余弦定理 学案(3) 高中数学 必修五 苏教版 Word版
高中数学必修五同步教师用书:必修5 第1章 1.1.2 余弦定理

1.1.2余弦定理[基础·初探]教材整理1余弦定理及其变形阅读教材P5~P6完成下列问题.1.三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=b2+c2-2bc cos_A,b2=a2+c2-2ac cos_B,c2=a2+b2-2ab cos_C.2.余弦定理的变形cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.1.在△ABC中,已知a=4,b=6,C=120°,则边c=________.【解析】根据余弦定理c2=a2+b2-2ab cos C=16+36-2×4×6cos 120°=76,c=219.【答案】2192.在△ABC中,a=1,b=3,c=2,则B=________.【解析】cos B=c2+a2-b22ac=4+1-34=12,B=60°.【答案】60°教材整理2余弦定理及其变形的应用阅读教材P6~P7,完成下列问题.1.利用余弦定理的变形判定角在△ABC中,c2=a2+b2⇔C为直角;c2>a2+b2⇔C为钝角;c2<a2+b2⇔C 为锐角.2.应用余弦定理我们可以解决两类解三角形问题.(1)已知三边,求三角.(2)已知两边和它们的夹角,求第三边和其他两个角.1.在△ABC中,若a2=b2+bc+c2,则A=________.【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cos A=b2+c2-a22bc=-bc2bc=-12,又∵A为△ABC的内角,∴A=120°.【答案】120°2.以下说法正确的是________(填序号).①在三角形中,已知两边及一边的对角,可用正弦定理解三角形,但不能用余弦定理去解;②余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形;③利用余弦定理,可解决已知三角形三边求角问题;④在三角形中,勾股定理是余弦定理的一个特例.【解析】①错误.由正、余弦定理的特征可知在三角形中,已知两边及一边的对角,既可以用正弦定理,也可以用余弦定理求解.②正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形.③正确.结合余弦定理公式及三角函数知识可知正确.④正确.余弦定理可以看作勾股定理的推广.【答案】②③④[小组合作型]已知两边及一角解三角形在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a . 【精彩点拨】 解答本题可先由正弦定理求出角C ,然后再求其他的边和角.也可以由余弦定理列出关于边长a 的方程,首先求出边长a ,再由正弦定理求角A ,角C .【自主解答】 法一:由余弦定理b 2=a 2+c 2-2ac cos B , 得32=a 2+(33)2-2a ×33×cos 30°, ∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理sin A =a sin Bb =6×123=1.∴A =90°,∴C =60°.法二:由b <c ,B =30°,b >c sin 30°=33×12=332知本题有两解. 由正弦定理sin C =c sin B b =33×123=32,∴C =60°或120°,当C =60°时,A =90°, 由勾股定理a =b 2+c 2=32+(33)2=6, 当C =120°时,A =30°,△ABC 为等腰三角形, ∴a =3.已知三角形的两边与一角解三角形,必须先判断该角是给出两边中一边的对角,还是给出两边的夹角.若是给出两边的夹角,可以由余弦定理求第三边;若是给出两边中一边的对角,可以应用余弦定理建立一元二次方程,解方程求出第三边(也可以两次应用正弦定理求出第三边.)[再练一题]1.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,求边c .【解】 由题意:a +b =5,ab =2. 由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19, ∴c =19.已知三边解三角形在△ABC 中,已知a =7,b =3,c =5,求最大角和sin C . 【精彩点拨】 (1)如何判断哪个角是最大角? (2)求sin C 能否应用余弦定理?【自主解答】 ∵a >c >b ,∴A 为最大角, 由余弦定理的推论,得:cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12,∴A =120°,∴sin A =sin 120°=32. 