全国大联考2021届高三第三次联考9月数学数学(理科)-Y试卷
湖南师大附中2025届高三月考数学(三)试卷及答案

大联考湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}0,1,2,3的真子集个数是()A .7B .8C .15D .162.“11x -<”是“240x x -<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是)4,3(a a ,其中0a ≠,则sin2α=()A .43B .725C .2425D .2425-4.设向量a,b 满足+=-=a b a b ,则⋅a b 等于()A .B .2C .5D .85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x y m -=总有公共点,则m的取值范围是()A.1m ≥B .01m <≤C .05m <<,且1m ≠D .1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A .13B .23C .23-D .13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =11A B =()A .1B .4C .7D .1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266n nS b d a b d c c a ⎡⎤=++++-⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列()()(),11,2ab a b a +++.()()()2,,11b a n b n cd ++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A .2B .6C .12D .20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若()202422024012202412x a a x a x a x +=++++ ,则下列正确的是()A .02024a =B .20240120243a a a +++= C .012320241a a a a a -+-++= D .12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值点C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()()1122,,,A x y B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A .5OA OB ⋅=-B .直线MN 恒过定点C .点M 的轨迹方程是()()22110y x y -+=≠D .AB MN选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数12,z z 的模长为1,且21111z z +=,则12z z +=_____.13.在ABC 中,角,,A B C 所对的边分别为,,a b c 已知5,4a b ==,()31cos 32A B -=,则sin B =_____.14.若正实数1x 是函数()2e e x f x x x =--的一个零点,2x 是函数()g x =()()3e ln 1e x x ---的一个大于e 的零点,则()122e ex x -的值为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A B 、两方案的优劣.(结果精确到万元,参考数据:10101.1 2.594,1.259.313≈≈)如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,22AD AB BC ==2=.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.已知函数()()e sin cos ,x f x x x f x =+-'为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的两个焦点为12,F F P、为椭圆C 上一动点,设12F PF ∠θ=,当23πθ=时,12F PF ∆.(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点(M N M 、在,B N 之间),若Q 为椭圆C上一点,且OQ OM ON =+,①求OBM OBNSS ∆∆的取值范围;②求四边形OMQN 的面积.飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投掷出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投掷次数X 的均值()()1(k E X kP k ∞===∑()1lim n n k kP k ∞→=⎫⎛⎫⎪ ⎪⎝⎭⎭∑;(2)对于两个离散型随机变量,ξη,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()()()(1211,,mni i i j j j i j i p x p x p x y p y p y p x ξη========∑∑,)j y .)ξη1x 2x ...n X 1y ()11,p x y ()21,p x y ...()1,n p x y ()21p y 2y ()12,p x y ()22,p x y ...()2,n p x y ()22p y ...⋯⋯...⋯...my ()1,m p x y ()2,m p x y ...(),n m p x y ()2m p y ()11p x ()12p x ...()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}j i P y x ηξ===∣{}{}()()1,,j i i j i i P y x p x y P x p x ηξξ====.可以发现i x ηξ=∣依然是一个随机变量,可以对其求期望{}{}()111mi j j i j i E x y P y x p x ηξηξ===⋅===∑∣∣.()1,mj i j j y p x y =∑(i )上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ∣,求{}E E ηξ⎡⎤⎣⎦∣;(ii )若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”,1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.炎德・英才大联考湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案C A C B B D A B BC ACD BC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合{}0,1,2,3共有42115-=(个)真子集.故选C .2.A 【解析】解不等式240x x -<,得04x <<,解不等式11x -<,得02x <<,所以“11x -<”是“240x x -<”的充分不必要条件.3.C 【解析】根据三角函数的概念,2442sin cos 2tan 24tan ,sin23311tan 25y a x a αααααα======+,故选C .4.B 【解析】()()()22111911244⎡⎤⋅=+--=-=⎣⎦a b a b a b .5.B 【解析】易得原点到直线的距离1d ==,故直线为单位圆的切线,由于直线与双曲线2215x y m -=总有公共点,所以点()1,0±必在双曲线内或双曲线上,则01m <≤.6.D 【解析】依题意函数()f x 的图象关于原点对称,所以()f x 为奇函数,因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20251f f =,而()()11f f -=-,所以由()()2025112f f -=-可得()113f =,而()()13f f =-,所以()121log 323m --=,解得13m =-.7.A 【解析】上下底面所在外接圆的半径分别为123,4r r ==,过点112,,,A A O O 的截面如图:22222121534,543,1OO OO h OO OO =-==-∴=-=,故选A .8.B 【解析】由题意,得6,6c a d b =+=+,则由()()()772223866b d a b d c c a ⎡⎤++++-=⎣⎦得()()7[26212(6b b a b b a ++++++6)]()762386a a ++-=,整理得()321ab a b ++=,所以773aba b +=-<.因为,a b 为正整数,所以3ab =或6.因此有6,3a b ab +=⎧⎨=⎩或5,6.a b ab +=⎧⎨=⎩而63a b ab +=⎧⎨=⎩无整数解,因此6ab =.故选B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令0x =,则01a =,故A 错误;对于B :令1x =,则20240120243a a a +++= ,故B 正确;对于C :令1x =-,则012320241a a a a a -+-++= ,故C 正确;对于D ,由()202422024012202412x a a x a x a x +=++++ ,两边同时求导得()20232202312320242024212232024x a a x a x a x ⨯⨯+=++++ ,令1x =-,则12320242320244048a a a a -++-=- ,故D 错误.故选BC .10.ACD 【解析】()()32sin ,2sin 2sin 4244f x x g x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()0f x =,则,4x k k ππ=-+∈Z ;令()0g x =,则3,4x k k ππ=+∈Z ,两个函数的零点是相同的,故选项A 正确.()f x 的最大值点是()2,,4k k g x ππ+∈Z 的最大值点是32,4k k ππ-+∈Z ,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为2πω可知()f x 与()g x 有相同的最小正周期2π,故选项C 正确.曲线()y f x =的对称轴为,4x k k ππ=+∈Z ,曲线()y g x =的对称轴为5,4x k k ππ=+∈Z ,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.设直线AB 的方程为2y tx =+(斜率显然存在),221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立22,4,y tx x y =+⎧⎨=⎩消去x 整理可得2480x tx --=,由韦达定理得12124,8x x t x x +==-,A .22121212124,84444x x y y OA OB x x y y =⋅=⋅=+=-+=- ,故A 错误;B .抛物线C 在点A 处的切线为21124x x x y ⎛⎫=+ ⎪⎝⎭,当2y =-时,11121244282222x x x x x t x x =-=-=+=-,即()2,2N t -,直线MN 的方程为()122y x t t +=--,整理得xy t=-,直线MN 恒过定点(0,0),故B 正确;C .由选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()()22110y x y -+=≠,故C 正确;D.222t MN +==,AB =则()2221412222t AB MNt +⎫==+,,m m =≥则12ABm MN m ⎛⎫=- ⎪⎝⎭,设()1,f m m m m =-≥,则()2110f m m=+>',当m ≥,()f m 单调递增,所以()min f m f==,故D 错误.故选BC .三、填空题:本题共3小题,每小题5分,共15分.12.1【解析】设()()12i ,,i ,z a b a b z c d c d =+∈=+∈R R ,因为21111z z +=,所以2122111z zz z z z +=.因为11221,1z z z z ==,所以121z z +=,所以()()i i i 1a b c d a c b d -+-=+-+=,所以1,0a c b d +=+=,所以()()12i 1z z a c b d +=+++=.13.74【解析】在ABC 中,因为a b >,所以A B >.又()31cos 32A B -=,可知A B-为锐角且()sin 32A B -=.由正弦定理,sin 5sin 4A aB b ==,于是()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦.将()cos A B -及()sin AB -的值代入可得3sin B B =,平方得2229sin 7cos 77sin B B B ==-,故7sin 4B =.14.e 【解析】依题意得,1211e e 0x x x --=,即()()12311122e e ,0,e ln 1e 0x x x x x x -=>---=,即()()3222e ln 1e ,e x x x --=>,()()()131122e e e e ln 1x x x x x ∴-==--,()()()()()()211ln 111112212e e ln 1e ,e e ln 1e e x x x x x x x x -+++⎡⎤∴-=--∴-=--⎣⎦,又22ln 1,ln 10,x x >->∴ 同构函数:()()1e e ,0x F x x x +=->,则()()312ln 1e F x F x =-=,又()()111e e e e e 1e x x x x F x x x +++=-+=-+',00,e e 1,e 10x x x >∴>=∴-> ,又()()1e 0,0,x x F x F x +>'>∴单调递增,()()()3122212222e ln 1e e ln 1,e e e ex x x x x x ---∴=-∴===.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为()1010110%26⨯+≈(万元).……(3分)(2)A 方案10年共获利:()()1091.2511125%125%33.31.251-+++++=≈- (万元),……(5分)到期时银行贷款本息为()1010110%25.9⨯+≈(万元),所以A 方案净收益为:33.325.97-≈(万元),……(7分)B 方案10年共获利:()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= (万元),……(9分)到期时银行贷款本息为()()()()101091.11.11110%110%110%17.51.11-++++++=≈- (万元),……(11分)所以B 方案净收益为:23.517.56-≈(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接PQ ,有PQ ⊥平面ABCD ,所以PQ CD ⊥.在ACD 中,2222cos 54cos AC AD CD AD CD ADC ADC ∠∠=+-⋅⋅=-.同理,在ABC 中,有222cos AC ABC ∠=-.又因为180ABC ADC ∠∠+= ,所以()1cos ,0,1802ADC ADC ∠∠=∈ ,所以60ADC ∠= ,3AC =故222AC CD AD +=,即AC CD ⊥.又因为,,PQ AC Q PQ AC ⋂=⊂平面PAC ,所以CD ⊥平面PAC .CD ⊂平面PCD ,所以平面PCD ⊥平面PAC .……(5分)过A 作AH 垂直PC 于点H ,因为平面PCD ⊥平面PAC ,平面PCD ⋂平面PAC PC =,且AH ⊂平面PAC ,有AH ⊥平面PCD .……(7分)(2)依题意,22AQ PA PQ DQ =-=.故Q 为,AC BD 的交点,且2AQ ADCQ BC==.所以2222326,333AQ AC PQ PA AQ ===-.过C 作直线PQ 的平行线l ,则,,l AC CD 两两垂直,以C 为原点建立如图所示空间直角坐标系,则:()()36131,0,0,0,,0,3,0,,,03322D P A B ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()326232613261,0,0,0,,0,,,,,3333263CD CP AP BP ⎛⎛⎛===-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .设平面PCD 的法向量为(),,x y z =m ,则()0,0,3CD x CP y ⎧⋅==⎪⎨⋅=+=⎪⎩m m取()0,=-m .同理,平面PAB的法向量)1=-n ,1cos<,3⋅>==m n m n m n ……(14分)故所求锐二面角余弦值为13.……(15分)17.【解析】(1)由()e cos sin x f x x x =++',设()e cos sin x h x x x =++,则()e sin cos x h x x x '=-+,当0x ≥时,设()()e 1,sin x p x x q x x x =--=-,()()e 10,1cos 0x p x q x x ''=-≥=-≥ ,()p x ∴和()q x 在[)0,∞+上单调递增,()()()()00,00p x p q x q ∴≥=≥=,∴当0x ≥时,e 1,sin x x x x ≥+≥,则()()()e sin cos 1sin cos sin 1cos 0x h x x x x x x x x x '=-+≥+-+=-++≥,∴函数()e cos sin x h x x x =++在[)0,∞+上单调递增,()()02h x h ∴≥=,即当0x ≥时,()2f x '≥.……(7分)(2)由已知得()e sin cos 21x g x x x x =+---.