增【考点】利用导数求函数单调区间,利用导数研究不等式恒成立【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数单调性,求出最值,进而得出相应含参不等式,从而求出参数取值范围;也可分离变量,构造函数,直接把问题转化为函数最值问题.2016年高考全景展示1. 【2016高考山东文数】(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )单调区间;(Ⅱ)已知f (x )在x =1处取得极大值.求实数a 取值范围.【答案】 (Ⅰ)当0a ≤时,函数()g x 单调递增区间为()0,+∞; 当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (Ⅱ)12a >.【解析】试题分析:(Ⅰ)求导数()'ln 22,f x x ax a =-+ 可得()()ln 22,0,g x x ax a x =-+∈+∞, 从而()112'2ax g x a x x-=-=, 讨论当0a ≤时,当0a >时两种情况下导函数正负号,确定得到函数单调区间. (Ⅱ)分以下情况讨论:①当0a ≤时,②当102a <<时,③当12a =时,④当12a >时,综合即得.(Ⅱ)由(Ⅰ)知,()'10f =.①当0a ≤时,()'0f x <,()f x 单调递减. 所以当()0,1x ∈时,()'0f x <,()f x 单调递减. 当()1,x ∈+∞时,()'0f x >,()f x 单调递增. 所以()f x 在1x =处取得极小值,不合题意. ②当102a <<时,112a >,由(Ⅰ)知()'f x 在10,2a ⎛⎫⎪⎝⎭内单调递增,可得当当()0,1x ∈时,()'0f x <,11,2x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >, 所以()f x 在(0,1)内单调递减,在11,2a ⎛⎫⎪⎝⎭内单调递增, 所以()f x 在1x =处取得极小值,不合题意.考点:1.应用导数研究函数单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数计算、应用导数研究函数单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当.本题能较好考查考生逻辑思维能力、基本计算能力、分类讨论思想等.。
三年高考(2016-2018)数学(文)真题分类解析:专题04-函数性质与应用

考纲解读明方向1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018年全国卷Ⅲ文】下列函数中,其图像与函数的图像关于直线对称的是A. B. C. D.【答案】B【解析】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可。
详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点。
故选项B 正确.点睛:本题主要考查函数的对称性和函数的图像,属于中档题。
2.【2018年全国卷Ⅲ文】已知函数,,则________.【答案】点睛:本题主要考查函数的性质,由函数解析式,计算发现和关键,属于中档题。
2017年高考全景展示1.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C 【解析】试题分析:由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项. 【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小. 2.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C 【解析】【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =【答案】A【解析】由A,令()e 2x x g x -=⋅,11'()e (22ln )e 2(1ln )022x x x x xg x ---=+=+>,则()g x 在R 上单调递增,()f x 具有M 性质,故选A. 【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:①确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. (2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.4.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________. 【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+= 【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.5.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6x f x -=,则f (919)= . 【答案】6 【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法 ①已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. ②已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.④应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2016年高考全景展示1.【2016高考北京文数】下列函数中,在区间(1,1)-上为减函数的是() A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 【答案】D 【解析】试题分析:由12()2xx y -==在R 上单调递减可知D 符合题意,故选D. 考点:函数单调性【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.2.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是()A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D 【解析】故选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.3.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是() (A )sin y x =(B )ln y x = (C )e x y = (D )3y x =【答案】A 【解析】考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.4.