高性能混凝土耐久性的影响因素及提高措施

合集下载

混凝土的耐久性及其影响因素

混凝土的耐久性及其影响因素

混凝土的耐久性及其影响因素混凝土是一种常见的建筑材料,其耐久性直接关系到建筑物的使用寿命和安全性。

了解混凝土的耐久性及其影响因素对于建筑行业至关重要。

本文将探讨混凝土的耐久性,并分析影响混凝土耐久性的因素。

首先,混凝土的耐久性是指其在特定环境下长期抵抗各种力学、物理和化学破坏的能力。

混凝土一般是由水泥、砂、石子和水所组成的,其中水泥是混凝土的主要成分。

混凝土的耐久性主要受以下几个因素影响。

第一,水泥的质量和配比。

水泥的质量直接影响混凝土的力学性能和抗渗性能,而水泥的配比则决定了混凝土的强度和耐久性。

如果使用的水泥质量较低或者水泥的配比不合理,混凝土就会失去一定的抗压能力和抗渗性能,从而降低了其耐久性。

第二,砂和石子的质量和粒径。

砂和石子是混凝土中的骨料,其质量和粒径决定了混凝土的强度和耐久性。

如果砂和石子存在较多的夹杂物、泥土或者其粒径分布不合理,会导致混凝土的强度和耐久性下降。

第三,混凝土的密实性。

混凝土的密实性是指混凝土内部的孔隙率,密实性越高,孔隙率越低,混凝土的耐久性就越好。

混凝土的密实性受到施工工艺、振捣方式和养护条件等影响。

如果混凝土没有得到充分的振捣和养护,就会导致孔隙率较高,从而降低了混凝土的耐久性。

第四,混凝土的养护条件。

混凝土在初凝后需要进行养护,以保证其正常硬化和强度的发挥。

养护条件包括温度、湿度和时间等,不同的养护条件对混凝土的耐久性具有重要影响。

如果养护条件不合理,混凝土在早期即会出现龟裂、起砂等现象,大大影响其耐久性。

第五,外部环境因素。

混凝土在不同的外部环境中暴露,会受到气候、酸碱性、盐分和化学物质等的侵蚀,从而对混凝土的耐久性造成影响。

例如,在潮湿和高盐分的环境中,混凝土容易受到腐蚀,导致其强度下降。

综上所述,混凝土的耐久性受多方面因素影响,包括水泥的质量和配比、骨料的质量和粒径、混凝土的密实性、养护条件以及外部环境等。

在建筑中,应根据具体情况合理选择水泥和骨料,调整配比,加强振捣和养护过程,并对混凝土进行合理的防护措施,以提高混凝土的耐久性,延长建筑物的使用寿命。

影响混凝土结构耐久性的因素和有效控制措施

影响混凝土结构耐久性的因素和有效控制措施

影响混凝土结构耐久性的因素和有效控制措施混凝土结构耐久性是指混凝土结构在使用环境条件下的长期保持稳定的性能,包括抗压强度、抗渗透性、抗化学侵蚀性、抗冻融性、抗炭化性等。