①当0x ≥时,()()()e cos sin 220,x g x x x f x g x ≥''=++-=-∴ 在[)0,∞+上单调递增,又()()010,e 20g g πππ=-<=->∴ 由零点存在定理可知,()g x 在[)0,∞+上仅有一个零点.……(10分)②当0x <时,设()()2sin cos 0e x x xm x x --=<,则()()2sin 10exx m x '-=≤,()m x ∴在(),0∞-上单调递减,()()01m x m ∴>=,()e cos sin 20,e cos sin 20x x x x g x x x '∴++-<∴=++-<,()g x ∴在(),0∞-上单调递减,又()()010,e 20g g πππ-=-<-=+> ,∴由零点存在定理可知()g x 在(),0∞-上仅有一个零点,综上所述,()g x 有且仅有2个零点.……(15分)18.【解析】(1)设()00,,P x y c 为椭圆C 的焦半距,12122F PF p S c y ∆=⋅⋅,00y b <≤ ,当0y b =时,12F PF S 最大,此时()0,P b 或()0,P b -,不妨设()0,P b ,当23πθ=时,得213OPF OPF π∠∠==,所以c =,又因为12F PF S bc ∆==,所以1,b c ==从而2,a =∴椭圆C 的标准方程为2214x y +=.……(3分)(2)由题意,直线l 的斜率显然存在.设()()1122: 2.,,,l y kx M x y N x y =+.……(4分)1112OBM S OB x x ∆∴=⋅=,同理,2OBN S x ∆=.12OBM OBN S xS x ∆∆∴= (6))联立()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,……(8分)()()()22223164121416430,4k k k k ∴∆=-⨯⨯+=->∴>.……(9分)又121212221612,0,,1414k x x x x x x k k-+==>∴++ 同号.()()2222122121212216641421231414k x x x x k k x x x x kk-⎛⎫ ⎪++⎝⎭∴===+++.()22212122364641616,4,,42143331434x x k k x x k k ⎛⎫>∴=∈∴<++< ⎪⎛⎫+⎝⎭+ ⎪⎝⎭ .令()120x x λλ=≠,则116423λλ<++<,解得()()11,11,3,,11,333OBM OBN S S λ∆∆⎛⎫⎛⎫∈∴∈ ⎪ ⎪⎝⎭⎝⎭ .……(12分)(3)()1212,,OQ OM ON Q x x y y =+∴++.且四边形OMQN 为平行四边形.由(2)知()12121222164,41414k x x y y k x x k k-+=∴+=++=++,22164,1414kQ k k -⎛⎫∴ ⎪++⎝⎭.而Q 在椭圆C 上,2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭.化简得2154k =.……(14分)∴线段161219357115224MN ==⋅+,……(15分)O到直线MN的距离d == (16))OMQN 574S MN d ∴=⋅=四边形.……(17分)19.【解析】(1)()115,1,2,3,66k P X k k -⎛⎫==⨯= ⎪⎝⎭ ,所以()()215111,1,2,3,,5126666nk n k k k P X k k kP k n =⎛⎫⋅====⨯+⨯+⨯ ⎪⎝⎭∑ ,记211112666n n S n =⨯+⨯++⨯ ,则2311111126666n n S n +=⨯+⨯++⨯ .作差得:1211111511111111661666666556616nn n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- ,所以()16111661,555566556n nn n n k n S kP k S n =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+==-+⎢⎥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑.故()()()116616lim lim 5565nn n n k k E X kP k kP k n ∞∞∞→→==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑.……(6分)(2)(i ){}E ηξ∣所有可能的取值为:{},1,2,,i E x i n ηξ== ∣.且对应的概率{}{}()()()1,1,2,,i i i p E E x p x p x i n ηξηξξ====== ∣∣.所以{}{}()()()()()111111111,,,nnmn m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫⎡⎤==⋅=⋅= ⎪⎣⎦ ⎪⎝⎭∑∑∑∑∑∣∣又()()()()21111111,,,nmmnmn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑,所以{}E E E ηξη⎡⎤=⎣⎦∣.……(12分)(ii ){}{}{}12355101,;12,;22,63636E E p E E p E p ηξηηξηη==+===+====∣∣,{}()()5513542122636363636E E E E E ηηξηηη⎡⎤==++++⨯=+⎣⎦∣,故42E η=.……(17分)。
重庆市2025届高三上学期9月大联考数学试题

重庆市2025届高三上学期9月大联考数学试题一、单选题1.已知集合{}4,3,2,0,2,3,4A =---,{}2290B x x =-≤,则集合A B ⋂的真子集的个数为( ) A .7 B .8C .31D .322.若复数z 满足1i 1iz=--+,则z =( ) A .22i +B .22i --C .2i -D .2i3.已知,0a b >且2ab =,则(1)(2)a b ++的最小值为( )A .4B .6C .D .84.已知向量,a b rr 的夹角为2π3,且5,4a b ==r r ,则a r 在b r 方向上的投影向量为( )A .38b -rB .58b -rC .58b rD .78b -r5.已知α,(0,π)β∈,且3cos 5α=,5sin()13αβ-=,则cos β=( ) A .5665B .1665C .3365D .63656.命题()()()227,12:4ln 21,21x ax x p f x a x a x ⎧+--≤≤⎪=⎨++---<<-⎪⎩在(]2,2x ∈-上为减函数,命题()4:1ax q g x x +=-在()1,+∞为增函数,则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件7.某校高三数学老师共有20人,他们的年龄分布如下表所示:下列说法正确的是( )A .这20人年龄的80%分位数的估计值是46.5B .这20人年龄的中位数的估计值是41C .这20人年龄的极差的估计值是55D .这20人年龄的众数的估计值是358.已知函数()()ln 11f x x a x =-++,()()21g x a x =+.当1x ≥时,()()20f x g x +≥恒成立,则a 的取值范围为( ) A .()0,1B .()1,+∞C .(]0,1D .[)1,+∞二、多选题9.某学校有甲、乙、丙三个社团,人数分别为14、21、14,现采用分层抽样的方法从中抽取7人,进行某项兴趣调查.已知抽出的7人中有5人对此感兴趣,有2人不感兴趣,现从这7人中随机抽取3人做进一步的深入访谈,用X 表示抽取的3人中感兴趣的学生人数,则( )A .从甲、乙、丙三个社团抽取的人数分别为2人、3人、2人B .随机变量57,7X B ⎛⎫~ ⎪⎝⎭C .随机变量X 的数学期望为157D .若事件A =“抽取的3人都感兴趣”,则()27P A =10.在2024年巴黎奥运会艺术体操项目集体全能决赛中,中国队以69.800分的成绩夺得金牌,这是中国艺术体操队在奥运会上获得的第一枚金牌.艺术体操的绳操和带操可以舞出类似四角花瓣的图案,它可看作由抛物线2:2(0)C y px p =>绕其顶点分别逆时针旋转90180270o o o 、、后所得三条曲线与C 围成的(如图阴影区域),,A B 为C 与其中两条曲线的交点,若1p =,则( )A .开口向上的抛物线的方程为212y x = B . AB =4C .直线x y t +=截第一象限花瓣的弦长最大值为34D .阴影区域的面积大于411.已知直线12l l ∥,A 是12,l l 之间的一定点并且点A 到12,l l 的距离分别为1,2,B 是直线1l 上一动点,作AC AB ⊥,且使AC 与直线2l 交于点C ,1()3AG AB AC =+u u u r u u u r u u u r,则( )A .ABC V 面积的最小值为2B .点G 到直线1l 的距离为定值C .当GB GC =u u u r u u u r 时,GAB △D .GB GC ⋅u u u r u u u r的最大值为2-三、填空题12.一个词典里包含10个不同的单词,其中有4个以字母“A ”开头,其余以其他字母开头.从中选择5个单词组成一个新的子集,其中至少包含两个“A ”开头,一共有个这样的子集.(要求用数字作答)13.在()3nx -的展开式中,若2x 的系数为()2n a n ≥,则2323333nna a a +++=L . 14.已知函数()()()211022420x x f x x x x ⎧+>⎪=⎨⎪++≤⎩,若函数()()()2g x f f x m =--,当()g x 恰有3个零点时,求m 的取值范围为.四、解答题15.如图,在三棱锥P ABC -中,AB BC ==,6PA PB PC AC ====,点O 是AC 的中点.(1)求POB V 绕PO 旋转一周形成的几何体的体积; (2)点M 在棱BC 上,且13BM BC =,求直线PC 与平面PAM 所成角的大小. 16.已知ABC V 的内角,,A B C 所对的边分别是sin sin ,,,sin a c A Ba b c a b C--=+. (1)求角B ;(2)若ABC V 外接圆的面积为12π,且ABC V 为锐角三角形,求ABC V 周长的取值范围. 17.夏日天气炎热,学校为高三备考的同学准备了绿豆汤和银耳羹两种凉饮,某同学每天都会在两种凉饮中选择一种,已知该同学第1天选择绿豆汤的概率是23,若在前一天选择绿豆汤的条件下,后一天继续选择绿豆汤的概率为13,而在前一天选择银耳羹的条件下,后一天继续选择银耳羹的概率为12,如此往复.(提示:设n A 表示第n 天选择绿豆汤)(1)求该同学第一天和第二天都选择绿豆汤的概率 (2)求该同学第2天选择绿豆汤的概率;(3)记该同学第n 天选择绿豆汤的概率为n P ,求出n P 的通项公式.18.已知数列{}n a 的前n 项和为n S ,满足2235n S n n =+,数列{}n b 是等比数列,公比1330,6,24q b b a >==+.(1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足111,221,,2k k n kk n c c b n +⎧<<==⎨=⎩,其中*k ∈N . (i )求数列{}n c 的前2024项和;(ii )求()*221i i ni a c n =∈∑N .19.已知双曲线E的中心为坐标原点,左焦点为(),渐近线方程为y =.(1)求E 的方程;(2)若互相垂直的两条直线12,l l 均过点()(,0n n P p p >,且)*n ∈N ,直线1l 交E 于,A B 两点,直线2l 交E 于,C D 两点,,M N 分别为弦AB 和CD 的中点,直线MN 交x 轴于点()()*,0n Q t n ∈N ,设2n n p =.①求n t ;②记n a PQ =,()*21n b n n =-∈N ,求211(1)nkk k k k b b a +=⎡⎤--⎣⎦∑.。
2021年高三三校9月联考数学(文)试题 含答案

2021年高三三校9月联考数学(文)试题含答案本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号填写在答题卡的密封线内。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
第一部分选择题(共50分)一、选择题:(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,集合,,则集合()A.B. C.D.2.如果复数为纯虚数,则实数的值 ( )A. 等于1B. 等于2C. 等于1或2D. 不存在3.为假命题,则的取值范围为()A. B. C. D.4.对某商店一个月30天内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53C.47,45,56 D.45,47,535.设是两条不同直线,是两个不同的平面,下列命题正确的是()A.且则B.且,则C.则D.则6.如图,三棱柱的棱长为2,底面是边长为2的正三角形,,正视图是边长为2 的正方形,俯视图为正三角形,则左视图的面积为()A.4 B. C. D.27.若是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.8.函数的图像大致是( )9.在平面直角坐标系中,若不等式组(为常数)所表示平面区域的面积等于2,则的值为()A. -5B. 1C. 2D. 310.已知函数在点(1,2)处的切线与的图像有三个公共点,则的取值范围是( )A .B .C .D .第二部分 非选择题(100分)二、填空题:本题共5小题,考生作答4小题,每小题5分,共20分(一)必做题(11~13题)11.已知向量(3,1),(0,1),(,3),2,a b c k a b c k ===+=若与垂直则 .12.在中,角的对边为,若,则角= .13.数列满足表示前n 项之积,则=_____________.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14. (几何证明选讲选做题)如图所示,是⊙的两条切线,是圆上一点,已知,则= .15. (坐标系与参数方程选做题)已知曲线的极坐标方程为,曲线的极坐标方程为(,曲线、曲线的交点为,则弦长为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知向量,函数·,且最小正周期为.(1)求的值;(2)设,求的值.17.(本小题满分12分)某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者。
全国卷2021年高考第三次联考三模数学试题(理)含答案

姓名 准考证号 绝密★启用前2022届高中毕业班联考理科数学注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
时量120分钟,满分150分。
2.答卷前,考生务必将自己的性名、准考证号填写在答题卡相应位置上。
3.全部答案在答题卡上完成,答在本试题卷上无效。
4.考试结束后.将本试题卷和答题卡一并交回。
第I 卷一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.欧拉公式x i x e ix sin cos +=(i 是虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数之间的关系,被誉为“数学中的天桥。
根据欧拉公式.则复数i e41π在复平面内对应的点所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合:A = {0)2)(2(|≤+-x x x },B= {16|22=+y x y },则=B A A.[-3, -3] B.[-2,2]C.[-4,4]D. 03.等差数列{n a }的公差不为0, 210282624a a a a +=+},则S 13 =A. -1B.OC.-2D.-34.如图正方体AC 1,点M 为线段BB 1的中点,现用一个过点M,C,D 的平面去截正方体,得到上下两部分,用如图的角度去观察上半部分几何体,所得的侧视图为5.已知两个随机变量y x ,之间的相关关系如下表所示:根据上述数据得到的回归方程为a x b yˆˆˆ+=,则大致可以判断 A.a ˆ>0,b ˆ<0 B.a ˆ<0,b ˆ<0 C. aˆ>0,b ˆ>0 D.a ˆ<0,b ˆ>0 6.已知椭圆12222=+b y a x (a>b>0)的左右焦点分别为F 1、F 2,A 为椭圆上一动点(异于左右顶点),若21F AF ∆的周长为6且面积的最大值为12222=-by a x ,则椭圆的标准方程为A.13422=+y xB.12322=+y xC.1222=+y x D.1422=+y x7.执行如图所示的程序框图,则输出的S 为 A. 55 B. 45 C. 66 D. 408.《中国诗词大会》(第二季)亮点颇多。
2021届全国天一大联考新高考模拟试卷(一)数学(理科)