由正弦定理a sin A =csin C ,得: sin C =c sin A a =5×327=5314, ∴最大角A 为120°,sin C =5314.1.本题已知的是三条边,根据大边对大角,找到最大角是解题的关键. 2.已知三边解三角形的方法:先用余弦定理求出一个角,再用正弦定理或余弦定理求出另一角,最后用三角形的内角和定理求第三角.[再练一题]2.在△ABC 中,a 2-c 2+b 2=ab ,求角C . 【解】 ∵c 2=a 2+b 2-2ab cos C , ∴a 2-c 2+b 2=2ab cos C . ∴ab =2ab cos C . ∴cos C =12. ∴C =60°.[探究共研型]正、余弦定理的综合应用探究1 a 2=b 2+c 2,则sin 2A =sin 2B +sin 2C 成立吗?反之说法正确吗?为什么?【提示】 设△ABC 的外接圆半径为R .由正弦定理的变形,将a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a 2=b 2+c 2可得sin 2A =sin 2B +sin 2C .反之将sin A =a 2R ,sin B =b 2R ,sin C =c2R 代入sin 2A=sin 2B +sin 2C 可得a 2=b 2+c 2.因此,这两种说法均正确.探究2 在△ABC 中,若c 2=a 2+b 2,则C =π2成立吗?反之若C =π2,则c 2=a 2+b 2成立吗?为什么?【提示】 因为c 2=a 2+b 2,所以a 2+b 2-c 2=0,由余弦定理的变形cos C =a 2+b 2-c 22ab =0,即cos C =0,所以C =π2,反之若C =π2,则cos C =0,即a 2+b 2-c 22ab =0,所以a 2+b 2-c 2=0,即c 2=a 2+b 2.在△ABC 中,若(a -c ·cos B )·sin B =(b -c ·cos A )·sin A ,判断△ABC的形状.【精彩点拨】【自主解答】 法一:∵(a -c ·cos B )·sin B =(b -c ·cos A )·sin A , ∴由正、余弦定理可得:⎝ ⎛⎭⎪⎫a -c ·a 2+c 2-b 22ac ·b =⎝ ⎛⎭⎪⎫b -c ·b 2+c 2-a 22bc ·a ,整理得:(a 2+b 2-c 2)b 2=(a 2+b 2-c 2)a 2, 即(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2+b 2-c 2=0或a 2=b 2. ∴a 2+b 2=c 2或a =b .故△ABC 为直角三角形或等腰三角形. 法二:根据正弦定理,原等式可化为:(sin A -sin C cos B )sin B =(sin B -sin C cos A )sin A , 即sin C cos B sin B =sin C cos A sin A . ∵sin C ≠0,∴sin B cos B =sin A cos A . ∴sin 2B =sin 2A .∴2B =2A 或2B +2A =π, 即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.1.判断三角形的形状应围绕三角形的边角关系进行思考,可用正、余弦定理将已知条件转化为边边关系,通过因式分解、配方等方式得出边的相应关系,从而判断三角形的形状,也可利用正、余弦定理将已知条件转化为角与角之间的关系,通过三角变换,得出三角形各内角之间的关系,从而判断三角形形状.2.在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,应注意角的限制范围.[再练一题]3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos Ccos B =2c -a b .(1)求sin Csin A 的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.【解】 (1)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,(其中R 为△ABC 外接圆半径)所以cos A -2cos C cos B =2c -a b =2sin C -sin A sin B,所以sin B cos A -2sin B cos C =2sin C cos B -sin A cos B , sin A cos B +sin B cos A =2sin B cos C +2sin C cos B , 所以sin(A +B )=2sin(B +C ). 又A +B +C =π, 所以sin C =2sin A , 所以sin Csin A =2.(2)由(1)知sin C sin A =2,由正弦定理得c a =sin Csin A =2, 即c =2a .又因为△ABC 的周长为5, 所以b =5-3a .