影响混凝土结构耐久性的因素主要包括以下几个方面:1. 混凝土材料的性质:混凝土的配合比、水灰比、砂浆含量、掺合料等对混凝土的耐久性有重要影响。

过高的水灰比会导致混凝土的强度降低,渗透性增加;掺入过多的矿物掺合料或外加剂可能会改变混凝土的性质,影响耐久性。

2. 结构设计与施工工艺:混凝土结构的设计应合理布置,并考虑到荷载、变形、温度等因素,以确保结构的稳定性和耐用性。

施工工艺应控制好混凝土浇筑、养护的过程,以确保混凝土的致密性和强度。

3. 外界环境条件:外界的环境条件如温度、湿度、酸雨等也会对混凝土结构的耐久性产生影响。

高温环境可能导致混凝土开裂,而湿度较大的环境可能会加速混凝土的腐蚀和破坏。

4. 使用和维护管理:使用阶段的不合理使用或不良维护管理也会影响混凝土结构的耐久性。

不合理的荷载施加、缺乏有效的防水措施、不及时的维修等可能导致混凝土的损坏或劣化。

1. 合理的混凝土配合比和外加剂的选择:根据具体工程要求,选用合适的水灰比、砂浆含量和掺合料,选择适合的外加剂来改善混凝土的性能。

3. 加强施工管理和质量控制:加强对混凝土施工过程的监测和管理,确保混凝土浇筑和养护的质量,防止施工质量问题导致混凝土的损坏。

4. 做好防护和维护工作:在混凝土结构使用阶段,要做好防水、防腐、防冻、防霉等工作。

定期检查混凝土结构的状况,及时进行维修和保养,防止混凝土的进一步破坏。

5. 合理的使用和维护管理:在使用混凝土结构时,要根据结构的特点和要求合理使用,避免超载和过度振动等不合理操作。

做好结构的日常维护管理,及时发现问题并采取相应措施修复,延长混凝土结构的使用寿命。

混凝土结构的耐久性受到多种因素的影响,只有在材料、结构设计、施工和维护等各个环节都加以合理控制和管理,才能最大程度地提高混凝土结构的耐久性。

混凝土的耐久性及其保护措施

混凝土的耐久性及其保护措施

混凝土的耐久性及其保护措施混凝土是建筑业中广泛使用的一种材料,其在建筑中的使用早已经历了上百年的历史。

然而,随着时间的推移,建筑中使用的混凝土会腐蚀,受损和退化,从而影响到建筑的结构稳定性和安全性。

本文将介绍混凝土的耐久性问题以及保护措施。

1. 混凝土的耐久性问题混凝土的主要成分为水泥、砂、碎石和水,其中含有各种各样的化学物质和氧化金属离子等,这些都是导致混凝土腐蚀的因素。

混凝土在使用过程中,会受到多种力的作用,如自重、风、水、冰、碱、腐蚀、旧化等。

这些因素会导致混凝土表面开裂,降低其强度和密度,从而出现龟裂、渗水、开裂、碳化、腐蚀等问题,这些问题会严重影响混凝土建筑物的使用寿命。

2. 混凝土的保护措施为了延长混凝土建筑物的使用寿命,预防混凝土的老化,需要采取适当的保护措施,包括以下几个方面:(1)加强混凝土质量控制。

要求建筑方严格按照相关标准操作,建筑材料要达到相应质量标准要求,确保混凝土成品的质量优良。

(2)混凝土表面防水处理。

选用优质的表面防水材料,比如沥青或专业的混凝土防水涂料,对混凝土表面进行防水处理,防止混凝土受到水分的侵蚀,从而减缓混凝土的老化。

(3)使用防寒防腐蚀剂。

在寒冷的环境下,混凝土会受到冰的侵害,导致混凝土表面起破损和龟裂现象。

使用防寒剂可以有效降低混凝土的冰冻性,防寒剂中还有防腐蚀成分,可以对混凝土表面和内部的金属防腐蚀,延长混凝土的使用寿命。

(4)使用防腐剂。

防腐剂可以有效防止混凝土受到各种酸、碱和氧化金属离子的侵蚀,从而减缓混凝土的老化和腐蚀。

(5)加强定期检查维护。

定期对混凝土建筑物进行检查和维护,有助于发现混凝土的问题,及时采取措施,延长混凝土建筑物的使用寿命。

综上所述,混凝土作为建筑业中广泛使用的一种材料,具有重要的作用。

但是,由于混凝土自身的缺陷和在使用过程中会遇到多种恶劣的环境,混凝土会出现各种问题,严重影响建筑物的使用寿命。

因此,对混凝土建筑物的保护应引起我们的高度重视,采取适当的措施,延长混凝土建筑物的使用寿命,保障人民生命财产安全。

混凝土的耐久性原理及提高方法

混凝土的耐久性原理及提高方法

混凝土的耐久性原理及提高方法一、混凝土的耐久性原理混凝土是一种常见的建筑材料,具有较高的强度和耐久性。