2021届全国天一大联考新高考模拟试卷(一)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A. {|0}x x <B. {|01}x xC. {|10}x x -<D. {|1}x x -【答案】D 【解析】 【分析】先求出集合A ,B ,再求集合B 的补集,然后求()RAB【详解】{|11},{|0}A x x B x x =-=<,所以 (){|1}RA B x x =-.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.2.若复数z 与其共轭复数z 满足213z z i -=+,则||z =( )A.B.C. 2D.【答案】A 【解析】 【分析】设z a bi =+,则2313z z a bi i -=-+=+,得到答案.【详解】设z a bi =+,则222313z z a bi a bi a bi i -=+-+=-+=+,故1a =-,1b =,1z i =-+,z =.故选:A .【点睛】本题考查了复数的计算,意在考查学生的计算能力. 3.抛物线214y x =的准线方程是( ) A. 1x =- B. 2x =- C. 1y =- D. 2y =-【答案】C 【解析】试题分析:由题意得,抛物线可化为24x y =,则2p =,所以准线方程为1y =-,故选C .考点:抛物线的几何性质.4.若向量(1,2)a x =+与(1,1)b =-平行,则|2+|=a b ( )A.B.2C. D.【答案】C 【解析】 【分析】根据向量平行得到3x =-,故()|2+|=3,3a b -,计算得到答案.【详解】向量(1,2)a x =+与(1,1)b =-平行,则()12x -+=,故3x =-,()()()|2+|=4,41,13,3a b -+-=-=故选:C .【点睛】本题考查了根据向量平行求参数,向量的模,意在考查学生的计算能力.5.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,则下列命题中,错误的是( ) A. 若,m n m α⊥⊥,则//n α B. 若//,//,m n m n αα⊄,则//n α C. 若,,m n m n αβ⊥⊥⊥,则αβ⊥ D. 若//,//m ααβ,则//m β或m β⊂【答案】A 【解析】 【分析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于A :若,m n m α⊥⊥,则//n α或n ⊂α,故A 错误;BCD 正确. 故选:A .【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力. 6.已知函数()y f x =的部分图象如图,则()f x 的解析式可能是( )A. ()tan f x x x =+B. ()sin 2f x x x =+ C. 1()sin 22f x x x =- D. 1()cos 2f x x x =-【答案】C 【解析】 【分析】首先通过函数的定义域排除选项A ,再通过函数的奇偶性排除选项D,再通过函数的单调性排除选出B ,确定答案.【详解】由图象可知,函数的定义域为R ,而函数()tan f x x x =+的定义域不是R,所以选项A 不符合题意; 由图象可知函数是一个奇函数,选项D 中,存在实数x , 使得1()cos ()2f x x x f x -=--≠-,所以函数不是奇函数,所以选项D 不符合题意;由图象可知函数是增函数,选项B ,()12cos 2[1,3]f x x =∈-'+,所以函数是一个非单调函数,所以选项C 不符合题意;由图象可知函数是增函数,选项C ,()1cos 20f x x =-≥,所以函数是增函数,所以选项C 符合题意. 故选:C【点睛】本题主要考查函数的图象和性质,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平.7.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加、、A B C 三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( ) A. 24 B. 36 C. 48 D. 64【答案】B 【解析】 【分析】根据题意,有两种分配方案,一是3:1:1,二是2:2:1,然后各自全排列,再求和.【详解】当按照3:1:1进行分配时,则有133318C A =种不同的方案;当按照2:2:1进行分配,则有233318C A =种不同的方案. 故共有36种不同的派遣方案, 故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.8.已知函数41()2x xf x -=,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( ) A. c b a << B. b a c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到0.321>,0.300.21<<,0.3log 20<,即可得解;【详解】解:因为41()222x x xxf x --==-,定义域为R ,()()22x x f x f x --=-=-故函数是奇函数,又2x y =在定义域上单调递增,2x y -=在定义域上单调递减,所以()22x x f x -=-在定义域上单调递增,由0.321>,0.300.21<<,0.3log 20< 所以()()()0.30.30.320.2log 2f f f >>即a b c >> 故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.9.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(..M R Pogson )又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()1221 2.5lg lg m m E E -=-.其中星等为i m 的星的亮度为()1,2i E i =.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的r 倍,则与r 最接近的是(当x 较小时, 2101 2.3 2.7x x x ≈++) A. 1.24 B. 1.25C. 1.26D. 1.27【答案】C 【解析】 【分析】根据题意,代值计算,即可得r ,再结合参考公式,即可估算出结果. 【详解】根据题意可得:()211 1.25 2.5lgE lgE -=-可得12110E lgE =,解得1110210E r E ==, 根据参考公式可得111 2.3 2.7 1.25710100r ≈+⨯+⨯=, 故与r 最接近的是1.26. 故选:C.【点睛】本题考查对数运算,以及数据的估算,属基础题.10.已知数列{}n a 的通项公式是6n n a f π⎛⎫=⎪⎝⎭,其中()sin()0||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭, 的部分图像如图所示,n S 为数列{}n a 的前n 项和,则2020S 的值为( )A. 1-B. 0C.12D. 3 【答案】D 【解析】 【分析】根据图像得到()sin(2)3f x x π=+,sin 33n n a ππ⎛⎫=+ ⎪⎝⎭,6n n a a +=,计算每个周期和为0,故20201234S a a a a =+++,计算得到答案.【详解】741234T πππ=-=,故T π=,故2ω=,()sin(2)f x x ϕ=+,2sin()033f ππϕ⎛⎫=+= ⎪⎝⎭, 故2,3k k Z ϕππ+=∈,故2,3k k Z πϕπ=-∈,当1k =时满足条件,故3πϕ=, ()sin(2)3f x x π=+,sin 633n n n a f πππ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭,()66sin 33n n a n a ππ++⎛⎫= ⎪⎝⎭=+, 13a =,20a =,332a =-,432a =-,50a =,632a =,每个周期和为0, 故202012343S a a a a =+++=. 故选:D .【点睛】本题考查了数列和三角函数的综合应用,意在考查学生计算能力和综合应用能力.11.已知双曲线22221(0,0)x y a b a b -=>>的右焦点为F ,过F 作直线b y x a=-的垂线,垂足为M ,且交双曲线的左支于N 点,若2FN FM =,则双曲线的离心率为( ) A. 3B.5 C. 2 D.3【答案】B 【解析】 【分析】计算得到2,a ab M c c ⎛⎫- ⎪⎝⎭,根据2FN FM =得到222,a ab N c c c ⎛⎫-- ⎪⎝⎭,代入双曲线方程解得答案.【详解】易知直线NF :()a y x c b =-,联立方程()b y x aa y x cb ⎧=-⎪⎪⎨⎪=-⎪⎩,解得2,a ab M c c ⎛⎫-⎪⎝⎭. 2FN FM =,故222,a ab N c c c ⎛⎫-- ⎪⎝⎭,故2222222241a c c a b a c b⎛⎫- ⎪⎝⎭-=, 化简整理得到:22241e e e ⎛⎫--= ⎪⎝⎭,解得e =故选:B .【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和综合应用能力.12.已知函数2(1)1,2()1(2),22x x f x f x x ⎧--+<⎪=⎨-≥⎪⎩,若函数()()F x f x mx =-有4个零点,则实数m 的取值范围是( )A. 5126⎛⎫⎪⎝⎭B. 52⎛-⎝C. 1,320⎛-⎝ D. 11,206⎛⎫⎪⎝⎭ 【答案】B 【解析】 【分析】根据函数零点定义可知()f x mx =有四个不同交点,画出函数图像可先求得斜率的大致范围.根据函数在24x ≤<和46x ≤<的解析式,可求得y mx =与两段函数相切时的斜率,即可求得m 的取值范围. 【详解】函数2(1)1,2()1(2),22x x f x f x x ⎧--+<⎪=⎨-≥⎪⎩,函数()()F x f x mx =-有4个零点,即()f x mx =有四个不同交点. 画出函数()f x 图像如下图所示:由图可知,当24x ≤<时,设对应二次函数顶点为A ,则13,2A ⎛⎫⎪⎝⎭,11236OAk ==, 当46x ≤<时,设对应二次函数的顶点为B ,则15,4B ⎛⎫⎪⎝⎭,114520OBk ==. 所以11206m <<. 当直线y mx =与24x ≤<时的函数图像相切时与函数()f x 图像有三个交点,此时()211322y mxy x =⎧⎪⎨=--+⎪⎩,化简可得()22680x m x +-+=.()226480m ∆=--⨯=,解得322,m =- 322m =+; 当直线y mx =与46x ≤<时的函数图像相切时与函数()f x 图像有五个交点,此时()211544y mxy x =⎧⎪⎨=--+⎪⎩,化简可得()2410240x m x +-+=.()24104240m ∆=--⨯=,解得56,2m =562m =;故当()f x mx =有四个不同交点时56,3222m ⎛∈- ⎝. 故选:B.【点睛】本题考查了分段函数解析式的求法,函数零点与函数交点的关系,直线与二次函数相切时的切线斜率求法,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.13.我校高一、高二、高三共有学生1800名,为了了解同学们对“智慧课堂”的意见,计划采用分层抽样的方法,从这1800名学生中抽取一个容量为36的样本.若从高一、高二、高三抽取的人数恰好是从小到大排列的连续偶数,则我校高三年级的学生人数为_____. 【答案】700 【解析】 【分析】设从高三年级抽取的学生人数为2x 人,由题意利用分层抽样的定义和方法,求出x 的值,可得高三年级的学生人数.【详解】设从高三年级抽取的学生人数为2x 人,则从高二、高一年级抽取的人数分别为2x ﹣2,2x ﹣4. 由题意可得()()2222436x x x +-+-=,∴7x =. 设我校高三年级的学生人数为N ,再根据36271800N⨯=,求得N =700 故答案为:700.【点睛】本题主要考查分层抽样,属于基础题.14.已知实数,x y 满足24020x y y x y --≤⎧⎪≤⎨⎪+≥⎩,则3z x y =-的最大值为_______.【答案】22 【解析】 【分析】3y x z =-,作出可行域,利用直线的截距与b 的关系即可解决.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,由3z x y =-可得3y x z =-,观察可知,当直线3y x z =-过点B 时,z 取得最大值,由2402x y y --=⎧⎨=⎩,解得82x y =⎧⎨=⎩,即(8,2)B ,所以max 38222z =⨯-=.故答案为:22.【点睛】本题考查线性规划中线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.15.等差数列{}n a 的前n 项和为n S ,34310a S ==,,则11nk kS==∑_____.【答案】21nn + 【解析】 【分析】 计算得到()12n n n S +=,再利用裂项相消法计算得到答案. 【详解】3123a a d =+=,414610S a d =+=,故11a d ==,故()12n n n S +=, ()1111211122211111nn nk k k k n S k k k k n n ===⎛⎫⎛⎫==-=-= ⎪ ⎪++++⎝⎭⎝⎭∑∑∑. 故答案为:21nn +. 【点睛】本题考查了等差数列的前n 项和,裂项相消法求和,意在考查学生对于数列公式方法的综合应用. 16.古希腊数学家阿波罗尼奥斯发现:平面上到两定点A ,B 距离之比为常数(0λλ>且1)λ≠的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足3BP PE =.若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为________;若点P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为___________.【答案】 (1). 23 (2). 94【解析】 【分析】(1)以AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立如图所示的坐标系,设(,)P x y ,求出点P 的轨迹为22+12x y =,即得解;(2)先求出点P 的轨迹为222++12x y z =,P 到平面1B CF 的距离为3h =,再求出h 的最小值即得解.【详解】(1)以AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立如图所示的坐标系,则(6,0),(2,0),B E 设(,)P x y , 由3BP PE =得2222(6)3[(2)]x y x y -+=-+, 所以22+12x y =,所以若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为3(2)设点(,,)P x y z ,由3BP PE =得222222(6)3[(2)z ]x y z x y -++=-++,所以222++12x y z =,由题得1(3,3,3,),(6,0,3),(6,3,0),F B C所以11(3,3,0),(0,3,3),FB BC =-=-设平面1B CF 的法向量为000(,,)n x y z =, 所以100100·330,(1,1,1)·330n FB x y n n B C y z ⎧=-=⎪∴=⎨=-=⎪⎩,由题得(6,3,z)CP x y =--, 所以点P 到平面1B CF的距离为||||CP n h n ⋅== 因为2222222(++)(111)(),66x y z x y zx y z ++≥++∴-≤++≤, 所以minh ==M 到平面1BCF由题得1B CF ∆=, 所以三棱锥1MB CF -的体积的最小值为21934. 故答案为:(1). (2).94. 【点睛】本题主要考查空间几何中的轨迹问题,考查空间几何体体积的计算和点到平面距离的计算,考查最值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:(共60分)17.在锐角△ABC 中,a =________, (1)求角A ;(2)求△ABC 的周长l 的范围. 注:在①(cos,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-,②cos (2)cos A b c a C -=,③11()cos cos(),()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.【答案】(1)若选①,3π(2)(6+ 【解析】 【分析】(1)若选①,12m n ⋅=-,得到1cos 2A =,解得答案.(2)根据正弦定理得到4sin sin sin a b c A B C ===,故6ABC l B π⎛⎫=++ ⎪⎝⎭△到答案.【详解】(1)若选①,∵(cos,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-221cos sin 222A A ∴-+=-,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)4sin sin sin a b c A B C===, 故24sin 4sin 4sin 4sin 3ABC l B C B B π⎛⎫=++=-++⎪⎝⎭△ 6ABClB π⎛⎫∴=++ ⎪⎝⎭,锐角△ABC ,故62B ππ⎛⎫∠∈ ⎪⎝⎭,.2,633B πππ⎛⎫∴+∈ ⎪⎝⎭,(6ABC l ∴∈+△. (1)若选②,()cos 2cos A b c a C =-,则2cos cos cosb A a Cc A =+,2sin cos sin B A B =,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭,(2)问同上;(1)若选③11()cos (cos )24f x x x x =-=21cos 2x sin x x -14=12×1+cos 22x +2×sin 22x -14111=(cos 22)=sin(2)2226x x x π++, ()11sin 2462f A A π⎛⎫=∴+= ⎪⎝⎭,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)问同上;【点睛】本题考查了向量的数量积,正弦定理,三角恒等变换,意在考查学生的计算能力和综合应用能力. 18.在创建“全国文明城市”过程中,银川市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次)通过随机抽样,得到参加问卷调查的100人的得分统计结果如表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分Z ~N (μ,198),μ近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值....作代表), ①求μ的值;②利用该正态分布,求(88.5)P Z ≥;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: ①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.14≈.若()2,XN μσ,则()0.6826P X μσμσ-<≤+=,()220.9544P X μσμσ-<≤+=,()330.9974P X μσμσ-<≤+=.