由余弦定理得b 2=a 2+c 2-2ac cos B , 即(5-3a )2=a 2+(2a )2-4a 2×14, 解得a =1或a =5(舍去),所以b =5-3×1=2.1.已知a ,b ,c 是△ABC 的三边长,若满足等式(a +b -c )·(a +b +c )=ab ,则角C 的大小为( )A .60°B .90°C .120°D .150°【解析】 由(a +b -c )(a +b +c )=ab ,得(a +b )2-c 2=ab , ∴c 2=a 2+b 2+ab =a 2+b 2-2ab cos C , ∴cos C =-12,∴C =120°. 【答案】 C2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B .π6 C.π4 D .π12【解析】 由三角形边角关系可知,角C 为△ABC 的最小角,则cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43=32,所以C =π6,故选B. 【答案】 B3.在△ABC 中,若a =2b cos C ,则△ABC 的形状为________.【解析】 法一:∵a =2b cos C =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a ,∴a 2=a 2+b 2-c 2,即b 2=c 2,b =c , ∴△ABC 为等腰三角形.法二:∵a =2b cos C ,∴sin A =2sin B cos C , 而sin A =sin(B +C ) =sin B cos C +cos B sin C , ∴cos B sin C =sin B cos C ,即sin B cos C -cos B sin C =0, ∴sin(B -C )=0. 又-180°<B -C <180°, ∴B -C =0,即B =C . ∴△ABC 为等腰三角形. 【答案】 等腰三角形4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知B =C,2b =3a ,则cos A =________.【解析】 由B =C,2b =3a , 可得b =c =32a , 所以cos A =b 2+c 2-a 22bc =34a 2+34a 2-a 22×32a ×32a =13.【答案】 135.在△ABC 中,已知a =5,b =3,角C 的余弦值是方程5x 2+7x -6=0的根,求第三边c 的长.【解】 5x 2+7x -6=0可化为(5x -3)·(x +2)=0, ∴x 1=35,x 2=-2(舍去), ∴cos C =35. 根据余弦定理, c 2=a 2+b 2-2ab cos C =52+32-2×5×3×35=16, ∴c =4,即第三边长为4.。
高中数学余弦定理

高中数学余弦定理余弦定理是高中数学的一个核心内容,也是三角函数的一个重要应用。
余弦定理描述了三角形中一边的平方与另外两边及其夹角的余弦值之间的关系。
对于任何一个三角形,余弦定理都可以给出以下公式:c² = a² + b² - 2abcos(C)其中,a、b和c分别代表三角形的三边长度,C是a和b之间的夹角。
余弦定理的应用范围非常广泛,无论是解三角形、解决实际问题,还是在数学竞赛中,它都是一个重要的工具。
一、解三角形余弦定理可以用来确定三角形的形状和大小。
例如,如果我们知道三角形的三边长a、b和c,以及角A、B和C的度数,我们可以用余弦定理来计算角C的度数。
公式如下:cos(C) = (a² + b² - c²) / (2ab)二、解决实际问题余弦定理也被广泛应用于解决实际问题。
例如,在物理学中,余弦定理可以用来解决与力的合成和分解相关的问题;在地理学中,余弦定理可以用来计算地球上两点之间的距离;在经济学中,余弦定理可以用来计算投资组合的风险和回报。
三、数学竞赛在数学竞赛中,余弦定理也是一个重要的考点。
例如,一些几何问题可能需要使用余弦定理来解决;在一些代数问题中,余弦定理也可能是一个关键的工具。
余弦定理是高中数学的一个重要内容,它不仅在数学中有广泛的应用,也在其他领域中有重要的应用价值。
通过学习和理解余弦定理,我们可以更好地理解和解决各种问题。
一、引言在中国的教育体系中,数学一直是核心学科,特别是在高中阶段,数学的学习对学生的学习生涯和未来的学术成就具有重大影响。
因此,如何设计有效且吸引人的数学课程,帮助学生理解和掌握数学知识,是所有教育工作者都应的问题。
在本文中,我们将探讨如何利用APOS 理论来设计高中数学定理的教学,并以余弦定理为例进行具体阐述。
二、APOS理论概述APOS理论是由美国学者杜宾斯基提出的一种学习理论,它强调学习过程中学生的主动性和实践性。
高中数学正余弦定理教案模板(精选7篇)-最新

高中数学正余弦定理教案模板(精选7篇)作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。