混凝土的耐久性主要取决于以下因素:1. 水泥的品种和质量:水泥是混凝土的主要胶结材料。

水泥的品种和质量会直接影响混凝土的强度和耐久性。

普通硅酸盐水泥和高性能混凝土用水泥等高强度水泥可以提高混凝土的耐久性。

2. 骨料的质量:骨料是混凝土的主要骨架材料。

骨料的质量会直接影响混凝土的强度和耐久性。

优质的骨料应具有一定的硬度和韧性,且不能含有过多的杂质。

3. 混凝土的配合比:混凝土的配合比会直接影响混凝土的强度和耐久性。

合理的配合比应根据工程需求和材料性能进行调整,以达到最佳的耐久性。

4. 混凝土的养护:混凝土的养护是保证混凝土强度和耐久性的重要措施。

养护期间应保持混凝土表面湿润,以防止混凝土表面龟裂。

5. 环境因素:混凝土的耐久性还受到环境因素的影响。

例如,气候条件、水质、土壤条件等都会影响混凝土的强度和耐久性。

二、提高混凝土的耐久性的方法1. 选择优质材料:在混凝土施工中,应选择优质的水泥、骨料等材料,并进行质量检测。

水泥的品种和质量应符合国家标准要求,骨料应具有一定的硬度和韧性,且不能含有过多的杂质。

2. 合理配合比:混凝土的配合比应根据工程需求和材料性能进行调整,以达到最佳的耐久性。

在混凝土的配合比中,应控制水灰比,降低混凝土的渗透性和开裂倾向。

3. 引入掺合料:掺合料是提高混凝土耐久性的常用方法之一。

掺合料可以改善混凝土的性能,例如增加混凝土的强度和耐久性等。

常用的掺合料有矿物掺合料、化学掺合料等。

4. 加强混凝土的养护:混凝土的养护是保证混凝土强度和耐久性的重要措施。

在混凝土养护期间,应保持混凝土表面湿润,以防止混凝土表面龟裂。

养护时间应根据混凝土的强度和环境条件进行调整。

5. 加强混凝土的防护:混凝土的防护是保证混凝土耐久性的重要措施。

在混凝土表面覆盖一层防护材料,可以防止混凝土表面受到外界侵蚀,延长混凝土的使用寿命。

混凝土耐久性的主要因素与其提高的措施

混凝土耐久性的主要因素与其提高的措施

混凝土耐久性的主要因素与其提高的措施混凝土耐久性是指混凝土构件在长期使用条件下抵抗各种破坏因素作用而保持其原有性能的性质。

近年来,随着混凝土技术的发展,高性能混凝土的研究与应用普遍得到人们的重视,混凝土耐久性的研究则是其核心的研究内容。

标签:混凝土耐久性;主要因素;提高措施1.影响混凝土耐久性的主要因素1.1混凝土的抗渗性混凝土的抗渗性是指混凝土在压力水的作用下抵抗渗透的能力。

如果混凝土的抗渗性不好、溶液性的物质能浸透混凝土、与混凝土的胶结材料发生化学反应而使混凝土的性能劣化。

在钢筋混凝土中、由于水分与空气的渗透、会引起钢筋的锈蚀。

钢筋的锈蚀导致其体积增大、造成钢筋周围的混凝土保护层的开裂与剥落、使钢筋混凝土结构失去其耐久性。

渗透性对混凝土的抗冻性也有重要的影响。

因为渗透性决定了混凝土可能为水饱和的程度。

渗透性高的混凝土、其内部孔隙为水分充满、在水的冰冻压力作用下、混凝土内部结构更易于产生损伤与破坏。

因此可以说、混凝土的抗渗性是其耐久性的第一道防线。

混凝土与其微观结构的劣化和侵蚀性介质的传输有关、混凝土的渗透性取决于其自身的微结构和饱和水程度、是决定混凝土性能劣化的关键因素。

因此可能通过检测混凝土的渗透性来评估其耐久性。

1.2混凝土的抗冻性混凝土的抗冻性决定于水泥石的抗冻性和骨料的抗冻性。

从冰冻对水泥石和骨料的作用可以看出诸多因素影响混凝土的抗冻性。

这些因素包括:水分迁移路径的距离、混凝土的孔结构、混凝土的饱和度、混凝土的抗拉强度以及冷却速度等。

提高混凝土的抗冻性可以采用以下措施;(1)引气:这是因为在水泥石受到冻融作用时、水分迁移所引起的压力、可以由引入的微细气泡得到释放。

一般说来、混凝土的抗冻性随着阴气量的增加而增加。

而当含气量一定时、气泡尺寸、气泡数量和气泡的间距都会影响混凝土的抗冻性能。

(2)控制水灰比:水泥石内的大孔隙量与水灰比和水化程度有关。

一般说来、水灰比小、水化程度高则水泥石中的孔隙越少。

混凝土耐久性研究

混凝土耐久性研究

混凝土耐久性研究混凝土是建筑工程中常用的一种材料,具有优良的耐久性和强度,但是在实际应用过程中,由于受到环境、荷载等多种因素的影响,混凝土的耐久性问题也成为了工程中的一个重要研究内容。