【答案】(1)①60.5μ=②0.0228(2)见解析,1654【解析】 【分析】(1)直接根据公式计算得到60.5μ=,14σ=,计算得到答案.(2)获赠话费X 的可能取值为20,40,50,70,100,计算概率得到分布列,再计算数学期望得到答案. 【详解】(1)由题意得:3024013502160257024801190460.5100⨯+⨯+⨯+⨯+⨯+⨯+⨯=,∴60.5μ= ,∵14σ=≈,1(22)(88.5)(2)0.02282P u Z P Z P Z σμσμσ--<≤+>=>+==,(2)由题意知()()12P Z P Z μμ<=≥=,.获赠话费X 的可能取值为20,40,50,70,100,()13320248P X ==⨯=,()133********P X ==⨯⨯=,()11150248P X ==⨯=,()13111337024424416P X ==⨯⨯+⨯⨯=,()111110024432P X ==⨯⨯=,.∴X 的分布列为: X 20 40 50 70 100 P 3893218316132∴39131165()20405070100832816324E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了正态分布求概率,分布列和数学期望,意在考查学生的计算能力和应用能力. 19.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CM CP的值;若不存在,说明理由.【答案】(1)见证明;(2)见解析 【解析】 【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CMCP=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解. 【详解】(1)证明:因为四边形ABCD 为直角梯形,且//AB DC , 2AB AD ==,2ADC π∠=,所以22BD =, 又因为4,4CD BDC π=∠=.根据余弦定理得22,BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面 (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE ,因为6PB PD ==,所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD , 平面ABCD平面PBD BD =,PE ⊥平面ABCD .如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CMCPλλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,易得平面PBD 的一个法向量为(2,2,0)BC =.设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM由00n AB n AM ⎧⋅=⎨⋅=⎩得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.因为平面PBD 与平面ABM 所成的锐二面角为3π12=,解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做. 20.已知函数21()(1)ln(1)()2f x x x ax x a R =++--∈ (1)设()'()h x f x =,试讨论()h x 的单调性;(2)若函数()f x 在(0,)+∞上有最大值,求实数a 的取值范围 【答案】(1)在11,1a ⎛⎫-- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)01a << 【解析】 【分析】(1)计算()()()ln 1h x f x x ax '==+-,()11h x a x '=-+,讨论0a ≤,0a >两种情况,计算得到答案. (2)讨论0a ≤,1a ≥,01a <<三种情况,求导得到函数单调区间,110h a ⎛⎫->⎪⎝⎭,由零点存在性定理,存在011,x t a ⎛⎫∈- ⎪⎝⎭,使得()00h x =,计算最值得到答案.【详解】(1)()()ln 1f x x ax '=+-,令()()()ln 1h x f x x ax '==+-, ()11h x a x '=-+; 当0a ≤时,()0h x '>,()'fx ∴在()1,-+∞上递增,无减区间;当0a >时,令()0h x '>,则111x a -<<-,令()0h x '<,则11x a>-, 所以()'fx 在11,1a⎛⎫-- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减; (2)由(1)可知,当0a ≤时,()'f x ∴在()0,∞+上递增,()()''00f x f ∴>=,()f x ∴在()0,∞+上递增,无最大值,不合题意;当1a ≥时,()1101h x a a x '=-<-≤+,()'f x 在()0,∞+上递减, 故()()''00f x f <=,()f x ∴在()0,∞+上递减,无最大值,不合题意; 当01a <<时,110a ->,由(1)可知()'f x 在10,1a ⎛⎫- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减; 设()1ln g x x x =--,则()1x g x x-'=; 令()0g x '<,则01x <<;令()0g x '>,则1x >,()g x ∴在()0,1上单调递减,在()1,+∞单调递增,()()10g x g ∴≥=,即ln 1x x ≤-,由此,当0x >时,1≤<ln x <所以,当0x >时,()()12h x ax a x <<+=-.取241t a =-,则11t a>-,且()20h t <-=, 又因为()1100h h a ⎛⎫->= ⎪⎝⎭, 所以由零点存在性定理,存在011,x t a ⎛⎫∈-⎪⎝⎭,使得()00h x =;. 当()00,x x ∈时,()0h x >,即()0f x '>; 当()0,x x ∈+∞时,()0h x <,即()0f x '<;所以()f x 在()00,x 上单调递增,在()0,x +∞上单调递减, 故函数在()0,∞+上有最大值()0f x . 综上,01a <<.【点睛】本题考查了函数的单调性,根据最值求参数,意在考查学生的计算能力和综合应用能力.21.已知O 为坐标原点,椭圆2222:1(0)x y C a b a b +=>>的左,右焦点分别为1F ,2F ,2F 点又恰为抛物线2:4D y x =的焦点,以12F F 为直径的圆与椭圆C 仅有两个公共点.(1)求椭圆C 的标准方程;(2)若直线l 与D 相交于A ,B 两点,记点A ,B 到直线1x =-的距离分别为1d ,2d ,12||AB d d =+.直线l 与C 相交于E ,F 两点,记OAB ,OEF 的面积分别为1S ,2S . (ⅰ)证明:1EFF △的周长为定值; (ⅱ)求21S S 的最大值. 【答案】(1)2212x y +=;(2)(i )详见解析;(ii【解析】 【分析】(1)由已知求得2(1,0)F ,可得1c =,又以12F F 为直径的圆与椭圆C 仅有两个公共点,知b c =,从而求得a 与b 的值,则答案可求;(2)()i 由题意,1x =-为抛物线D 的准线,由抛物线的定义知,1222||||||AB d d AF BF =+=+,结合22||||||AB AF BF +,可知等号当且仅当A ,B ,2F 三点共线时成立.可得直线l 过定点2F ,根据椭圆定义即可证明11||||||EF EF FF ++为定值;()ii 若直线l 的斜率不存在,则直线l 的方程为1x =,求出||AB 与||EF可得21||||4S EF S AB ==;若直线l 的斜率存在,可设直线方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,3(E x ,3)y ,4(F x ,4)y ,方便联立直线方程与抛物线方程,直线方程与椭圆方程,利用弦长公式求得||AB ,||EF,可得2212||1()1||2S EF S AB k ==∈+,由此可求21S S 的最大值. 【详解】解:(1)因为2F 为抛物线2:4D y x =的焦点,故2(1,0)F所以1c =又因为以12F F 为直径的圆与椭圆C 仅有两个公共点知:b c =所以a =1b =所以椭圆C 的标准方程为:2212x y +=(2)(ⅰ)由题知,因为1x =-为抛物线D 的准线 由抛物线的定义知:1222||AB d d AF BF =+=+又因为22||AB AF BF ≤+,等号当仅当A ,B ,2F 三点共线时成立 所以直线l 过定点2F 根据椭圆定义得:112112||4EF EF FF EF EF FF FF a ++=+++==(ⅱ)若直线l 的斜率不存在,则直线l 的方程为1x = 因为||4AB =,||EF =21||||4S EF S AB == 若直线l 的斜率存在,则可设直线:(1)(0)l y k x k =-≠,设()11,A x y ,()22,B x y由24(1)y x y k x ⎧=⎨=-⎩得,()2222240k x k x k -++= 所以212224k x x k ++=,212244||2k AB x x k+=++= 设()33,E x y ,()44,F x y ,由2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩得,()2222124220k x k x k +-+-= 则2342412k x x k +=+,23422212k x x k-=+所以)23421||12k EF x k+=-==+则2212||11||242S EF S AB k ⎛⎫⎪⎛⎫===⨯∈ ⎪ ⎪ ⎪⎝⎭ ⎪+⎝⎭综上知:21SS 的最大值等于4【点睛】本题考查椭圆方程的求法,考查直线与椭圆、直线与抛物线位置关系的应用,考查计算能力,属于中档题.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭C 的极坐标方程为6cos 0ρθ-=. (1)写出直线l 和曲线C 的直角坐标方程;(2)已知点(1,0)A ,若直线l 与曲线C 交于,P Q 两点,,P Q 中点为M ,求||||||AP AQ AM 的值. 【答案】(1)10x y --=.22(3)9x y -+=.(2)2【解析】【分析】 (1)直接利用极坐标和参数方程公式计算得到答案.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩,代入方程得到125t t =-,12t t +=. 【详解】(1)直线:cos 4l πρθ⎛⎫+= ⎪⎝⎭,故cos sin 10ρθρθ--=, 即直线l 的直角坐标方程为10x y --=.因为曲线:6cos 0C ρθ-=,则曲线C 的直角坐标方程为2260x y x +-=,即22(3)9x y -+=.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入曲线C的直角坐标系方程得250t --=.设P ,Q 对应的参数分别为1t ,2t ,则125t t =-,12t t +=所以M对应的参数1202t t t +==120|t ||t |||||=||||2AP AQ AM t ==. 【点睛】本题考查了参数方程和极坐标方程,意在考查学生的计算能力和转化能力.[选修4-5:不等式选讲]23.已知函数()|2|f x x =+.(1)求不等式()(2)4f x f x x +-<+的解集;(2)若x ∀∈R ,使得()()(2)f x a f x f a ++恒成立,求a 的取值范围.【答案】(1) {}22x x -<<.(2) 22,3⎡⎤--⎢⎥⎣⎦. 【解析】【分析】(1)先由题意得24x x x ++<+,再分别讨论2x -≤,20x -<≤,0x >三种情况,即可得出结果; (2)先由含绝对值不等式的性质,得到()()22f x a f x x a x a ++=++++≥,再由题意,可得22a a ≥+,求解,即可得出结果.【详解】(1)不等式()()24f x f x x +-<+ 可化为24x x x ++<+,当2x -≤时,224x x --<+ ,2x >-,所以无解;当20x -<≤时,24x <+ 所以20x -<≤;当0x >时,224x x +<+,2x < ,所以02x <<,综上,不等式()()24f x f x x +-<+的解集是{}|22x x -<<.(2)因为()()22f x a f x x a x a ++=++++≥又x R ∀∈,使得()()()2f x a f x f a ++≥ 恒成立,则22a a ≥+,()2222a a ≥+,解得223a -≤≤-. 所以a 的取值范围为22,3⎡⎤--⎢⎥⎣⎦. 【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的思想,以及绝对值不等式的性质即可,属于常考题型.。
2021届百万联考高三9月联考数学试题(解析版)

2021届百万联考高三9月联考数学试题一、单选题1.已知集合{}24120A x x x =--≤,{}440B x x =->,则A B =( )A .{}12x x <≤ B .{}2x x ≥- C .{}16x x <≤ D .{}6x x ≥-【答案】C【解析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题. 2.已知复数1iz i=+,则=z ( ) A .1122i + B .1122i -C .1122-+i D .1122i -- 【答案】B【解析】利用复数的除法运算化简z ,由此求得z . 【详解】()()()1111111222i i i i z i i i i ⋅-+====+++⋅-,则1122z i =-. 故选:B 【点睛】本题考查复数的除法运算、共轭复数,考查运算求解能力.3.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A.1月29日景区A累计参观人次中特色景点a占比超过了1 3B.2月4日至2月10日特色景点a累计参观人次增加了9700人次C.2月6日至2月8日景区A累计参观人次的增长率大于特色景点a累计参观人次的增长率D.2月8日至2月10日景区A累计参观人次的增长率小于2月6日到2月8日的增长率【答案】D【解析】根据折线图逐个计算各选项中的数据,从而得到正确的选项.【详解】1月29日景区A累计参观人次中特色景点a的占比为1717152513<=,故A错误;2月4日至2月10日特色景点a累计参观人次增加了980060003800-=人次,故B 错误;2月6日至2月8日特色景点a累计参观人次的增长率为0.880.7470.7437-=,2月6日至2月8日景区A累计参观人次的增长率为1.88 1.67211.67167-=,因为7212137111167=>,所以C错误;2月8日至2月10日景区A累计参观人次的增长率为2.09 1.88211.88188-=,因为2121188167<,所以D正确.故选:D.【点睛】本题考查统计图表及其应用,考查学生的数据处理能力和计算能力,本题属于基础题.4.“23sin sin cos 20ααα--=”是“tan 2α=”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C【解析】先解方程,再根据解的情况可判断两者之间的条件关系. 【详解】因为23sin sin cos 20ααα--=,所以22sin sin cos 2cos 0αααα--=,即()()sin 2cos sin cos 0αααα-+=,sin 2cos 0αα-=或sin cos 0αα+=,若cos 0α=,则sin 0α=,这与22sin cos 1αα+=矛盾,故cos 0α≠,所以tan 2α=或tan 1α=-,故“23sin sin cos 20ααα--=是“tan 2α=”的必要不充分条件. 故选:C. 【点睛】本题考查三角恒等变换与必要不充分条件,考查推理论证能力和运算求解能力,本题属于基础题. 5.函数()22sin 1x f x x -=的部分图象是( ) A . B .C .D .【答案】A【解析】首先判断出()f x 为偶函数,然后结合06x π<<时,()f x 为负数,确定正确选项. 【详解】因为()()()222sin 12sin 1x x f x f x x x ----===-,所以()f x 是偶函数,则()f x 的图象关于y 轴对称,排除C ,D ;当06x π<<时,()0f x <,排除B.故选:A 【点睛】本题考查函数图象,考查推理论证能力.6.在平行四边形ABCD 中,E ,F 分别为CD ,BC 的中点,则AE =( )A .3142AD AF + B .1122AD AF + C .1324AD AF +D .12AD AF +【答案】A【解析】根据平面向量的加法法则运算可得解. 【详解】由题意可得12AE AD DE AD AB =+=+,12AB AF FB AF AD =+=-, 则3142AE AD AF =+. 故选:A. 【点睛】本题考查平面向量的线性运算,考查运算求解能力.属于基础题.7.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”.下图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD 内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为同一片“风叶”的概率为( )A .37B .47C .314D .1114【答案】A【解析】由从“数学风车”的八个顶点中任取两个顶点,得到基本事件的个数为28C 种,这两个顶点取自同一片“风叶”的基本事件有234C 种,结合古典概型的概率计算公式,即可求解. 【详解】由题意,从“数学风车”的八个顶点中任取两个顶点的基本事件有2828C =种,其中这两个顶点取自同一片“风叶”的基本事件有234C 12=, 根据古典概型的概率计算公式,可得所求概率123287P ==. 故选:A. 【点睛】本题主要考查了古典概型的概率计算,以及组合的概念及组合数的计算,其中解答中正确理解题意,根据组合数的计算公式求得基本事件的总数及所求事件所含有的基本事件的个数是解答的关键,着重考查分析问题和解答问题的能力.8.