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= () (A )-2 (B )-1 (C )0 (D )2 【答案】D 【解析】 试题分析: 当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又因为当11x -≤≤时,()()f x f x -=-,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5. 【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+=. 【答案】-2 【解析】考点:1.函数的奇偶性;2.函数的周期性.【名师点睛】本题考查函数的奇偶性与周期性.属于基础题,在涉及函数求值问题中,可利用周期性=+,化函数值的自变量到已知区间或相邻区间,如果是相邻区间再利用奇偶性转化到已()()f x f x T知区间上,再由函数式求值即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考纲解读明方向2018年高考全景展示1.【2018年浙江卷】已知函数f(x)=−ln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【答案】(Ⅰ)见解析(Ⅱ)见解析【解析】分析: (Ⅰ)先求导数,根据条件解得x1,x2关系,再化简f(x1)+f(x2)为,利用基本不等式求得取值范围,最后根据函数单调性证明不等式,(Ⅱ)一方面利用零点存在定理证明函数有零点,另一方面,利用导数证明函数在上单调递减,即至多一个零点.两者综合即得结论.所以g(x)在[256,+∞)上单调递增,故,即.由(Ⅰ)可知g(x)≥g(16),又a≤3–4ln2,故–g(x)–1+a≤–g(16)–1+a=–3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)–kx–a=0至多1个实根.综上,当a≤3–4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.点睛:利用导数证明不等式常见类型及解题策略:(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.2.【2018年全国卷Ⅲ文】已知函数.(1)求曲线在点处的切线方程;(2)证明:当时,.【答案】(1)切线方程是(2)证明见解析【解析】分析:(1)求导,由导数的几何意义求出切线方程。
(2)当时,,令,只需证明即可。
详解:(1),.因此曲线在点处的切线方程是.(2)当时,.令,则.当时,,单调递减;当时,,单调递增;所以.因此.点睛:本题考查函数与导数的综合应用,由导数的几何意义可求出切线方程,第二问当时,,令,将问题转化为证明很关键,本题难度较大。
3.【2018年全国卷II文】已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】(1)f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)f(x)只有一个零点.【解析】分析:(1)将代入,求导得,令求得增区间,令求得减区间;(2)令,即,则将问题转化为函数只有一个零点问题,研究函数单调性可得.(2)由于,所以等价于.设=,则g ′(x )=≥0,仅当x =0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a –1)=,f (3a +1)=,故f (x )有一个零点.综上,f (x )只有一个零点.点睛:(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.2017年高考全景展示1.【2017课标3,文21】已知函数()f x =ln x +ax 2+(2a +1)x . (1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 【解析】试题分析:(1)先求函数导数(21)(1)'()(0)ax x f x x x++=>,再根据导函数符号变化情况讨论单调性:当0≥a 时,0)('≥x f ,则)(x f 在),0(+∞单调递增,当0<a 时,则)(x f 在)21,0(a-单调递增,在),21(+∞-a 单调递减.(2)证明3()24f x a ≤--,即证max 3()24f x a ≤--,而)21()(m a x a f x f -=,所以目标函数为121)21ln()243()21(++-=+---a a a a f ,即t t y -+=1ln(021>-=at ),利用导数易得0)1(max ==y y ,即得证.【考点】利用导数求单调性,利用导数证不等式 【名师点睛】利用导数证明不等式常见类型及解题策略(1) 构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.2.【2017天津,文19】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -.(2)(ⅰ)()f x 在0x x =处的导数等于0.(ⅱ)b 的取值范围是[7],1-. 【解析】试题分析:(Ⅰ)先求函数的导数()()()34f x x a x a '=---⎡⎤⎣⎦ ,再根据1a ≤,求得两个极值点的大小关系,4a a <-,再分析两侧的单调性,求得函数的单调区间;(Ⅱ)(ⅰ)根据()g x 与x e 有共同的切线,根据导数的几何意义建立方程,求得()00f x '=,得证;(Ⅲ)将不等式转化为()1f x ≤,再根据前两问可知0x 是极大值点0x a =,由(I )知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减,从而()()1f x f a ≤=在[1,1]a a -+上恒成立,得32261b a a =-+,11a -≤≤,再根据导数求函数的取值范围.(II )(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()exx x x g g'⎧=⎪⎨=⎪⎩,所以0000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩.所以,()f x 在0x x =处的导数等于0.【考点】1.导数的几何意义;2.导数求函数的单调区间;3.导数的综合应用.【名师点睛】本题本题考点为导数的应用,本题属于中等问题,第一问求导后要会分解因式,并且根据条件能判断两个极值点的大小关系,避免讨论,第二问导数的几何意义,要注意切点是公共点,切点处的导数相等的条件,前两问比较容易入手,但第三问,需分析出0x a = ,同时根据单调性判断函数的最值,涉及造函数解题较难,这一问思维巧妙,有选拔优秀学生的功能.2016年高考全景展示1. 【2016高考新课标1文数】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦【答案】C 【解析】试题分析:()21cos2cos 03f x x a x '=-+…对x ∈R 恒成立,故()2212cos 1cos 03x a x --+…,即245cos cos 033a x x -+…恒成立, 即245033t at -++…对[]1,1t ∈-恒成立,构造()24533f t t at =-++,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f t f t ⎧-=-⎪⎪⎨⎪-=+⎪⎩……,解得1133a -剟.