本文将对混凝土的耐久性进行研究,并探讨其影响因素及相关的解决方法。

一、混凝土耐久性的影响因素1. 环境因素混凝土在不同的环境中会受到不同程度的侵蚀和破坏,比如气候条件、化学腐蚀、生物侵蚀等。

在潮湿的环境中,混凝土易受到水分侵蚀,导致混凝土内部空隙被侵蚀并加速腐蚀。

在酸雨的腐蚀下,混凝土内的水泥基质会被溶解,从而降低混凝土的强度和耐久性。

生物的侵蚀也是影响混凝土耐久性的一个重要因素,生长在混凝土表面的植物根系、细菌和真菌会对混凝土产生破坏作用,进一步减少混凝土的使用寿命。

2. 结构设计及施工工艺混凝土结构设计的合理与否,以及施工工艺的优劣都会直接影响混凝土的耐久性。

比如在结构设计中,应该充分考虑到混凝土在使用寿命内可能受到的荷载及变形,以及预留的防护层等,以降低混凝土的受力状态。

施工工艺的好坏也会直接影响混凝土的质量,比如浇筑时的震动、密实度和成坯的养护等。

3. 材料选用混凝土的耐久性还与使用的材料有直接关系,如水泥的品质、骨料的优劣、添加剂和外加剂的选用等。

其中水泥的品质直接影响混凝土的耐久性,因为其决定了混凝土的强度和抗渗透性,而骨料的优劣会影响混凝土的强度和耐久性,添加剂和外加剂的选用则会影响混凝土的工作性能和耐久性。

二、混凝土耐久性的研究方法及解决方案1. 实验研究对混凝土的耐久性进行实验研究是比较常用的方法之一。

通过模拟不同环境条件对混凝土的侵蚀和破坏,研究混凝土的耐久性变化规律,并探讨其影响因素。

比如可以通过浸泡试验、腐蚀试验、冻融试验等,来评价混凝土的耐久性,并根据实验结果提出相应的解决方案。

2. 数值模拟利用数值模拟的方法对混凝土的耐久性进行研究,通过建立相应的数学模型,模拟不同环境条件下混凝土的受力和破坏过程,预测混凝土在不同环境下的使用寿命,为设计和施工提供参考依据。

混凝土的耐久性改善措施

混凝土的耐久性改善措施

混凝土的耐久性改善措施混凝土是一种广泛应用于建筑和基础设施领域的材料,其耐久性一直是关注的焦点。

在现实应用中,混凝土会受到多种因素的破坏,如化学侵蚀、物理载荷、温度变化等。

为了提高混凝土的耐久性和延长其使用寿命,需要采取相应的改善措施。

本文将探讨一些可行的混凝土耐久性改善措施,旨在提供实用的建议。

1. 使用高性能混凝土高性能混凝土是指在传统混凝土的基础上,通过控制材料配比、添加化学掺合剂和改良工艺等手段提高强度和耐久性的混凝土。

高性能混凝土的抗压强度、抗渗性和耐久性等性能优于传统混凝土,适用于对耐久性要求较高的工程。

2. 加强混凝土结构的维护保养混凝土结构的维护保养对于延长其使用寿命至关重要。

定期检查混凝土结构的表面是否存在裂缝、腐蚀等问题,并及时采取修复措施,如填补裂缝、防腐涂层等,以防止进一步的破坏。

此外,还可以采取防水处理和表面加固等手段,提高混凝土结构的耐久性。

3. 使用防水剂混凝土的渗水性是导致其损坏的主要原因之一。

通过使用防水剂来提高混凝土的防水性能,可以有效地减少水分的渗透和侵蚀。

防水剂可以分为内部防水剂和外部防水剂两种,内部防水剂通过改变混凝土内部的结构和性质来提高其防水性能,外部防水剂则通过涂覆在混凝土表面形成一层防水膜来达到防水的效果。