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,过原点的直线l 与双曲线C交于A ,B 两点,且120AFB ∠=︒,延长AF ,交双曲线C 于点M ,若2MF AF =,则双曲线C 的离心率为( ) A.B .73CD .3【答案】B【解析】设AF m =,结合已知条件和双曲线的定义求得MF ,AF ',MF ',利用余弦定理列方程,解方程求得,a c ,由此求得离心率. 【详解】如图,设双曲线C 的左焦点为F ',连接AF ',BF '.设AF m =,则2MF m =,2AF a m '=+,22MF a m '=+.由双曲线的对称性可知四边形AFBF '是平行四边形,且60F AF '∠=︒,则2222222cos 2cos FF AF AF AF AF F AF MF AM AF AM AF F AM⎧=+-⋅⋅∠⎪⎨=+-⋅''''''⋅∠''⎪⎩,即()()()()()()222222422223232c m a m m a ma m m a m m a m⎧=++-+⎪⎨+=++-+⎪⎩,解得310710a mc m⎧=⎪⎪⎨⎪=⎪⎩,故73cea==. 故选:B【点睛】本题考查双曲线的离心率,考查运算求解能力.二、多选题9.下列不等式不一定成立的是()A.若a b>,则22a b>B.若0a b>>,则b b ma a m+<+C.若4ab=,则4a b+≥D.若22ac bc>,则a b>【答案】ABC【解析】利用不等式的性质,用排除法逐项排除.【详解】对于A,当1a=-,2b=-时,22a b<,故A不一定成立;对于B,()()()()()b a m a b m b a mb b ma a m a a m a a m+-+-+-==+++,因为0a b>>,所以0b a-<,当0a m+>,0m<时,()()0b a ma a m->+,即b b ma a m+>+,故B不一定成立;对于C ,当0a <,0b <时,4a b +≤-,故C 不一定成立; 对于D ,因为22ac bc >,所以20c >,所以a b >,故D 一定成立. 故选:ABC. 【点睛】本题考查不等式的性质,考查推理论证能力.10.已知,M N 是函数())2cos 04f x x πωω⎛⎫=+-> ⎪⎝⎭的图象与x 轴的两个不同的交点,若MN 的最小值是4π,则( ) A .2ω=B .()f x 在5,08π⎡⎤-⎢⎥⎣⎦上单调递增 C .()f x 的图象关于直线8x π=-对称D .()f x 在[]0,3π上有6个零点 【答案】AC【解析】根据题设条件,结合三角函数的图象与性质,求得函数()2cos 24f x x π⎛⎫=+- ⎪⎝⎭.【详解】设()f x 的最小正周期为T ,由三角函数的图象与性质,可得min 1||4MN T =,即1244ππω⨯=,解得2ω=,则()2cos 24f x x π⎛⎫=+ ⎪⎝⎭由()222,4k x k k Z ππππ-≤+≤∈,解得()5,88k x k k Z ππππ-≤≤-∈, 当0k =时,588x ππ-≤≤-, 因为55,0,888πππ⎡⎤⎡⎤---⎢⎥⎢⎥⎣⎦⎣⎦,所以()f x 在5,08π⎡⎤-⎢⎥⎣⎦上不单调, 由()2,4x k k Z ππ+=∈,解得(),28k x k Z ππ=-∈, 即()f x 的对称轴方程是(),28k x k Z ππ=-∈, 当0k =时,8x π=-,则()f x 的图象关于直线8x π=-对称,因为[0,3]x π∈,所以252,444x πππ⎡⎤+∈⎢⎥⎣⎦,由()0f x =,即2cos(2)42x π+=,可得244x ππ+=,7915172325,,,,,444444ππππππ, 即37110,,,,2,,3444x ππππππ=,故()f x 在[]0,3π上有7个零点. 故选:AC. 【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中根据题意求得函数的解析式,熟练应用三角函数的图象与性质,逐项判定是解答的关键,着重考查推理论证能力,属于中档试题.11.在四棱锥P ABCD -中,侧面PAD ⊥平面ABCD ,PD AB =,四边形ABCD 是正方形,点E 是棱PB 的中点,则( ) A .PD ⊥平面ABCD B .//PD 平面ACE C .2PB AE = D .PC AE ⊥【答案】BC【解析】对于A ,因为PD 与AD 不一定垂直,所以PD 不一定垂直平面ABCD ,故A 错误.对于B ,根据//OE PD 可得//PD 平面ACE ,故B 正确.对于C ,根据侧面PAD ⊥平面ABCD ,可推得AB PA ⊥,从而可得2PB AE =,故C 正确.对于D ,通过计算可知,只有PD ⊥平面ABCD ,才能得到PC AE ⊥,故D 错误. 【详解】如图,对于A ,因为PD 与AD 不一定垂直,所以PD 不一定垂直平面ABCD ,故A 错误.对于B ,连接BD ,记ACBD O =,连接OE .因为四边形ABCD 是正方形,所以O为BD 的中点.因为,O E 分别为BD ,BP 的中点,所以//OE PD ,又PD ⊄平面ACE ,OE ⊂平面ACE ,则//PD 平面ACE ,故B 正确.对于C ,因为四边形ABCD 是正方形,所以CD AD ⊥,因为侧面PAD ⊥平面ABCD ,所以CD ⊥平面PAD .因为//AB CD ,所以AB ⊥平面PAD .因为PA ⊂平面PAD ,所以AB PA ⊥,则2PB AE =,故C 正确.对于D ,取BC 的中点F ,连接,EF AF .因为,E F 分别为BP ,BC 的中点,所以//EF PC .假设PC AE ⊥,则EF AE ⊥.设2PD AB ==,则1122EF PC ===AF ==.因为EF AE ⊥,所以AE ==PB =.因为2PD =,PB =,BD =222PD BD PB +=,所以PD BD ⊥,则PD ⊥平面ABCD .因为PD 与平面ABCD 不一定垂直,所以D 错误. 故选:BC. 【点睛】本题考查了直线与平面平行的判定定理,考查了平面与平面垂直的性质定理,空间两点之间的距离,考查空间想象能力与推理论证能力.属于基础题.12.若直线l 与曲线C 满足下列两个条件:(1)直线l 在点()00,P x y 处与曲线C 相切;(2)曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列结论正确的是( )A .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =B .直线:33l y x =-+在点()1,0P 处“切过曲线32:32C y x x =-+ C .直线:l y x =在点()0,0P 处“切过”曲线:x C y xe =D .直线33212:2l y x e e =-+在点32323,2P e e ⎛⎫⎪ ⎪⎝⎭处“切过”曲线ln : x C y x = 【答案】ABD【解析】分别求得曲线的导数,可得切线的斜率,得到切线方程,分别判断切点附近曲线的是否在直线两侧, 即可得到结论. 【详解】对于A ,由sin y x =,得cos y x '=,则01x y ='=从而可得曲线sin y x =在点()0,0P 处的切线为y x =. 当02x π-<<时,sin x x <,当02x π<<时,sin x x >,则曲线sin y x =在点()0,0P 附近位于直线l 的两侧,故A 正确.对于B ,由3232y x x =-+,得236y x x '=-,则13x y ='=-,从而可得曲线3232y x x =-+在点()1,0P 处的切线为33y x =-+.因为()()33232331x x x x -+--+=-,故当1x <时,323233x x x -+<-+,当1x >时,323233x x x -+>-+, 则曲线3232y x x =-+在点()1,0P 附近位于直线l 的两侧,故B 正确.对于C ,由x y xe =,得()1xy x e '=+,则01x y ='=,从而可得曲线x y xe =在点()0,0P 的切线为y x =.因为()10xxy xe x x e =-=-≥,所以x xe x ≥,则曲线xy xe =在点()0,0P 附近位于直线l 的同侧,故C 错误.对于D ,由ln x y x =得21ln x y x -'=,则32312x e y e ==-',从而可得曲线ln x y x=在点32323,2P e e ⎛⎫ ⎪⎪⎝⎭处的切线为332122y x e e =-+.令()33212ln 2x x F e ex x -+-=,则320F e ⎛⎫= ⎪⎝⎭且()3211ln 2x e F x x ---'=, ()3211ln 2x e x g x ---=,故33223311ln =02e e e e g ⎛⎫= ⎪⎝⎭---且()232ln g x x x -'=, 当320x e <<时,()0g x '>;当32x e >时,()0g x '<,故()g x 在320,e ⎛⎫ ⎪⎝⎭为增函数,在32,e ⎛⎫+∞ ⎪⎝⎭上为减函数,故在320,e ⎛⎫⎪⎝⎭上,()0g x <,在32,e ⎛⎫+∞ ⎪⎝⎭上,()0g x <故()0F x '<当且仅当32x e =时等号成立,故当320x e <<时,()0F x >,当32x e >时,()0F x <, 故当32x e<时,33212ln 2e e x x x -+>,当32x e >,33212ln 2e e x x x -+<,则曲线ln xy x =在点32323,2P e e ⎛⎫⎪ ⎪⎝⎭附近位于直线l 的两侧,故D 正确. 故选:ABD. 【点睛】本题考查导数的运用:求切线的方程,考查新定义的理解,考查转化思想与抽象思维能力,考查运算能力,属于综合题题.三、填空题13.若抛物线()2:20C y px p =>的焦点在直线:230l x y +-=上,则p =______.【答案】6【解析】将抛物线的焦点坐标代入直线方程可求得实数p 的值. 【详解】由题意可得抛物线C 的焦点F 的坐标为,02p ⎛⎫⎪⎝⎭,则302p -=,解得6p.故答案为:6. 【点睛】本题考查利用抛物线的焦点坐标求参数,考查计算能力,属于基础题. 14.若()202022020012202012x a a x a x a x +=++++,则32020122320202222a a a a -+-++=______. 【答案】1-【解析】令()()202012f x x =+,利用赋值法可得()32020122320201022222a a a a f f ⎛⎫-+-++=-- ⎪⎝⎭,即可得解. 【详解】 令()()202012f x x =+,则()001a f ==,320201202320201022222a a a a a f ⎛⎫-+-++=-= ⎪⎝⎭,因此,()320201223202010122222a a a a f f ⎛⎫-+-++=--=- ⎪⎝⎭. 故答案为:1-. 【点睛】本题考查利用赋值法计算项的系数和,考查计算能力,属于基础题.15.已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()23log 1f x x x =++,若()5f m ≥,则m 的取值范围是______. 【答案】](),22,⎡-∞-⋃+∞⎣【解析】根据函数的奇偶性和对数函数的性质,得到函数()f x 在()0,∞+和(),0-∞上单调递增,且()25f =,()25f -=-,结合不等式()5f m ≥,即可求解. 【详解】由题意,当0x >时,()()23log 1f x x x =++,根据对数函数的性质,可得()f x 在()0,∞+上单调递增,且()25f =,因为()f x 是定义在R 上的奇函数,所以()f x 在(),0-∞上单调递增,且()25f -=-, 又由()5f m ≥,即()5f m ≥或()5f m ≤-,所以2m ≥或2m ≤-. 即实数m 的取值范围是](),22,⎡-∞-⋃+∞⎣. 【点睛】本题主要考查了函数基本性质的应用,其中解答中熟记对数函数的单调性,以及函数的奇偶性,合理转化不等式是解答的关键,着重考查推理与运算能力.四、双空题16.已知长方体1111ABCD A B C D -的体积为144,点P 是正方形1111D C B A 的中心,点,,,,P A B C D 都在球O 的球面上,其中球心O 在长方体1111ABCD A B C D -的内部.已知球O 的半径为R ,球心O 到底面ABCD 的距离为2R,则R =______.过AB 的中点E 作球O 的截面,则所得截面圆面积的最小值是______. 【答案】4 6π【解析】根据长方体1111ABCD A B C D -的体积可求得4R =,分析可知,当OE ⊥截面时,截面面积达到最小,根据勾股定理求出OE =r =用圆的面积公式可求得结果. 【详解】由题意可知正方形ABCD 的对角线长为=,则正方形ABCD ,故长方体1111ABCD A B C D -的体积为2314422R⎛⎫= ⎪ ⨯⎪⎝⎭,解得4R =.当OE ⊥截面时,截面面积达到最小,此时OE ==则截面圆的半径r ==故截面圆的面积为26r ππ=. 故答案为:4;6π. 【点睛】本题考查简单几何体及其外接球,考查空间想象能力,考查了长方体的体积公式,属于基础题五、解答题17.在①18a =-,27a =-,()11,n n a ka n k ++=+∈∈N R ;②若{}n a 为等差数列,且36a =-,72a =;③设数列{}n a 的前n 项和为n S ,且()211722n S n n n +=-∈N 这三个条件中任选一个,补充在下面问题中,并作答.在数列{}n a 中,______.记123n n T a a a a =++++,求20T .【答案】选择①,102;选择②,102;选择③,102.【解析】若选择①,由递推公式求出通项公式;若选择②,有等差数列的性质求通项公式;若选择③,由1n n n a S S -=-求出数列通项公式,再根据通项公式得出()()()()2012389101120T a a a a a a a a =-+-+-++-+++++()()12389101120a a a a a a a a =-+++++++++由等差数列前n 项和的求法即可求解.【详解】 若选择①,因为11n n a ka +=+,所以211a ka =+,即817k -+=-,解得1k =, 则11n n a a +-=,从而数列{}n a 是首项为-8,公差为1的等差数列, 故()119n a a n d n =+-=-; 若选择②,因为36a =-,72a =-,所以126a d +=-,162a d +=-, 解得18a =-,1d =, 故()119n a a n d n =+-=-; 若选择③,因为211722n S n n =-,所以11117822a S ==-=-, 当2n ≥时,()()2211171191192222n S n n n n -=---=-+, 则()192n n n a S S n n -=-=-≥, 因为18a =也满足上式,所以9n a n =-. 由0n a ≥,得9n ≥故()()()()2012389101120T a a a a a a a a =-+-+-++-+++++()()12389101120a a a a a a a a =-+++++++++()()8180111222--⨯+⨯=-+102=.【点睛】本题主要考查数列通项公式的求法,以及等差数列的性质,考查学生的运算求解能力,和逻辑思维能力.18.在ABC 中,角,,A B C 所对的边分别为,,a b c ,且22cos 32BB =. (1)求角B ;(2)若D 是AC 的中点,且b =BD =ABC 的周长.【答案】(1)3B π=;(2)周长为10+【解析】(1)根据22cos32B B +=,化简得sin 16B π⎛⎫+= ⎪⎝⎭,即可求解;(2)分别在ABD △和BCD 中,应用余弦定理,结合cos cos 0ADB BDC ∠+∠=,求得2252a c +=,再在ABC 中,再结合余弦定理求得a c +的值,即可求解. 【详解】(1)由题意,因为22cos 32BB =,可得cos 13B B +=. 所以2sin 26B π⎛⎫+= ⎪⎝⎭,即sin 16B π⎛⎫+= ⎪⎝⎭, 因为0B π<<,所以62B ππ+=,所以3B π=.(2)因为D 为AC 的中点,所以AD CD ==在ABD △中,因为AD =BD =2cosADB ∠=.在BCD 中,因为CD =BD =2cosBDC ∠=因为ADB BDC π∠+∠=,所以cos cos 0ADB BDC ∠+∠=, 即227197190c a +-++-=,即2252a c += ①在ABC 中,由余弦定理可得222b a c ac =+-,即24ac =②联立①②,解得10a c +==.故ABC 的周长为10a b c ++=+【点睛】本题主要考查了三角恒等变换,以及正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.19.如图,在三棱锥P ABC -中,ABC 是等边三角形,PA PB =.(1)证明:AB PC ⊥.(2)若7PA PC =23AB =A PC B --的正弦值. 【答案】(1)证明见解析;(237. 【解析】(1)要证明AB PC ⊥,只需证明AB ⊥平面PCD ,将证明线线垂直转化为证明线面垂直,即可求得答案;(2)以D 为原点,DB ,DC 的方向分别为,x y 轴的正方向,垂直平面ABC 向上为z 轴的正方向,建立的空间直角坐标系D xyz -,分别求得平面PBC 的法向量n 和平面PAC 的法向量m ,根据cos ,n m n m n m⋅=,即可求得答案.【详解】取AB 的中点D ,连接PD ,CD .PA PB =, ∴AB PD ⊥.底面ABC 是等边三角形,∴AC BC =, ∴AB CD ⊥PD CD D ⋂=,∴AB ⊥平面PCD .PC ⊂平面PCD , ∴AB PC ⊥.(2)由(1)可知AB ⊥平面PCD ,则以D 为原点,DB ,DC 的方向分别为,x y 轴的正方向,垂直平面ABC 向上为z 轴的正方向,建立的空间直角坐标系D xyz -.23AB =7AP =,∴3AD BD ==∴3CD =,732PD =-=.则4971cos 2232PDC ∠+-==⨯⨯,从而(3P ,()3,0,0A -,)3,0,0B,()0,3,0C ,故(0,2,3PC =-,)3,3,0AC =,()3,3,0BC =-.