下面是的为您带来的7篇《高中数学正余弦定理教案模板》,希望能够对困扰您的问题有一定的启迪作用。
余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。
下面我分别从教材分析。
教学目标的确定。
教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。
平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。
本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。
引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C 变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A为钝角或直角时,a ≤b ,无解.2、三角形常用面积公式1.S =a •h a (h a 表示边a 上的高);2.S =ab sin C =ac sin B =bc sin A .3.S =r (a +b +c )(r 为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1C.2D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,若sin B =b sin A ,则a =()A.B .C .1D .三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R 是△ABC 外接圆半径)a 2=b 2+c 2﹣2bc cos A ,b 2=a 2+c 2﹣2ac cos B ,c 2=a 2+b 2﹣2ab cos C变形形式①a =2R sin A ,b =2R sin B ,c =2R sin C ;②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A cos A =,cos B =,cos C =解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba≥ba >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A 为钝角或直角时,a ≤b ,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,且(a +b )2=c 2+ab ,B =30°,a =4,则△ABC 的面积为()A .4B .3C .4D .6例2.设△ABC 的三个内角A ,B ,C 成等差数列,其外接圆半径为2,且有,则三角形的面积为()A .B .C .或D .或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;的最大值.(2)若D为AC的中点,且BD=1,求S△ABC'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
2020-2021学年苏教版必修五 余弦定理应用举例 学案

2020-2021学年苏教版必修五 余弦定理应用举例 学案1.三角形中的有关公式(正弦定理、余弦定理、三角形内角和定理、三角形面积公式等); 2.正弦定理和余弦定理解三角形的常见问题有:测量距离问题、测量高度问题、测量角度问题、计算面积问题、航海问题、物理问题等; 3.实际问题中有关术语、名称.(1)仰角和俯角:在目标视线和水平视线所成的角中,目标视线在水平视线上方的角叫仰角;在水平视线下方的角叫俯角(2)方位角:指正北方向顺时针转到目标方向线水平角. 典例分析例1.(1)某人朝正东方走x km 后,向左转1500,然后朝新方向走3km ,结果它离出发点恰好3km ,那么x 等于 ( )(A )3 (B )32 (C )3或 32 (D )3 解:C 提示:利用余弦定理(2)甲、乙两楼相距20m ,从乙楼底望甲楼顶的仰角为060,从甲楼顶望乙楼顶的俯角为030,则甲、乙两楼的高分别是 ( )A 403203,3m m B 103,203m m C 10(32),203m m - D 153203,23m m 解:A(3)一只汽球在2250m 的高空飞行,汽球上的工件人员测得前方一座山顶上A 点处的俯角为018,汽球向前飞行了2000m 后,又测得A 点处的俯角为082,则山的高度为( ) A 1988m B 2096m C 3125m D 2451m 解: B(4)已知轮船A 和轮船B 同时离开C 岛,A 向北偏东025方向,B 向西偏北020方向,若A 的航行速度为25 nmi/h ,B 的速度是A 的35,过三小时后,A 、B 的距离是 . 解:90.8 nmi(5) 货轮在海上以40km/h 的速度由B 到C 航行, 航向为方位角0140NBC ∠=,A 处有灯塔,其方位角0110NBA ∠=,在C 处观测灯塔A 的 方位角035MCA ∠=,由B 到C 需航行半小时, 则C 到灯塔A 的距离是解:10(62)-km 提示:由题意知 075BCA ∠=,利用余弦定理或解直角三角形可得。