4. 添加化学掺合剂化学掺合剂是改善混凝土性能的有效方法之一。

它们可以通过控制水胶比、改善混凝土的微观结构和增强其耐久性能。

常见的化学掺合剂包括氯化钙、硅灰、矿渣粉等。

添加适量的化学掺合剂可以提高混凝土的抗渗性、抗冻融性和耐化学侵蚀性。

5. 耐久性试验与监测耐久性试验与监测是评估混凝土性能和监控其耐久性变化的重要手段。

通过对混凝土的抗渗性、抗冻融性、抗化学侵蚀性等进行试验,可以及时了解其性能状况,为采取相应的改善措施提供依据。

同时,定期进行混凝土结构的耐久性监测,可以实时监测结构的健康状态,及时发现并修复潜在问题。

总结:混凝土的耐久性改善措施包括使用高性能混凝土、加强维护保养、使用防水剂、添加化学掺合剂以及进行耐久性试验与监测等。

影响混凝土结构耐久性的因素和有效控制措施

影响混凝土结构耐久性的因素和有效控制措施

影响混凝土结构耐久性的因素和有效控制措施混凝土结构耐久性是指混凝土在使用过程中能够抵抗外界环境的侵蚀和损害,保持其结构安全、使用寿命长的能力。

影响混凝土结构耐久性的因素主要有以下几个方面:1. 环境因素:混凝土结构所处的环境对其耐久性有着重要影响,如气候条件、大气环境中的污染物、土壤环境中的水质等。

气候条件会导致混凝土结构发生干湿循环,加剧混凝土的膨胀和收缩现象,加速混凝土龟裂和剥落;大气环境中的污染物如酸雨、氯化物等会侵蚀混凝土表面,造成混凝土的腐蚀;土壤环境中的水质会引起钢筋锈蚀、碱骨料反应等问题。

2. 施工工艺:混凝土结构施工的质量和工艺控制直接关系着其耐久性。

在配合比设计、原材料选择和搅拌过程中是否合理,浇筑和养护过程中是否按照要求进行,都会直接影响混凝土的密实性、抗渗性和强度等性能指标。

3. 混凝土配合比:混凝土的配合比设计合理与否,直接影响其性能和耐久性。

配合比中水灰比的控制、骨料的搭配和含量、掺合料的类型和掺量等都是影响混凝土的耐久性的重要因素。

4. 材料选择:混凝土的性能很大程度上取决于原材料的质量,例如水泥的品种、含量和活性、骨料的粒度分布和性质等。

选择高质量的原材料可以提高混凝土结构的耐久性。

1. 加强混凝土结构设计,根据不同的环境条件和使用要求,合理选择混凝土的配合比,控制水灰比,使用低碱度水泥和减少反应性骨料的使用等,以提高混凝土的耐久性。

2. 做好施工质量控制,严格按照工艺要求进行施工,保证混凝土的密实性和抗渗性能。

加强养护措施,确保混凝土的早期强度发展和水化反应的充分进行,提高混凝土的耐久性。

3. 对于暴露在恶劣环境中的混凝土结构,可以采取防护措施,如表面涂覆防水层、防腐蚀涂层等,以保护混凝土结构不受环境侵蚀。

4. 定期进行养护和维修,对于已经出现的混凝土耐久性问题,及时采取修补措施,修复损坏的混凝土结构,延长其使用寿命。

混凝土结构耐久性受多种因素影响,通过合理设计、控制施工质量和加强防护措施等措施,可以有效提高混凝土结构的耐久性,确保其结构安全和使用寿命的延长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、高性能混凝土的定义 (2)二、影响高性能混凝土耐久性的因素 (3)1、钢筋的锈蚀 (3)2、混凝土的碳化 (3)3、环境水的侵蚀 (4)1) 溶出性侵蚀(软水侵蚀 (4)2) 一般酸性侵蚀 (4)3) 硫酸盐侵蚀 (4)4) 镁盐侵蚀 (4)4、碱—集料反应 (4)5、混凝土的冻融破坏 (5)三、提高耐久性的措施 (5)1、掺入高效减水剂 (5)2、掺入高效活性矿物掺料 (6)3、消除混凝土自身的结构破坏因素 (6)4、保证混凝土的强度 (6)5、完善混凝土结构的耐久性设计 (7)6、施工对耐久性能的保证 (8)影响高性能混凝土耐久性的因素及其提高措施【背景】高性能混凝土是最近十多年才出现的新型高技术混凝土,它以高强度,良好的工作性,优良的耐久性等技术指标为设计目标,保证混凝土有良好的工作性、适用性、力学强度、体积稳定性和经济性,采用现代混凝土技术制作的混凝土。