设平面PBC 的法向量为()111,,n x y z =,则1111230330n PC y z n AC x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令13x =,得()3,3,2n =--, 设平面PAC 的法向量为()222,,m x y z =,则2222230330m PC y z m BC x y ⎧⋅==⎪⎨⋅=+=⎪⎩,令23x =,得()3,3,2m = 从而9341cos ,448n m n m n m⋅--===⨯.故二面角A PC B --的正弦值为378. 【点睛】本题主要考查了异面直线垂直和二面角的余弦值,解题关键是掌握将线线垂直转化为线面垂直的证法和向量法求二面角的步骤,考查了分析能力和计算能力,属于中档题.20.已知椭圆()2222:10x y C a b a b+=>>的离心率是12,且椭圆C 经过点33,2P ⎫⎪⎪⎭,过椭圆C 的左焦点F 的直线l 与椭圆C 交于M ,N 两点. (1)求椭圆C 的标准方程;(2)若2MF FN =,求直线l 的方程.【答案】(1)22143x y +=;(220y ±+=. 【解析】(1)依题意得到方程组222221,2331,4,c a a b c a b ⎧=⎪⎪⎪+=⎨⎪=-⎪⎪⎩,解得即可; (2)设直线l 的方程为1x my =-,()11,M x y ,()22,N x y ,联立直线与椭圆方程,消元列出韦达定理,由2MF FN =,可得122y y -=,从而求出参数的值, 【详解】解:(1)设椭圆C 的半焦距为c .由题意可得222221,2331,4,c a a b c a b ⎧=⎪⎪⎪+=⎨⎪=-⎪⎪⎩解得24a =,23b =.故椭圆C 的标准方程为22143x y +=.(2)由(1)可得()1,0F -当直线l 的斜率为0时,()2,0M -,()20N ,或()20M ,,()2,0N -, 此时2MF FN ≠,不符合题意.当直线l 的斜率不为0时,可设直线l 的方程为1x my =-,()11,M x y ,()22,N x y .联立221143x my x y =-⎧⎪⎨+=⎪⎩,整理得()2234690m y my +--=,则1212229,63434y y y y m m m ==-+++, 因为2MF FN =,所以122y y -=.从而1222634my y y m +=-=+,21221222269,23434m y y y y y y m m +=-==-=-++, 则2226923434m m m ⎛⎫-⨯=- ⎪++⎝⎭,解得m =.故直线l 20y ±=. 【点睛】本题考查待定系数法求椭圆方程,直线与椭圆的综合应用,属于中档题.21.生活垃圾分类工作是一项复杂的系统工程,须坚持“政府推动、部门联运、全面发动、全民参与”原则.某小学班主任为了让本班学生能够分清干垃圾和湿垃圾,展开了“垃圾分类我最行”的有奖竞答活动.班主任将本班学生分为,A B 两组,规定每组抢到答题权且答对一题得1分,未抢到答题权或抢到答题权且答错得0分,将每组得分分别逐次累加,当其中一组得分比另一组得分多3分或六道题目全部答完时,有奖竞答活动结束,得分多的一组的每一位学生都将获得奖品一份.设每组每一道题答对的概率均为23,A 组学生抢到答题权的概率为12. (1)在答完三题后,求A 组得3分的概率;(2)设活动结束时总共答了X 道题,求X 的分布列及其数学期望()E X . 【答案】(1)127;(2)分布列答案见解析,数学期望509. 【解析】(1)算出A 组得1分的概率后可得答完3题后A 组得3分的概率.(2)X 的可能取值为3,4,5,6,利用二项分布可求X 的分布列,再利用公式可求数学期望. 【详解】(1)由题意可知每道题A 组得1分的概率为121233⨯=, 故答完3题后,A 组得3分的概率311327P ⎛⎫== ⎪⎝⎭(2)由A 组学生抢到答题权的概率为12,可知B 组学生抢到答题权的概率为11122-=, 则每道题的答题结果有以下三种: ①A 组得1分,B 组得0分,此时的概率为121233⨯=;②A 组得0分,B 组得1分,此时的概率为121233⨯=; ③A 组得0分,B 组得0分,此时的概率为1111333--=. 由题意可知X 的可能取值为3,4,5,6.()31232327P X ⎛⎫==⨯= ⎪⎝⎭,()223111242C 33327P X ⎛⎫==⨯⨯⨯= ⎪⎝⎭, ()224231411111252C C 3333327P X ⎡⎤⎛⎫⎛⎫⎛⎫==⨯⨯⨯+⨯⨯=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,()2227612727279P X ==---=, 则X 的分布列为故222750345627272799EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查离散型随机变量的分布列、期望,计算分布列时要弄清随机变量取某值时对应的随机事件的含义并确定合理的概率计算方法.必要时可借助于常见的分布列来帮助计算(如0-1分布、二项分布、超几何分布等). 22.已知函数()()21x f x e a x ex =---. (1)当0a =时,求()f x 的单调区间;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围. 参考数据: 2.72e ≈,ln 20.69≈.【答案】(1)减区间为(),1-∞,增区间为()1,+∞;(2)(],1-∞.【解析】(1)当0a =时,求得()xf x e e '=-,分析导数的符号变化,由此可求得函数()y f x =的单调递增区间和递减区间;(2)由()00f ≥可得1a ≤,可得出()()21xf x e x ex ≥---,构造函数()()21x g x e x ex =---,利用导数证明出()0g x ≥对一切0x ≥恒成立,由此可求得实数a 的取值范围.第 1 页 共 6 页 【详解】(1)当0a =时,()x f x e ex =-,则()xf x e e '=-. 令()0f x '<,得1x <;令()0f x '>,得1x >.故函数()y f x =的单调递减区间为(),1-∞,调递增区间为()1,+∞;(2)因为当0x ≥时,()0f x ≥恒成立,且()10f =,由()010f a =-≥,可得1a ≤.因为1a ≤,所以()()()2211x x f x e a x ex e x ex =---≥---,设()()21x g x e x ex =---,则()()21x g x e x e '=---. 设()()()21x h x g x e x e '==---,则()2xh x e '=-. 令()0h x '>,得ln 2x >;令()0h x '<,得0ln 2x <<.故函数()y h x =在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,因为()()0030h g e '==->,()()ln 2ln 242ln 20h g e '==--<,()()110h g '==,所以存在()00,ln 2x ∈,使()00g x '=.当00x x <<或1x >时,()0g x '>;当01x x <<时,()0g x '<.则函数()y g x =在()00,x 上单调递增,在()0,1x 上单调递减,在()1,+∞上单调递增. 因为()()010g g ==,所以()0g x ≥对一切的0x ≥恒成立.故a 的取值范围为(],1-∞.【点睛】本题考查利用导数求解函数的单调区间,同时也考查了利用导数研究函数不等式恒成立问题,考查分析问题和解决问题的能力,属于难题.。
陕西省联盟学校2023届高三下学期第三次大联考理科数学试题(含答案与解析)

“高考研究831重点课题项目”陕西省联盟学校2023年第三次大联考数学(理科)本试卷共6页,满分150分,考试时间120分钟.注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.答案均写在答题纸上,满分150分,时间2.答卷前将答题卡上的学校、姓名、班级填写清楚,并检查条形码是否完整、信息是否准确.3.答卷必须使用0.5mm 的黑色签字笔书写,字迹工整、笔迹清晰.并且必须在题号所指示的答题区内作答,超出答题区域的书写无效.第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合2{|34},{|280},M x x N x x x =-≤<=--≤则( ) A. M ∪N =RB. M ∪N ={x |-3≤x <4} C M ∩N ={x |-2≤x ≤4}D. M ∩N ={x |-2≤x <4}2. 已知复数z 满足()224i z z z z -+⋅=+,z 在复平面内对应的点在第二象限,则z =( ) A. 1i --B. 1i +C. 1i -+D. 2i -+3. 核酸检测是目前确认新型冠状病毒感染最可靠依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为0.5%,在感染新冠病毒的条件下,标本检出阳性的概率为99%.若该地全员参加核酸检测,则该地某市民感染新冠病毒且标本检出阳性的概率为( ) A. 0.495%B. 0.9405%C. 0.99%D. 0.9995%4. 已知等比数列{}n a 的前2项和为2424,6a a -=,则8a =( ) A. 1B.12C.14D.185. 已知p :0x y +>,q:))ln ln0x y ->,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件.的6. 将函数π()2sin()(0)3f x x ωω=->图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,]64ππ-上为增函数,则ω最大值为( ) A.32B. 2C. 3D.7. 算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一,算珠梁上部分叫上珠,梁下部分叫下珠,例如,在百位档拨一颗下珠,十位档拨一颗上珠和两颗下珠,则表示数字170,若在个、十、百、千位档中,先随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为( )A.12B.23C.34D.568. 已知命题p :“若直线//a 平面α,平面//α平面β,则直线//a 平面β”,命题q :“棱长为a 的正四面体的外接球表面积是23π2a ”,则以下命题为真命题的是( )A. p q ∨B. p q ∧C. ()p q ∨⌝D. ()()p q ⌝∧⌝9. 已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,一条渐近线为l ,过点2F 且与l 平行的直线交双曲线C 于点M ,若122MF MF =,则双曲线C 的离心率为( )A.B.C.D.10. 设0.33e a -=,0.6e b =, 1.6c =,则( ) A. c b a <<B. c a b <<C. b a c <<D. b c a <<11. 已知定点()2,0D ,直线l :()()20y k x k =+>与抛物线24y x =交于两点A ,B ,若90ADB ∠=︒,则AB =( )A. 4B. 6C. 8D. 1012. 已知函数()1f x +是偶函数,且()()2f x f x +=-.当(]0,1x ∈时,()1cos f x x x=,则下列说法的正确的是( ) A. ()f x 是奇函数 B. ()f x 在区间4π16π1,ππ+-⎛⎫⎪⎝⎭上有且只有一个零点 C. ()f x 在6,15π⎛⎫⎪⎝⎭上单调递增 D. ()f x 区间1,1π⎛⎫⎪⎝⎭上有且只有一个极值点 第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸中相应的横线上.)13.已知(1,a a b =+= ,则a 与b的夹角为__________.14. ()4221x x -+的展开式中3x 项的系数为___________.15. 如图,圆锥的轴截面SAB 是边长为a 的正三角形,点,C D 是底面弧AB 的两个三等分点,则SC 与BD 所成角的正切值为______.16. 已知数列{}n a 的前n 项和23122n S n n =-,设11,n n n n b T a a +=为数列{}n b 的前n 项和,若对任意的N n *∈,不等式93n T n λ<+恒成立,则实数λ的取值范围为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 在ABC 中,已知13,4,cos 3AC BC A ===-. (1)求角B 的值; (2)求边长AB 的值.18. 如图,四棱锥P ABCD -中,,AB CD AB AD ⊥∥,且24260,,AB AD CD PA PAB =====∠ ,直线PA 与平面ABCD 的所成角为30,,E F 分别是BC 和PD 的中点.(1)证明:EF 平面PAB ;(2)求平面PAB 与平面PAD 夹角的余弦值.19. 脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17. (1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数)(2)假设全体参与者的脂肪含量为随机变量X ,且X ~N (17,σ2),其中σ2近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率. 附:若随机变量×服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ≈0.6827,P (μ-2σ≤X ≤μ+2σ)≈0.9545≈4.7,0.158653≈0.004.20. 已知12,F F 是椭圆()2222:10x y E a b a b+=>>的左、右焦点,12B B 是椭圆的短轴,菱形1122F B F B 的周长为8,面积为E 的焦距大于短轴长. (1)求椭圆E 的方程;(2)若P 是椭圆E 内一点(不在E 的轴上),过点P 作直线交E 于,A B 两点,且点P 为AB 的中点,椭圆()22122:10x y E m n m n +=>>P 也在1E 上,求证:直线AB 与1E 相切.21. 已知函数()e 21xf x ax =+-,其中a 为实数,e 为自然对数底数,e=2.71828 .(1)已知函数x ∈R ,()0f x ≥,求实数a 取值的集合; (2)已知函数()()2F x f x ax =-有两个不同极值点1x 、2x .①求实数a 的取值范围;②证明:)12123x x x x +>.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.并请考生务必将答题卡中对所选试题的题号进行涂写. 选修4-4:坐标系与参数方程选讲.的22. 在平面直角坐标系xOy 中,已知曲线C的参数方程为11x y θθ⎧=-+⎪⎨=⎪⎩(θ为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)设射线()1:π0l θρ=≥和射线2ππ:0,022l θαρα⎛⎫=+≥≤< ⎪⎝⎭分别与曲线C 交于A 、B 两点,求AOB 面积最大值. 选修4-5:不等式选讲.23. 设,,R,,,1a b c a b c ∈-均不为零,且1a b c ++=. (1)证明:(1)(1)0ab b c c a +-+-<; (2)求222(2)(2)(2)a b c -++++的最小值.参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合2{|34},{|280},M x x N x x x =-≤<=--≤则( ) A. M ∪N =R B. M ∪N ={x |-3≤x <4} C. M ∩N ={x |-2≤x ≤4} D. M ∩N ={x |-2≤x <4}【答案】D 【解析】 【分析】先求集合N ,再求两个集合的并集和交集,判断选项.【详解】2280x x --≤,解得:24x -≤≤,即{}24N x x =-≤≤,{}34M x x =-≤<,{}34M N x x ⋃=-≤≤, {}24M N x x ⋂=-≤<.故选:D2. 已知复数z 满足()224i z z z z -+⋅=+,z 在复平面内对应的点在第二象限,则z =( ) A. 1i -- B. 1i +C. 1i -+D. 2i -+【答案】C 【解析】的【分析】依题意设i z a b =+()0,0a b <>,根据复数代数形式的乘法运算及复数相等的充要条件得到方程组,解得即可.【详解】设i z a b =+()0,0a b <>,则i z a b =-,因为()224i z z z z -+⋅=+, 所以()()()2i i i i 24i a b a b a b a b +-+++⋅-=+,所以224i 24i b a b ++=+,所以22244a b b ⎧+=⎨=⎩,解得11a b =-⎧⎨=⎩或11b a =⎧⎨=⎩(舍去),所以1i z =-+. 故选:C3. 核酸检测是目前确认新型冠状病毒感染最可靠的依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为0.5%,在感染新冠病毒的条件下,标本检出阳性的概率为99%.若该地全员参加核酸检测,则该地某市民感染新冠病毒且标本检出阳性的概率为( ) A. 0.495% B. 0.9405%C. 0.99%D. 0.9995%【答案】A 【解析】【分析】根据条件概率的乘法公式即可求解.【详解】记感染新冠病毒为事件A ,感染新冠病毒的条件下,标本为阳性为事件,B 则()0.5%,()99%P A P B A ==,故某市民感染新冠病毒且标本检出阳性的概率为()()()P AB P A P B A ==0.5%99%0.495%⨯=,故选:A4. 已知等比数列{}n a 的前2项和为2424,6a a -=,则8a =( ) A 1B.12C.14D.18【答案】D 【解析】【分析】首先根据题意得到()()121224112416a a a q a a a q q ⎧+=+=⎪⎨-=-=⎪⎩,解方程组得到12q =,116a =,再求8a 即可. 【详解】因为246a a -=,所以1q ≠,由题知:()()121224112416a a a q a a a q q ⎧+=+=⎪⎨-=-=⎪⎩, .所以()141q q =-,解得12q =,所以111242a a +=,即116a =, 所以78111628a ⎛⎫=⨯= ⎪⎝⎭.故选:D5. 已知p :0x y +>,q :))ln ln0x y ->,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】【分析】令)()ln,R f x x x =+∈,结合该函数的奇偶性,单调性判断不等式是否成立.