高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)高中数学必修五教案篇一教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生"大众教学"的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。
心理体验,产生热爱数学的情感。
教学重点:等差数列前n项和的公式。
教学难点:等差数列前n项和的公式的灵活运用。
教学方法:启发、讨论、引导式。
教具:现代教育多媒体技术。
教学过程一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。
提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。
(教师观察学生的表情反映,然后将此问题缩小十倍)。
我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10。
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
2022-2021年《金版学案》数学·必修5(苏教版)练习:第1章1.2余弦定理

第1章 解三角形 1.2 余弦定理A 级 基础巩固 一、选择题1.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .肯定是锐角三角形B .肯定是直角三角形C .肯定是钝角三角形D .是锐角或直角三角形 解析:由题意知a 2+b 2-c 22ab <0,即cos C <0,所以△ABC 为钝角三角形. 答案:C2.在△ABC 中,a =1,b =3,c =2,则B 等于( ) A .30° B .45° C .60° D .120° 解析:cos B =c 2+a 2-b 22ac =4+1-34=12,所以B =60°. 答案:C3.边长为5,7,8的三角形的最大角与最小角的和是( ) A .90° B .120° C .135° D .150°解析:设边长为7的边所对的角为θ,则由余弦定理得:cos θ=52+82-722×5×8=12,所以θ=60°.所以最大角与最小角的和为180°-60°=120°. 答案:B4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a 2=b 2-c 2+2ac ,则角B 的大小是( )A .45°B .60°C .90°D .135° 解析:由于a 2=b 2-c 2+2ac , 所以a 2+c 2-b 2=2ac ,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22,又0°<B <180°,所以B =45°. 答案:A5.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19 解析:由余弦定理的推论知 cos B =AB 2+BC 2-AC 22AB ·BC=1935,所以AB →·BC →=|AB →|·|BC →|·cos (π-B )=7×5×⎝⎛⎭⎪⎫-1935=-19.答案:D 二、填空题6.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若3a 2+2ab +3b 2-3c 2=0,则cos C =_____________________________.解析:由3a 2+2ab +3b 2-3c 2=0得a 2+b 2-c 2=-23ab ,从而cos C =a 2+b 2-c 22ab=-13.答案:-137.(2022·福建卷)在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________. 解析:由余弦定理可知:cos A =AC 2+AB 2-BC 22AC ·AB =4+AB 2-32×2AB =12,所以AB=1.答案:18.设2a +1,a ,2a -1为钝角三角形的三边,那么a 的取值范围是________. 解析:由题意知2a +1是三角形的最大边,则⎩⎪⎨⎪⎧a >0,a +2a -1>2a +1,a 2+(2a -1)2-(2a +1)22a (2a -1)<0,所以2<a <8. 答案:(2,8) 三、解答题9.在△ABC 中,B =120°,若b =13,a +c =4,求△ABC 的面积. 