高性能混凝土不仅是对传统混凝土的重大突破,而且在节能、节料、工程经济、劳动保护以及环境等高面都具有重要意义,是一种环保型、集约型的新型材料。

近年来它在世界各地被广泛应用于多种建筑结构,但实践中,混凝土的耐久性已成为国际工程界普遍关注的问题,种种事故及惊人的维修费用,使人们意识到了解影响高性能混凝土耐久性的因素及探究耐久性的提高措施己是刻不容缓。

【摘要】本文探讨了高性能混凝土的耐久性的影响因素,并就其影响因素提出了提高其耐久性的相关措施。

【关键词】混凝土耐久性影响因素碳化碱—集料【正文】一、高性能混凝土的定义1990年5月在马里兰州Gaithersburg城,由美国国家标准与技术研究院(NIST)与美国混凝土协会(ACT)召开会议,首次提出“高性能混凝土(HPC)”这个名词,认为HPC是同时具有某些性能的匀质混凝土,必须采用严格的施工工艺与优质原材料,配制成便于浇捣、不离析、力学性能稳定、早期强度高,并具有韧性和体积稳定等性能的混凝土,在恶劣的使用环境下寿命长,也就是说HPC要求高的强度、高的流动性以及优良的耐久性。

目前各国根据不同要求,对HPC认识还不大统一,但重视耐久性是大势所趋。

美国:NIST与ACT认为HPC是用优质水泥、集料、水和活性细掺料与高效外加剂制成的,同时具有优良耐久性、工作性和强度的匀质混凝土。

欧洲:重视强度与耐久性,常与高强混凝土并提,(HSC/HPC)。

法国与加拿大正研究开发超高性能混凝土UHPC.日本:重视工作性与耐久性,有足够强度即可。

我国著名的吴中伟院士认为高性能混凝土是一种新型高技术混凝土,是在大幅度提高混凝土性能的基础上,采用现代混凝土技术,选用优质原材料,在严格的质量管理的条件下制成的;除了水泥、水、集料以外,必须掺加足够数量的细掺料与高效外加剂,HPC重点保证下列性能:耐久性、工作性、各种力学性能、适用性、体积稳定性以及经济合理性。

HPC不仅在性能上对传统混凝土有很大突破,在节约资源、能源、改善劳动条件、经济合理等方面,尤其对环境有着十分重大的意义,因此是一种可持续发展的绿色材料。

目前国内外学者多数还认为高性能棍凝土必须是高强混凝土(大于C50),但从目前已取得的效果以及从工程安全性与安全使用期等要求来看,高强混凝土必须是高性能混凝土,因此高强混凝土应当包括在高性能混凝土之中。

单纯的高强混凝土不一定就具有高性能;受钢筋混凝土结构最小断面的限制,往往也并不需要广泛采用高强混凝土。

总之,高性能混凝土因其优异的综合性能必将逐步取代过去的普通混凝土,可以预想,21世纪将成为高性能混凝土的时代。

二、影响高性能混凝土耐久性的因素1、钢筋的锈蚀钢筋锈蚀是造成混凝土结构耐久性损伤的最主要原因。

根据其产生原因可分为:1) 钢筋在外部介质作用下发生电化反应,逐步生成氢氧化铁即铁锈,体积增大造成混凝土顺筋裂缝,便于腐蚀介质渗入钢筋,加快结构的损坏;2) 氯离子对钢筋表面钝化膜有特殊的破坏作用,当混凝土中氯含量超过标准时钢筋会锈蚀,若混凝土开裂,造成水和氧的通道,形成恶性循环;3) 钢筋在拉应力和腐蚀性介质共同作用下形成脆性断裂,这种破坏可在较低拉应力和微弱介质作用下产生破坏;4) 钢筋的氢脆现象。