【详解】令)()ln ,R f x x x =+∈,(0)0f =,且))()()ln ln ln10f x f x x x +-=++-==,故)()ln f x x =+为奇函数,0x >x +递增,则)()ln f x x =+也递增,又()f x 为奇函数,则()f x 在R 上递增,p q ⇒,若0x y +>,则x y >-,则()()f x f y >-,即))ln lnx y >即))lnln0x y +-->;p q ⇐,若))lnln0x y ->,则等价于))ln ln x y +>,即()()f x f y >-,由()f x 在R 上递增,则x y >-, 即0x y +>, 故p 是q 的充要条件, 故选:C.6. 将函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,]64ππ-上为增函数,则ω最大值为( )A.32B. 2C. 3D.【答案】B 【解析】【分析】先求出()g x ,又因为()y g x =在ππ[,]64-上为增函数,则ππ62ω⎛⎫⋅-≥- ⎪⎝⎭,且ππ42ω⋅≤,即可求出ω最大值.【详解】函数π()2sin(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象, 则()ππ2sin 2sin 33g x x x ωωω⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 又因为()y g x =在ππ[,64-上为增函数,所以ππ62ω⎛⎫⋅-≥- ⎪⎝⎭,且ππ42ω⋅≤, 解得:2ω≤,故ω的最大值为2. 故选:B.7. 算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一,算珠梁上部分叫上珠,梁下部分叫下珠,例如,在百位档拨一颗下珠,十位档拨一颗上珠和两颗下珠,则表示数字170,若在个、十、百、千位档中,先随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为( )A.12B.23C.34D.56【答案】C 【解析】【分析】根据题意得到总的可能的情况,再分上珠拨的是千位档或百位档和上珠拨的是个位档或十位档进行分类,得到符合要求的情况,从而得到符合要求的概率.【详解】依题意得所拨数字共有1244C C 24=种可能. 要使所拨数字大于200,则:若上珠拨的是千位档或百位档,则所拨数字一定大于200,有1224C C 12=种; 若上珠拨的是个位档或十位档,则下珠一定要拨千位,再从个、十、百里选一个下珠, 有1123C C 6=种,则所拨数字大于200的概率为1263244+=, 故选:C .8. 已知命题p :“若直线//a 平面α,平面//α平面β,则直线//a 平面β”,命题q :“棱长为a 的正四面体的外接球表面积是23π2a ”,则以下命题为真命题的是( )A. p q ∨B. p q ∧C. ()p q ∨⌝D. ()()p q ⌝∧⌝【答案】A 【解析】【分析】根据线面的关系判断命题p 的真假,根据正四面体外接球的表面积公式计算判断命题q 的真假,结合复合命题真假的判断方法即可求解. 【详解】命题p :若//a α,α//β,则//a β或a ⊂β,故命题p 为假命题;命题q ,所以外接球的表面积为223π4π2a =,故命题q 为真命题.所以命题p q ∨为真命题,命题()()()p q p q p q ∧∨⌝⌝∧⌝、、为假命题. 故选:A.9. 已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,一条渐近线为l ,过点2F 且与l 平行的直线交双曲线C 于点M ,若122MF MF =,则双曲线C 的离心率为( )A. B.C.D.【答案】C 【解析】【分析】由双曲线定义可得21,MF MF ,根据平行关系可知12cos aF F M c∠=,由余弦定理可构造齐次方程求得离心率. 【详解】设:bl y x a=,则点M 位于第四象限, 由双曲线定义知:1222222MF MF MF MF MF a -=-==,14MF a ∴=; 设过点2F 且与l 平行直线的倾斜角为α,则tan ba α=,cos a cα∴==, 12cos aF F M c∴∠=; 在12F F M △中,由余弦定理得:222122112122cos 2F F MF MF F F M F F MF +-∠=⋅,即22244168a c a a c ac +-=,整理可得:225c a =,e ∴==故选:C.10. 设0.33e a -=,0.6e b =, 1.6c =,则( ) A. c b a << B. c a b << C. b a c << D. b c a <<【答案】A 【解析】【分析】通过构造函数()e 1xf x x =--,利用导数研究函数单调性,证得e 1x x >+,则有,a c b c >>,再通过作商法比较,a b .【详解】设()e 1x f x x =--,因为()e 1xf x '=-,所以当0x <时,()0f x '<,()f x 在(),0∞-上单调递减, 当0x >时,()0f x '<,()f x 在()0,∞+上单调递增, 所以当R x ∈,且0x ≠时,()()00f x f >=,即e 1x x >+. 所以()0.33e30.31 2.1a --+>=⨯=,0.6e 0.61 1.6b =>+=,所以 1.6c =最小,又因为0.60.90.3e e e 13e 33b a -==<<,所以b a <.综上,c b a <<. 故选:A11. 已知定点()2,0D ,直线l :()()20y k x k =+>与抛物线24y x =交于两点A ,B ,若的90ADB ∠=︒,则AB =( )A. 4B. 6C. 8D. 10【答案】C 【解析】【分析】设()()1122,,,A x y B x y ,联立直线l 与抛物线方程,求得12x x +,12x x ,12y y ,由90ADB ∠=︒可得0DA DB ⋅=,从而可求k 的值,根据弦长公式即可求AB .【详解】设()()1122,,,A x y B x y ,()()22222244404y k x k x k x k y x⎧=+⇒+-+=⎨=⎩, 由题知,0∆>,故21212244,4k x x x x k-+==, 则()()()222121212122882224448k y y k x k x k x x x x k k ⎛⎫-⎡⎤=+⋅+=+++=++= ⎪⎣⎦⎝⎭, 由()()1212900220ADB DA DB x x y y ∠=⇒⋅=⇒--+=,即()121212240x x x x y y -+++=,即()224142840k k --⋅++=,解得213k=,则12443813x x -+==,则28AB x =-===.故选:C . 12. 已知函数()1f x +是偶函数,且()()2f x f x +=-.当(]0,1x ∈时,()1cos f x x x=,则下列说法正确的是( ) A. ()f x 是奇函数 B. ()f x 在区间4π16π1,ππ+-⎛⎫⎪⎝⎭上有且只有一个零点 C. ()f x 在6,15π⎛⎫⎪⎝⎭上单调递增 D. ()f x 区间1,1π⎛⎫⎪⎝⎭上有且只有一个极值点 的【答案】ACD 【解析】【分析】A 选项,由()1f x +是偶函数,故()()11f x f x -+=+,结合()()2f x f x +=-,推导出()()f x f x -=-,A 正确;B 选项,求出()f x 的一个周期为4,从而只需求()f x 在区间12π1,ππ-⎛⎫⎪⎝⎭上的零点个数,结合函数性质得到2220ππf f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,B 错误;C 选项,求导得到()111cos sin f x x x x'=+,换元后得到()cos sin h t t t t =+,15π1,6t x ⎛⎫=∈ ⎪⎝⎭,再次求导,得到()h t 的单调性,结合()10h >,5π06h ⎛⎫⎪⎝⎭>,得到()0h t >在5π1,6t ⎛⎫∈ ⎪⎝⎭上恒成立,得到()f x 在6,15π⎛⎫ ⎪⎝⎭上单调递增;D 选项,与C 选项一样得到()h t 的单调性,结合零点存在性定理得到隐零点,进而得到()f x 的单调性,求出()f x 区间1,1π⎛⎫⎪⎝⎭上有且只有一个极值点. 【详解】函数()1f x +是偶函数,故()()11f x f x -+=+,因为()()2f x f x +=-,所以()()11f x f x +=--, 故()()11f x f x -+=--,将x 替换为1x +,得到()()f x f x -=-,故()f x 为奇函数,A 正确; 因为()()2f x f x +=-,故()()42f x f x +=-+,故()()4f x f x +=, 所以()f x 的一个周期为4, 故()f x 在区间4π16π1,ππ+-⎛⎫ ⎪⎝⎭上的零点个数与在区间12π1,ππ-⎛⎫ ⎪⎝⎭上的相同,因为22πcos 20ππf ⎛⎫==⎪⎝⎭,而()()()2f x f x f x +=-=-,故2220ππf f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,其中2212π1,2,ππππ-⎛⎫-∈ ⎪⎝⎭, 故()f x 在区间12π1,ππ-⎛⎫⎪⎝⎭至少有2个零点,B 错误; 6,15πx ⎛⎫∈ ⎪⎝⎭时,()1cos f x x x =,则()111cossin f x x x x'=+,令1t x =,()cos sin h t t t t =+,当5π1,6t ⎛⎫∈ ⎪⎝⎭时,所以()sin sin cos cos h t t t t t t t '=-++=,当π1,2t ⎛⎫∈ ⎪⎝⎭时,()cos 0h t t t '=>,()h t 单调递增, 当π5π,26t ⎛⎫∈⎪⎝⎭时,()cos 0h t t t '=<,()h t 单调递减, 又()1cos1sin10h =+>,0cos si 5π5π5π5π2n 5π66661h ⎛⎫==⎪⎝⎭=>+, 故()0h t >在5π1,6t ⎛⎫∈ ⎪⎝⎭上恒成立, 所以()0f x ¢>在6,15πx ⎛⎫∈ ⎪⎝⎭上恒成立,故()f x 在6,15π⎛⎫⎪⎝⎭上单调递增,C 正确; D 选项,1,1πx ⎛⎫∈⎪⎝⎭时,()1cos f x x x =,故()111cossin f x x x x '=+,令1t x=,()cos sin h t t t t =+,当()1,πt ∈时, 则()cos h t t t '=, 当π1,2t ⎛⎫∈ ⎪⎝⎭时,()cos 0h t t t '=>,()h t 单调递增, 当π,π2t ⎛⎫∈⎪⎝⎭时,()cos 0h t t t '=<,()h t 单调递减, 因为()1cos1sin10h =+>,πππππ02222cos 2sin h ⎪=⎛⎫=+⎝⎭>,()0cos s n πππ1i πh =-+<=, 由零点存在性定理,0π,π2t ⎛⎫∈ ⎪⎝⎭∃,使得()00h t =,当()01,t t ∈时,()0h t >,当()0,πt t ∈时,()0h t <,011,πx t ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减,01,1x t ⎛⎫∈ ⎪⎝⎭时,()0f x ¢>,()f x 单调递增, 所以()f x 区间1,1π⎛⎫⎪⎝⎭上有且只有一个极值点,D 正确. 故选:ACD【点睛】设函数()y f x =,x ∈R ,0a >,a b ¹.(1)若()()f x a f x a +=-,则函数()f x 的周期为2a ; (2)若()()f x a f x +=-,则函数()f x 的周期为2a ; (3)若()()1f x a f x +=-,则函数()f x 的周期为2a ; (4)若()()1f x a f x +=,则函数()f x 的周期为2a ; (5)若()()f x a f x b +=+,则函数()f x 周期为a b -;(6)若函数()f x 的图象关于直线x a =与x b =对称,则函数()f x 的周期为2b a -;(7)若函数()f x 的图象既关于点(),0a 对称,又关于点(),0b 对称,则函数()f x 的周期为2b a -; (8)若函数()f x 的图象既关于直线x a =对称,又关于点(),0b 对称,则函数()f x 的周期为4b a -;(9)若函数()f x 是偶函数,且其图象关于直线x a =对称,则()f x 的周期为2a ; (10)若函数()f x 是奇函数,且其图象关于直线x a =对称,则()f x 的周期为2a .第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸中相应的横线上.)13.已知(1,a a b =+= ,则a 与b的夹角为__________.【答案】30 【解析】【分析】首先根据题意得到a b += ,从而得到32a b ⋅= ,再根据cos ,a b a b a b ⋅=⋅求解即可.【详解】因为(a b +=,所以a b +== ,所以()22223127a ba b a b a b +=++⋅=++⋅=,即32a b ⋅= .所以cos ,a b a b a b⋅===⋅, 因为0,180a b ≤≤,所以a 与b 的夹角为30 .故答案为:3014. ()4221x x -+的展开式中3x 项的系数为___________.的【答案】56- 【解析】【分析】先整理二项式为()81x -,由此即可求解. 【详解】解:二项式()()()442822111x x x x ⎡⎤=⎣⎦-+-=-, 所以展开式中含3x 的项为()55338156C x x ⋅-=-,所以3x 项的系数为56-, 故答案为:56-.15. 如图,圆锥的轴截面SAB 是边长为a 的正三角形,点,C D 是底面弧AB 的两个三等分点,则SC 与BD 所成角的正切值为______.【解析】【分析】易证得//OC BD ,由异面直线所成角定义可知所求角为SCO ∠,由长度关系可求得结果. 【详解】设圆锥底面圆心为O ,连接,,OC OD OS ,,C D 为弧AB 的两个三等分点,π3COD BOD ∴∠=∠=, 又OB OD =,OBD ∴△为等边三角形,π3ODB COD ∴∠=∠=,//OC BD ∴, SCO ∴∠即为异面直线SC 与BD 所成角,SO ⊥ 平面ABCD ,OC ⊂平面ABCD ,SO OC ∴⊥,SO == ,122a OC AB ==,tan SO SCO OC ∴∠=== 即SC 与BD16. 已知数列{}n a 的前n 项和23122n S n n =-,设11,nn n n b T a a +=为数列{}n b 的前n 项和,若对任意的N n *∈,不等式93n T n λ<+恒成立,则实数λ的取值范围为________.【答案】(),48-∞ 【解析】【分析】利用,n n a S 的关系求出数列{}n a 的通项公式,再用裂项相消法求得n T ,再根据不等式的恒成立问题以及函数的单调性与最值,求实数λ的取值范围. 【详解】当2n ≥时,()()221313111322222n n n a S S n n n n n -⎡⎤=-=-----=-⎢⎥⎣⎦, 当1n =时,111a S ==满足上式, 所以32,N n a n n *=-∈. 所以111111()(32)(31)33231n n n b a a n n n n +===--+-+, 所以1111111111(1)(()(1)343473323133131n T n n n n n =-+-++-=-=-+++ , 由93n T n λ<+,可得9331n n n λ<++,即23(31)13(96)n n n nλ+<=++, 因为函数19y x x =+在1,3⎡⎫+∞⎪⎢⎣⎭单调递增, 所以当1n =时,19n n+有最小值为10, 所以13(96)48n n++≥,所以48λ<, 所以实数λ的取值范围为(),48∞-. 故答案为:(),48-∞.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 在ABC 中,已知13,4,cos 3AC BC A ===-. (1)求角B 的值; (2)求边长AB 的值. 【答案】(1)π4(2)1 【解析】【分析】(1)利用同角三角函数基本关系及正弦定理可求解; (2)利用两角差的余弦公式结合余弦定理求解. 【小问1详解】在ABC 中,由1cos 3A =-,()22cos sin 1,0,πA A A +=∈,得sin A =.由正弦定理得,sin sin a b A B=3sin B =,故sin B =又因为A 为钝角,所以π4B = 【小问2详解】在ABC 中,()1cos cos sin sin cos cos 3C A B A B A B =-+=-=+=由余弦定理得:2222cos AB AC BC AC BC C =+-⋅⋅()2223423491=+-⨯⨯=-=-所以1AB =-18. 如图,四棱锥P ABCD -中,,AB CD AB AD ⊥∥,且24260,,AB AD CD PA PAB =====∠ ,直线PA 与平面ABCD 的所成角为30,,E F 分别是BC 和PD 的中点.(1)证明:EF 平面PAB ;(2)求平面PAB 与平面PAD 夹角余弦值. 【答案】(1)证明见解析(2【解析】【分析】(1)取AD 的中点G ,连接EG FG ,,通过证明平面GEF 平面PAB ,可得EF 平面PAB ;(2)点A 为原点,,AB AD 所在的直线分别为x 轴,y 轴,建立如图所示的空间直角坐标系.由260,PA PAB ==∠ ,直线PA 与平面ABCD 的所成角为30 ,可得P 坐标,后利用向量法可得平面PAB 与平面PAD 夹角的余弦值. 【小问1详解】取AD 的中点G ,连接,EG FG ,F 是PD 的中点,GF AP ∴∥,AP ⊂ 平面,PAB FG ⊄平面PAB ,GF ∴ 平面PAB ,同理可得GE 平面PAB ,,GE GF G GE =⊂ 平面,GEF GF ⊂平面GEF ,∴平面GEF 平面PAB ,EF ⊂ 平面GEF ,//EF ∴平面PAB ;【小问2详解】以点A 为原点,,AB AD 所在的直线分别为x 轴,y 轴,建立如图所示的空间直角坐标系. 由题意可得()()()()0,0,0,4,0,0,0,4,0,2,4,0A B D C ,()()400040,,,,,AB AD ==.