故选C .考点:三角变换及导数的应用【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性.2. [2016高考新课标Ⅲ文数]设函数()ln 1f x x x =-+. (I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.【答案】(Ⅰ)当01x <<时,()f x 单调递增;当1x >时,()f x 单调递减;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)首先求出导函数()f x ',然后通过解不等式()0f x '>或()0f x '<可确定函数()f x 的单调性(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的x 换为1x即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理.考点:1、利用导数研究函数的单调性;2、不等式的证明与解法.【思路点拨】求解导数中的不等式证明问题可考虑:(1)首先通过利用研究函数的单调性,再利用单调性进行证明;(2)根据不等式结构构造新函数,通过求导研究新函数的单调性或最值来证明. 3.【2016高考天津文数】((本小题满分14分)设函数b ax x x f --=3)(,R x ∈,其中R b a ∈, (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41.【答案】(Ⅰ)递减区间为(33-,递增区间为(,3-∞-,()3-+∞.(Ⅱ)详见解析(Ⅲ)详见解析 【解析】试题分析:(Ⅰ)先求函数的导数:2()3f x x a '=-,再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有2()30f x x a '=-≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得200()30f x x a '=-=即203ax =,再由)()(01x f x f =化简可得结论(Ⅲ)实质研究函数)(x g 最大值:主要比较(1),(1)f f -,|(|,|(|33f f -的大小即可,分三种情况研究①当3a ≥时,1133-≤-<≤,②当334a ≤<时,3311≤-<<<≤304a <<时,11-<<<. 试题解析:(1)解:由3()f x x ax b =--,可得2()3f x x a '=-,下面分两种情况讨论: ①当0a ≤时,有2()30f x x a '=-≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,令()0f x '=,解得x =或x =. 当x 变化时,()f x '、()f x 的变化情况如下表:所以()f x 的单调递减区间为(,单调递增区间为(,-∞,()+∞.(3)证明:设()g x 在区间[1,1]-上的最大值为M ,max{,}x y 表示x ,y 两数的最大值,下面分三种情况讨论:①当3a ≥时,1133-≤-<≤,由(1) 知()f x 在区间[1,1]-上单调递减, 所以()f x 在区间[1,1]-上的取值范围为[(1),(1)]f f -,因此,max{[(1),(1)]}max{|1|,|1|}M f f a b a b =-=---+-max{|1|,|1|}a b a b =-+-- 1,0,1,0,a b b a b b --≥⎧=⎨--<⎩所以1||2M a b =-+≥.③当304a <<时,11-<<<,由(1)和(2)知,(1)(f f f -<=,(1)(f f f >=, 所以()f x 在区间[1,1]-上的取值范围为[(1),(1)]f f -,因此,max{[(1),(1)]}max{|1|,|1|}M f f a b a b =-=-+---max{|1|,|1|}a b a b =-+-- 11||4a b =-+>. 综上所述,当0a >时,()g x 在区间[1,1]-上的最大值不小于14. 考点:导数的运算,利用导数研究函数的性质、证明不等式【名师点睛】1.求可导函数单调区间的一般步骤(1)确定函数f (x )的定义域(定义域优先);(2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到.4. 【2016高考浙江文数】(本题满分15分)设函数()f x =311x x++,[0,1]x ∈.证明: (I )()f x 21x x ≥-+; (II )34<()f x 32≤. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到()32f x ≤, 再结合第一问的结论,得到()34f x >, 从而得到结论.(Ⅱ)由01x ≤≤得3x x ≤,故()()()()312111333311222122x x f x x x x x x -+=+≤+-+=+≤+++ , 所以()32f x ≤ . 由(Ⅰ)得()221331244f x x x x ⎛⎫≥-+=-+≥ ⎪⎝⎭, 又因为11932244f ⎛⎫=> ⎪⎝⎭,所以()34f x >, 综上,()33.42f x <≤ 考点:函数的单调性与最值、分段函数.【思路点睛】(I )先用等比数列前n 项和公式计算231x x x -+-,再用放缩法可得23111x x x x -≤-++,进而可证()21f x x x ≥-+;(II )由(I )的结论及放缩法可证()3342f x <≤. 5.【2016高考新课标1文数】(本小题满分12分)已知函数()()()22e 1x f x x a x =-+-.(I)讨论()f x 的单调性;(II)若()f x 有两个零点,求a 的取值范围.【答案】见解析(II)()0,+∞ 【解析】试题分析:(I)先求得()()()'12.x f x x e a =-+再根据1,0,2a 的大小进行分类确定()f x 的单调性;(II)借助第一问的结论,通过分类讨论函数单调性,确定零点个数,从而可得a 的取值范围为()0,+∞.③若2e a <-,则()21ln a ->,故当()()(),1ln 2,x a ∈-∞-+∞时,()'0f x >,当()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减. (II)(i)设0a >,则由(I)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又()()12f e f a =-=,,取b 满足b <0且ln 22b a <, 则()()()23321022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭,所以()f x 有两个零点. (ii)设a =0,则()()2x f x x e =-所以()f x 有一个零点.考点:函数单调性,导数应用【名师点睛】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.。