钢筋锈蚀的直接后果是钢筋的有效截面面积减小,不均匀锈蚀导致钢筋表面凹凸不平,产生应力集中现象,使钢筋的力学性能退化,如强度降低、脆性增大、延性变差,导致构件承载能力降低。

2、混凝土的碳化影响碳化速度的因素之一是环境条件,如相对湿度、二氧化碳浓度、温度以及混凝土表面的覆盖层,混凝土的应力状态,施工质量等;二是材料本身的因素,如水灰比,水泥品种、水泥用量、骨料品种与粒径、外掺加剂、养护方法与龄期、混凝土强度等级。

除时间因素外,影响混凝土碳化的因素还包括环境因素和混凝土材料本身的因素以及混凝土的施工、早期养护和使用中的维护等。

混凝土碳化到钢筋表面后,钢筋表面钝化膜遭到破坏,当有氧和水存在时,钢筋开始锈蚀,其力学性能将急剧衰减。

3、环境水的侵蚀1) 溶出性侵蚀(软水侵蚀):水泥中的水化产物都必须在一定浓度的石灰溶液中才能稳定存在,当环境水中的石灰浓度小于该水化产物的极限石灰浓度时,则该水化产物将会被溶解或分解, 首先是溶解溶解度比较大的氢氧化钙,直到达到所需要的极限浓度。

2) 一般酸性侵蚀:某些地下水或工业废水中含有游离态的酸,这些酸能够和混凝土中的氢氧化钙发生反应,生成相应的钙盐。

所生成的钙盐或易溶于水,或松软无胶结力,或在水泥石的孔隙内结晶,体积膨胀,产生破坏作用。

3) 硫酸盐侵蚀:在海水、地下水及盐沼地矿物水中,常含有大量的硫酸盐,如硫酸镁、硫酸钠等,对混凝土均有严重的破坏。

它们与氢氧化钙作用生成石膏,石膏在混凝土孔隙中结合结晶水,体积膨胀,对混凝土造成破坏。

4) 镁盐侵蚀:海水、地下水及其他矿物水中常富含镁盐,主要有硫酸镁及氯化镁等。

它们与水泥石中的氢氧化钙发生反应,生成溶于水的氯化镁和松软无胶结力的氢氧化镁。

石膏则产生硫酸盐侵蚀,都将破坏混凝土的结构。

4、碱—集料反应碱—集料反应主要是指混凝土中的氢氧根离子与集料中的活性二氧化硅发生化学反应,生成含有碱金属的硅凝胶。

它具有强烈的吸水膨胀能力,使混凝土发生不均匀膨胀,造成裂缝、强度和弹性模量下降,影响混凝土耐久性。

该反应造成的混凝土开裂破坏未有有效的修补方法,因而被称为混凝土的“癌症”混凝土在配制时由原材料带人或由外界环境中带人碱离子,混凝土中同时存在活性矿物集料活性二氧化硅等, 在有水的条件下,碱离子与二氧化硅反应生成碱硅胶, 碱硅胶有强烈的吸水膨胀能力,其形成和成长常常造成混凝土内部的膨胀, 这种膨胀所产生的内部应力,使混凝土内部形成微裂缝,甚至造成混凝土的严重开裂。