设(),,P x y z ,因2PA =,直线PA 与平面ABCD 的所成角为30 ,则2sin 301z == . 又因60,PAB =∠ 则点P 的横坐标2cos 601x == . 又2PA =2=,结合题图可知y =,的则()P,()11,AP =.设()111,,m x y z =r 是平面PAB的一个法向量,则111140m AB x m AP x z ⎧⋅==⎪⎨⋅=+=⎪⎩, 令11y =,则(10,1,z m ==.设()222,,n x y z =r 是平面PAD的一个法向量,则222240n AD y n AP x z ⎧⋅==⎪⎨⋅=++=⎪⎩令11x =,则()111,0,1,z n =-=-.又因两平面夹角范围为π0,2⎡⎤⎢⎥⎣⎦,设平面PAB 与平面PAD 夹角为θ,cos =cos ,m n m n m n θ⋅===,∴平面PAB 与平面PAD19. 脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17. (1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数)(2)假设全体参与者的脂肪含量为随机变量X ,且X ~N (17,σ2),其中σ2近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率. 附:若随机变量×服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ≈0.6827,P (μ-2σ≤X ≤μ+2σ)≈0.9545≈4.7,0.158653≈0.004.【答案】(1)总样本的均值为17,方差为23;据此估计该项健身活动全体参与者的脂肪含量的总体均值为17,方差为23(2)0.004 【解析】【分析】(1)根据均值方差的计算公式代入计算即可求解; (2)利用正态分布的性质和所给数据即可求解计算. 【小问1详解】把男性样本记为12120,,,x x x ,其平均数记为x ,方差记为2x s ;把女性样本记为1290,,,y y y ,其平均数记为y ,方差记为2y s .则2214,6;21,17x y x s y s ====.记总样本数据的平均数为z ,方差为2s .由14,21x y ==,根据按比例分配的分层随机抽样总样本平均数与各层样本平均数的关系, 可得总样本平均数为120901209012090z x y =+++.120149021210⨯+⨯=17,=根据方差的定义,总样本方差为()()12090222111210i i i i s x z y z ==⎡⎤=-+-⎢⎥⎣⎦∑∑()()1209022111,210i i i i x x x z y x y z ==⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑ 由()120120111200iii i x x x x ==-=-=∑∑可得()()120120112()2(0iii i x x x z x z x x ==--=--=∑∑同理,()()9090112()2()0iii i y y y z y z y y ==--=--=∑∑,因此,()()12012090902222211111()()210i i i i i i s x x x z y y y z ====⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑∑∑ {}22221120(90(,210x y s x z s y z ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦ 所以{}22211206(1417)9017(2117)23210s ⎡⎤⎡⎤=⨯+-+⨯+-≈⎣⎦⎣⎦, 所以总样本的均值为17,方差为23,并据此估计该项健身活动全体参与者的脂肪含量的总体均值为17,方差为23. 【小问2详解】由(1)知223σ=,所以()17,23X N ~4.8≈, 所以()()12.221.817 4.817 4.80.6827P X P X ≤≤=-≤≤+≈,()1(12.2)10.68270.15865,2P X <≈⨯-= 因为()3,0.15865X B ~,所以()3333C 0.158650.004P X ==⨯≈. 所以3位参与者的脂肪含量均小于12.2%的概率为0.004.20. 已知12,F F 是椭圆()2222:10x y E a b a b+=>>的左、右焦点,12B B 是椭圆的短轴,菱形1122F B F B 的周长为8,面积为E 的焦距大于短轴长.(1)求椭圆E 的方程;(2)若P 是椭圆E 内的一点(不在E 的轴上),过点P 作直线交E 于,A B 两点,且点P 为AB 的中点,椭圆()22122:10x y E m n m n +=>>P 也在1E 上,求证:直线AB 与1E 相切. 【答案】(1)2214x y += (2)证明见解析【解析】【分析】(1)根据菱形1122F B F B 的周长和面积可构造方程组求得,b c ,进而得到椭圆方程;(2)设:AB y kx t =+,与椭圆E 方程联立可得韦达定理的结论,结合中点坐标公式可求得P 点坐标;将AB 与椭圆1E 联立,可得1∆,由P 在椭圆1E 上可得等量关系,化简1∆可得10∆=,由此可得结论.【小问1详解】菱形1122F B F B 的周长为8,面积为122248b c a ⎧⋅⋅=⎪∴⎨⎪=⎩222a b c =+,1b c ⎧=⎪∴⎨=⎪⎩或1b c =⎧⎪⎨=⎪⎩,又椭圆E 的焦距大于短轴长,即22c b >,1b c =⎧⎪∴⎨=⎪⎩24a ∴=,则椭圆E 的方程为:2214x y +=. 【小问2详解】由题意知:直线AB 的斜率必然存在,可设其方程为:y kx t =+, 由2214x y y kx t ⎧+=⎪⎨⎪=+⎩得:()222148440k x ktx t +++-=,设()()1122,,,A x y B x y ,则()2216140k t ∆=+->,即2214<+t k ,122814kt x x k ∴+=-+,21224414t x x k-=+, 21212228221414k t t y y kx t kx t t k k∴+=+++=-+=++,224,1414kt t P k k ⎛⎫∴- ⎪++⎝⎭; 椭圆1Ee ∴==224=m n , 2221:44E x y n ∴+=,由22244x y n y kx t⎧+=⎨=+⎩得:()2222148440k x ktx t n +++-=, ()()()22222222216441444164k t k t n k n n t ∴∆=-+-=+-,P 在椭圆1E 上,()()2222222216441414k t t n k k ∴+=++,整理可得:()22241t n k =+, ()222222116440k n n k n n ∴∆=+--=,∴直线AB 与1E 相切.【点睛】关键点点睛:本题考查直线与椭圆位置关系的证明问题,解题关键是能够利用点在椭圆上得到变量之间所满足的等量关系,将等量关系代入判别式中进行化简整理即可得到直线与椭圆的位置关系. 21. 已知函数()e 21x f x ax =+-,其中a 为实数,e 为自然对数底数,e=2.71828 . (1)已知函数x ∈R ,()0f x ≥,求实数a 取值的集合;(2)已知函数()()2F x f x ax =-有两个不同极值点1x 、2x . ①求实数a 的取值范围;②证明:)12123x x x x +>.【答案】(1)12⎧⎫-⎨⎬⎩⎭(2)① 212e ∞⎛⎫+⎪⎝⎭,;②证明见解析 【解析】【分析】(1)利用不等式恒成立问题,转化为函数的最值问题,通过对a 的讨论,求出()f x 在给定区间的最值即可求出a 的值;(2)①由函数()F x 有两个不同的极值点1x ,2x 得,()e 22x F x ax a '=-+有两个不同零点,通过参数分离有112e x x a -=,构造函数()1e x x x ϕ-=,确定()1ex x x ϕ-=的单调性和极值,进而可求a 的取值范围; ②由已知得21211e e 1x x x x -=-,取对数得()()2121ln 1ln 1x x x x -=---,通过换元111x t -=,221x t -=,构造函数()ln u t t t =-,讨论函数()ln u t t t =-的单调性,确定12t t ,的不等关系,再转化为1x ,2x 的关系即可证明.【小问1详解】由()e 21x f x ax =+-,得()e 2xf x a '=+, 当0a ≥时,因为()11120e f a ⎛⎫-=--< ⎪⎝⎭,不合题意; 当a<0时,当()()ln 2x a ∈-∞-,时,()0f x '<,()f x 单调递减, 当()()ln 2x a ∈-+∞,时,()0f x ¢>,()f x 单调递增,所以()()()min ()ln 222ln 21f x f a a a a =-=-+--,要()0f x ≥,只需()min ()22ln 210f x a a a =-+--≥,令()ln 1g x x x x =--,则()ln g x x '=-, 当()01x ∈,时,()0g x '>,()g x 单调递增; 当()1x ∈+∞,时,()0g x '<,()g x 单调递减,所以()(1)0g x g ≤=,则由()()222ln 210g a a a a -=-+--≥得21a -=, 所以12a =-,故实数a 取值的集合12⎧⎫-⎨⎬⎩⎭. 【小问2详解】 ①由已知()2e 21x F x ax ax =-+-,()e 22x F x ax a '=-+,因为函数()F x 有两个不同的极值点1x ,2x ,所以()e 22xF x ax a '=-+有两个不同零点, 若0a ≤时,则()F x '在R 上单调递增,()F x '在R 上至多一个零点,与已知矛盾,舍去;当0a >时,由e 220x ax a -+=,得112e x x a -=,令()1ex x x ϕ-=所以()2ex x x ϕ-'=,当()2x ∈-∞,时,()0x ϕ'>,()x ϕ单调递增; 当()2x ∈+∞,时,()0x ϕ'<,()x ϕ单调递减; 所以max 21()2e x ϕϕ==(), 因为(1)0ϕ=,1lim 0e x x x →+∞-=,所以21102e a <<,所以22e a >, 故实数a 的取值范围为21e 2∞⎛⎫+ ⎪⎝⎭,. ②设12x x <,由①则1212x x <<<,因为()()120x x ϕϕ==,所以11e 22x ax a =-,22e 22x ax a =-, 则21211e e 1x x x x -=-,取对数得()()2121ln 1ln 1x x x x -=---, 令111x t -=,221x t -=,则2121ln ln t t t t -=-,即221112ln ln (01)t t t t t t -=-<<<,令()ln u t t t =-,则()()12u t u t =,因为()1tu t t '=-,所以()ln u t t t =-在()01,上单调递减,在()1+∞,上单调递增, 令()()112ln v t u t u t t t t⎛⎫=-=-- ⎪⎝⎭, 则()22(1)0t v t t-'=≥,()v t 在()0+∞,上单调递增, 又10v =(),所以当()01t ∈,时,()10v t v <=(),即()1u t u t ⎛⎫< ⎪⎝⎭, 因为21t >,121t ->,()ln u t t t =-在()1+∞,上单调递增,所以211t t <, 所以21111x x -<-,即1212x x x x <+,所以))12121212x x x x x x x x <+<+<+,故)12123x x x x <+成立.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.并请考生务必将答题卡中对所选试题的题号进行涂写.选修4-4:坐标系与参数方程选讲.22. 在平面直角坐标系xOy 中,已知曲线C的参数方程为11x y θθ⎧=-+⎪⎨=⎪⎩(θ为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设射线()1:π0l θρ=≥和射线2ππ:0,022l θαρα⎛⎫=+≥≤< ⎪⎝⎭分别与曲线C 交于A 、B 两点,求AOB 面积的最大值.【答案】(1)2sin 2cos ρθθ=-(21+【解析】【分析】(1)将曲线C 的参数方程化为普通方程,由普通方程与极坐标方程之间的转换关系可得出曲线C 的极坐标方程;(2)求出OA 、OB ,利用三角形的面积公式结合三角恒等变换可得π214AOB S α⎛⎫=++ ⎪⎝⎭△,结合π02α≤<可求得AOB S 的最大值. 【小问1详解】解:由11x y θθ⎧=-+⎪⎨=+⎪⎩可得()()))2222112x y θθ++-=+=,即22220x y x y ++-=,故曲线C 的普通方程为22220x y x y ++-=,因为cos x ρθ=,sin y ρθ=,所以曲线C 的极坐标方程为22cos 2sin 0ρρθρθ+-=,即2sin 2cos ρθθ=-.【小问2详解】解:由题意知2sin π2cos π2OA =-=,ππ2sin 2cos 2cos 2sin 22OB αααα⎛⎫⎛⎫=+-+=+⎪ ⎪⎝⎭⎝⎭, ∴()21π·sin π2cos 2sin cos 2cos sin222AOB S OA OB αααααα⎡⎤⎛⎫=-+=+=+ ⎪⎢⎥⎝⎭⎣⎦πsin2cos21214ααα⎛⎫=++=++ ⎪⎝⎭, 因为π02α≤<,则ππ5π2444α≤+<,所以当242ππα+=,即当π8α=时,AOB 1+. 选修4-5:不等式选讲.23. 设,,R,,,1a b c a b c ∈-均不为零,且1a b c ++=.(1)证明:(1)(1)0ab b c c a +-+-<;(2)求222(2)(2)(2)a b c -++++的最小值.【答案】(1)证明见解析;(2)3.【解析】【分析】(1)根据给定条件,利用三数和的完全平方公式变形,再结合放缩法证明作答. (2)利用柯西不等式求解最小值作答.【小问1详解】依题意,(1)0a b c ++-=,且,,(1)a b c -均不为零, 则22221(1)(1){[(1)][(1)2]}ab b c c a a b c a b c +-+-=++--++-2221[(1])02a b c =-++-<, 所以(1)(1)0ab b c c a +-+-<.【小问2详解】因为2222222](111[(2)(2)1()))[112(2)(2(2)]a b c a b c ⨯-++++-+++++≥⨯⨯+2(2)9a b c =+++=, 当且仅当222111a b c -++==,即3,1,1a b c ==-=-时取等号,因此222(2)(2)(2)3a b c -++++≥, 所以222(2)(2)(2)a b c -++++的最小值为3.。
2021届高考9月份联考试题理科数学试卷附答案解析

2021届普通高中教育教学质量监测考试全国卷理科数学注意事项:1 .本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2 .答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
3 .全部答案写在答题卡上,写在本试卷上无效。
4 .本试卷满分150分,测试时间120分钟。
5 .考试范画:必修1〜5,选修2 — 1, 2-2, 2—3。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
1.若 z=2—L 则区一zl= A3 B.2 C. VTO D.V262,若集合 A={xly=k )g3(x2—3x-18)}, B={-5, -2, 2, 5, 7),则 AAB = A.{—2, 2, 5}B.{-5, 7}C.{-5, -2, 7}D.{-5, 5, 7)3.我国古代的宫殿金碧辉煌,设计巧夺天工,下图(1)为北京某宫殿建筑,图(2)为该宫殿某一 “柱脚”的三视图,其中小正方形的边长为1,则根据三视图可知,该“柱脚”的表面积为94•已知抛物线G : y2=6x 上的点M 到焦点F 的距离为一,若点N 在Cz : (x+2)2+y 2=l ・ 2则点M 到点N 距离的最小值为A.A /26-1B.>/43-1C.V33-1D.25.根据散点图可知,变量x, y 呈现非线性关系。
为了进行线性回归分析,设u=21ny, v=(2x -3)2,利用最小二乘法,得到线性回归方程u=-1v+2,则3B.变量y 的估计值的最小值为eA.变量y 的估计值的最大值为e图⑴ 图⑵A.9TT +9+9 B.18 兀+18 点 +9 C.18 兀+18& +18D.18TT +91 + 18C 变量y 的估计值的最大值为e 2 D.变量y 的估计值的最小值为e 26,函数f(x)=h]2x —x3的图象在点(1, f(L))处的切线方程为 2 25 3 5 c — 1 1 、1 A. y = — x--B. y = — —x + 2C. y = —x--D. y = --x44 44447,已知函数 f(x)=3cos(sx+<p)(3>0),若 f (一二)=3, f( —)=0,则 3 的最小值为3 31 3 A.-B.-C.2D.3248 .(3x-2)2(x-2)6的展开式中,X”的系数为 A.O B.4320C.480D.38409 .已知圆C 过点(1, 3), (0, 2), (7, -5),直线/: 12x-5y —1=0与圆C 交于M, N 两点, 则 IMNI = A.3B.4C.6D.8 10・已知角a 的顶点在原点,始边与x 轴的非负半轴重合,终边过点(1, m),其中m>0:若tan2a12 rll—,则 cos(2a+ni7i) = 6「 口A.— —B.— —131311 .已知三棱锥S-ABC 中,ZiSBC 为等腰直角三角形,ZBSC=ZABC = 90°, ZBAC=2Z BCA, D, E, F 分别为线段AB, BC, AC 的中点,则直线SA, SB, AC, SD 中,与平面SEF 所成角为定值的有A.1条B.2条 C3条 D.4条e x212.已知函数f(x)= — —m(h]x+x+ —)恰有两个极值点,则实数m 的取值范围为 x x11 1 c c 1 eA.(-8, _] B,(一,+8) C.(一,-)U (- , 4-oo)D .(—8, —]U(—,+8)222 332 3第n 卷二、填空题:本大题共4小题,每小题5分。