解:由余弦定理得:b 2=a 2+c 2-2ac ·cos B ,即b 2=(a +c )2-2ac -2ac ·⎝ ⎛⎭⎪⎫-12, 所以ac =3.故S △ABC =12ac sin B =12×3×32=334.10.在△ABC 中,∠C =90°,现以a +m ,b +m ,c +m (m >0)为边长作一个△A ′B ′C ′,试推断△A ′B ′C ′的外形.解:最大边长c +m 所对角为C ′,则 cos C ′=(a +m )2+(b +m )2-(c +m )22(a +m )(b +m )=(a 2+b 2-c 2)+2m (a +b -c )+m 22(a +m )(b +m )=2m (a +b -c )+m 22(a +m )(b +m )>0,所以C ′为锐角,而C ′为△A ′B ′C ′的最大角,故△A ′B ′C ′为锐角三角形.B 级 力量提升 一、选择题11.三角形的两边分别为5和3,它们夹角的余弦是方程5x 2-7x -6=0的根,则三角形的另一边长为( )A .52B .213C .16D .4解析:设夹角为α,所对的边长为m ,则由5x 2-7x -6=0,得(5x +3)(x -2)=0,故得x =-35或x =2,因此cos α=-35,于是m 2=52+32-2×5×3×⎝ ⎛⎭⎪⎫-35=52,所以m =213.答案:B12.在不等边三角形中,a 为最大边,假如a 2<b 2+c 2,则A 的取值范围是( ) A .90°<A <180° B .45°<A <90° C .60°<A <90°D .0°<A <90°解析:由余弦定理可知,cos A >0,故知A 为锐角,又A 是不等边三角形的最大角,故A >60°,所以60°<A <90°.答案:C13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则B =( )A.π6 B.π3或2π3 C.π6或5π6D.π3解析:由(a 2+c 2-b 2)tan B =3ac 得a 2+c 2-b 2=3ac tan B ,再由余弦定理得:cosB =a 2+c 2-b 22ac =32tan B,即tan B cos B =32,即sin B =32,所以B =π3或2π3.答案:B 二、填空题14.(2022·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a ,2sin B =3sin C ,则cos A 的值为________.解析:由2sin B =3sin C 及正弦定理得2b =3c ,即b =32c .代入b -c =14a ,整理得a =2c .故cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c ·c =-14.答案:-1415.已知△ABC 的三边a ,b ,c ,且面积S =a 2+b 2-c 24,则C =________.解析:由12ab sin C =a 2+b 2-c 24得a 2+b 2-c 2=2ab sin C ,再由余弦定理cos C=a 2+b 2-c 22ab得sin C =cos C ,所以C =π4.答案:π4三、解答题16.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos(A -C )的值.解:(1)由于c 2=a 2+b 2-2ab cos C =1+4-4×14=4,所以c =2.所以△ABC的周长为1+2+2=5.(2)由于cos C =14,所以sin C =1-cos 2C =154,cos A =b 2+c 2-a 22bc =22+22-122×2×2=78.所以sin A =1-⎝ ⎛⎭⎪⎫782=158.所以cos(A -C )=cos A cos C +sin A sin C =78×14+158×154=1116.。
苏教版数学必修五:1.2余弦定理(一)作业纸

课题:§1.2余弦定理(一) 总第____课时班级_______________姓名_______________1.已知△ABC 中,7,5,3a b c ===,则= .2.在锐角三角形中,角A 、B 满足03)sin(2=-+B A ,则角C = .3.已知△ABC 中,o60=A ,最大边和最小边的长是方程0892=+-x x 的两实根,则边长BC 是 .4.在中,,则最大角的余弦值是 . 5.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC = . 6.已知△ABC ,31,2,2+===c b a ,则A= .7.已知三角形的两边分别为4和5,它们夹角的余弦是方程02322=-+x x 的根,则第三边长是 .8.△ABC 中已知∠A=60°,AB :AC=8:5,面积为103,则其周长为 . 9.