碱一集料反应发生需要具备三个条件活性集料、混凝土碱的含量、水或潮湿的环境。

为了避免碱集料反应,混凝土应采用非活性集料,采用低碱水泥或控制混凝土中其他组分碱的引人,掺用粉煤灰、矿渣、硅灰等掺和料以降低混凝土中碱性。

5、混凝土的冻融破坏混凝土是多孔隙的复合材料。

外界水可以通过毛细作用进入混凝土的内部。

混凝土吸后在低温下结冰,体积膨胀约9%,在孔隙中产生应力,使混凝土承受压力,产生微裂缝。

在冻融循环作用下,微裂缝逐步发展,使更多的封闭孔相互连接贯通,进一步降低混凝土的抗冻性,加速混凝土的冻融破坏。

混凝土的冻融分为早期受冻凝固过程中受冻以及投入使用后受冻。

早期受冻是指在混凝土凝固前受冻.解冻后重新震捣则不会影响混凝土的强度。

若混凝土在凝固后,强度尚不大时受冻,则对混凝土影响最大。

水结冰膨胀在混凝土内部留下大量的大孔.混凝土凝固后解冻,这些大孔将不可恢复,严重影响混凝土的密实性和强度,并相应影响到混凝土的抗渗性和抗腐蚀能力。

混凝土抗冻性的高低与水泥的品种、标号、混凝土的水灰比、外加剂及参合料的品种和掺量,以及骨料的品质等有密切的关系。

混凝土中掺人引气剂时,可显著提高其抗冻性。

在原材料一定的条件下,水灰比的大小是影响抗冻性的主要因素。

混凝土的抗冻性随水灰比的增大而减小,另外水的饱和程度也是影响混凝土抗冻性的主要因素。

一般认为混凝土中空气含水量小于孔隙体积的91.7%时,不会引起混凝土的冻坏。

三、提高耐久性的措施1、掺入高效减水剂在保证混凝土拌和物所需流动性的同时,尽可能降低用水量,减小水灰比,使混凝土的总孔隙,特别是毛细管孔隙率大幅度降低。

水泥在加水搅拌后,会产生一种絮凝状结构。

在这些絮凝状结构中,包裹着很多拌和水,从而降低了新拌混凝土的工作性。

施工中为了保持混凝土拌和物所需的工作性,就必须在拌和时相应的增加用水量,这样就会促使水泥石结构中形成过多的孔隙。

当加入减水剂后,减水剂的定向排列,使水泥质点表面均带有相同电荷,在电性斥力的作用下,不但使水泥—水体系处于相对稳定的悬浮状态,还在水泥颗粒表面形成一层溶剂化水膜,同时使水泥絮凝状的絮凝体内的游离水释放出来,因而达到减水的目的。

许多研究表明,当水灰比降低到0.38以下时,消除毛细管孔隙的目标便可以实现,而掺入高效减水剂完全可以将水灰比降低到0.38以下。

2、掺入高效活性矿物掺料普通水泥混凝土的水泥石中的水化物稳定性的不足,是混凝土不能超耐久的另一主要因素。

在普通混凝土中掺入活性矿物的目的在于改善混凝土中水泥石的胶凝物质的组成。

活性矿物掺料(硅灰、矿渣、粉煤灰等)中含有大量活性SiO2(及活性Al2O3),它们能和波特兰水泥水化过程中所产生的游离石灰及高碱性水化硅酸钙产生二次反应,生成强度更高、稳定性更优的低碱性水化硅酸钙,从而达到改善水化胶凝物质的组成并消除游离石灰的目的。

有的超细矿物掺料,其平均粒径远小于水泥粒子的平均粒径,它们能填充于水泥粒子之间的空隙中,使水泥石结构更为致密,并阻断可能形成的渗透通路。

此外,它们还能改善集料与水泥石的界面结构和界面区性能。

这些重要的作用,对增进混凝土的耐久性及强度都有本质性的贡献。

3、消除混凝土自身的结构破坏因素除了环境因素引起的混凝土的结构破坏以外,混凝土本身的一些物理化学因素,也可能引起混凝土结构的严重破坏,致使混凝土失效。

例如,混凝土的化学收缩和干缩过大引起的开裂,水化热过快过高引起的温度裂缝,硫铝酸钙的延迟生成,以及混凝土的碱集料反应等。

因此,要提高混凝土的耐久性,就必须减小或消除这些结构破坏因素。

限制或消除从原材料引入的碱、sO3,(21一等可以引起结构破坏和钢筋锈蚀物质的含量,加强施工控制环节,避免收缩及温度裂缝产生,提高混凝土的耐久性。

4、保证混凝土的强度尽管强度与耐久性是不同的概念,但它们又是密切相关的。

它们之间的本质联系是基于混凝土的内部结构都与水灰比这个因素直接相关。

在混凝土能充分密实条件下,随着水灰比的降低,混凝土的孔隙率降低,混凝土的强度不断提高,与此同时,随着孔隙率降低,混凝土的抗渗性提高,因而各种耐久性指标也随之提高。

相关文档
最新文档