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______.10.已知△ABC ,其面积S △ABC =312,bc =48,b – c =2,则a= .A ABC ∆1413cos ,8,7===C b a11.在△ABC 中,已知o 150,2,33===B c a ,求b 的长和△ABC 的面积12.根据下列条件,判断△ABC 的形状:(1) C A B sin sin cos 2=⋅;(2)222)cos cos (A b B a b a +=-13. 已知圆内接四边形ABCD 中,AB=2,BC=6,AD=CD=4,如何求四边形ABCD 的面积?三、作业错误分析及订正:1.填空题错误分析:[错误类型分四类:①审题错误;②计算错误;③规范错误;④知识_____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ 3.解答题订正:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 余弦定理 第1课时 余弦定理(1)1.掌握余弦定理的两种形式及证明余弦定理的向量方法.(重点) 2.会运用余弦定理解决两类基本的解三角形问题.(难点)[基础·初探]教材整理1 余弦定理阅读教材P 13“思考”以上部分,完成下列问题.三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .1.在△ABC 中,若b =1,c =3,A =π6,则a = . 【解析】 a =b 2+c 2-2bc cos A =1. 【答案】 12.在△ABC 中,若a =5,c =4,cos A =916,则b = . 【解析】 由余弦定理可知 25=b 2+16-2×4b cos A , 即b 2-92b -9=0, 解得b =6.【答案】 6教材整理2 余弦定理的变形阅读教材P13“思考”以下内容~P14,完成下列问题.1.余弦定理的变形cos A=b2+c2-a22bc,cos B=a2+c2-b22ca,cos C=a2+b2-c22ab.2.余弦定理与勾股定理的关系在△ABC中,c2=a2+b2⇔C为直角;c2>a2+b2⇔C为钝角;c2<a2+b2⇔C 为锐角.1.在△ABC中,a=3,b=7,c=2,则B=.【解析】cos B=a2+c2-b22ac=9+4-712=12,∴B=60°.【答案】60°2.在△ABC中,若b2+c2-a2<0,则△ABC必为三角形.【导学号:92862010】【解析】∵cos A=b2+c2-a22bc<0,∴A∈(90°,180°).∴△ABC必为钝角三角形.【答案】钝角[小组合作型]【精彩点拨】法一:直接利用余弦定理求边、求角;法二:先利用正弦定理求角,再利用余弦定理求边.【自主解答】法一由余弦定理知b2=a2+c2-2ac cos B,∴2=3+c2-23·22c,即c2-6c+1=0,解得c=6+22或c=6-22.当c=6+22时,由余弦定理得cos A=b2+c2-a22bc=2+⎝⎛⎭⎪⎫6+222-32×2×6+22=12.∵0°<A<180°,∴A=60°,∴C=75°.当c=6-22时,由余弦定理得cos A=b2+c2-a22bc=2+⎝⎛⎭⎪⎫6+222-32×2×6+22=-12.∵0°<A<180°,∴A=120°,C=15°.故c=6+22,A=60°,C=75°或c=6-22,A=120°,C=15°.法二由正弦定理asin A=bsin B,得sin A=a sin Bb=3·sin 45°2=32.又∵a>b,∴A>B,∴A=60°或120°.当A=60°时,得C=75°.由余弦定理得c2=a2+b2-2ab cos C=3+2-2×6×6-24=2+3,∴c=2+3=6+2 2.或用正弦定理求边c,由csin C=bsin B得c=b sin Csin B=2·sin 75°sin 45°=2×6+2422=6+22.当A=120°时,得C=15°,同理可求c=6-22,故A=60°,C=75°,c=6+22,或A=120°,C=15°,c=6-22.已知两边及一角,求第三边和其他角,存在两种情况:(1)已知两边及其中一边的对角,可利用余弦定理列出关于第三边的等量关系建立方程,运用方程的思想求得第三边,再求出其他角,可免去判断取舍的麻烦.(2)已知两边及其夹角,直接利用余弦定理求出第三边,然后利用正弦定理求出另外两角.[再练一题]1.在△ABC中,若b=3,c=33,B=30°,解此三角形.【导学号:92862011】【解】法一由余弦定理b2=a2+c2-2ac cos B,得32=a2+(33)2-2a×33×cos 30°,∴a2-9a+18=0,得a=3或a=6.当a=3时,A=30°,∴C=120°;当a=6时,由正弦定理得sin A =a sin Bb =6×123=1,∴A =90°, ∴C =60°.法二 由b <c ,B =30°,b >c sin 30°=33×12=332知本题有两解. 由正弦定理得sin C =c sin B b =33×123=32, ∴C =60°或120°. 当C =60°时,A =90°,由勾股定理a =b 2+c 2=32+(33)2=6; 当C =120°时,A =30°,△ABC 为等腰三角形, ∴a =3.综上所述,当a =3时,A =30°,C =120°;当a =6时,A =90°,C =60°.【精彩点拨】 设a =2k ,b =6k ,c =(3+1)k ,代入cos A ,cos B ,cos C 求解.【自主解答】 设a =2k ,b =6k ,c =(3+1)k (k >0),由余弦定理得cos A =b 2+c 2-a 22bc =6k 2+(3+1)2k 2-4k 226(3+1)k 2=22,∴A =45°.同理可得cos B =12,B =60°. ∴C =180°-A -B =75°.1.已知三角形三边求角时,可先利用余弦定理求角,再用正弦定理求解,在用正弦定理求解时,要根据边的大小确定角的大小,防止产生增解或漏解.2.若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边解三角形.[再练一题]2.已知△ABC 的三边长为a =3,b =4,c =37,求△ABC 的最大内角. 【解】 ∵c >a ,c >b ,∴角C 最大.由余弦定理,得c 2=a 2+b 2-2ab cos C , 即37=9+16-24cos C ,∴cos C =-12. ∵0°<C <180°,∴C =120°. ∴△ABC 的最大内角为120°.[探究共研型]【提示】 若△ABC 是锐角三角形,则⎩⎨⎧cos A >0,cos B >0,cos C >0,即⎩⎨⎧a 2+b 2>c 2,b 2+c 2>a 2,a 2+c 2>b 2.探究2 若a 2+b 2<c 2,则△ABC 是什么三角形.反之呢? 【提示】 若a 2+b 2<c 2,则△ABC 是钝角三角形,反之不成立.若钝角△ABC 的三边长分别为a ,a +1,a +2,求实数a 的取值范围.【精彩点拨】 首先a ,a +1,a +2需满足构成三角形的条件,其次要满足a +2对应的角为钝角.【自主解答】 由题意知,a +2是三角形的最大边, 故⎩⎪⎨⎪⎧a >0,a +(a +1)>a +2,a 2+(a +1)2-(a +2)22a (a +1)<0,即⎩⎨⎧a >0,a >1,a 2-2a -3<0,解得1<a <3.用余弦定理判断三角形的形状1.在△ABC 中,若a 2<b 2+c 2,则0°<A <90°;反之,若0°<A <90°,则a 2<b 2+c 2.2.在△ABC 中,若a 2=b 2+c 2,则A =90°;反之,若A =90°,则a 2=b 2+c 2.3.在△ABC 中,若a 2>b 2+c 2,则90°<A <180°;反之,若90°<A <180°,则a 2>b 2+c 2.提醒:①判断三角形形状时,要灵活选用公式,做到事半功倍.②注意题目中的隐含条件,防止增解或漏解.[再练一题]3.若2,3,x 是锐角三角形的三边,求实数x 的取值范围.【解】由题意可知⎩⎨⎧22+32-x 2>0,22+x 2-32>0,1<x <5,即⎩⎨⎧-13<x <13,x >5或x <-5,1<x <5,∴5<x<13.1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC = .【解析】 由余弦定理得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =25+9-492×5×3=-12.∵0<∠BAC <π,∴∠BAC =23π.【答案】 23π2.在△ABC 中,已知a =1,b =2,C =60°,则c = . 【解析】 ∵c 2=1+4-2×1×2cos 60° =1+4-2=3,∴c= 3.【答案】 33.若△ABC的三边长为2,3,4,则该三角形是三角形.(填“锐角”“直角”或“钝角”)【解析】∵22+32-42=4+9-16<0,∴该三角形是钝角三角形.【答案】钝角4.在△ABC中,若b=1,c=3,C=2π3,则a=.【导学号:92862012】【答案】 15.设△ABC的内角A,B,C的对边分别为a,b,c.已知b2+c2=a2+3bc,求:(1)A的大小;(2)2sin B cos C-sin(B-C)的值.【解】(1)由余弦定理:a2=b2+c2-2bc cos A,故cos A=b2+c2-a22bc=3bc2bc=32,所以A=π6.(2)2sin B cos C-sin(B-C)=2sin B cos C-(sin B cos C-cos B sin C)=sin B cos C+cos B sin C=sin(B+C)=sin(π-A)=sin A=1 2.。