高考数学理科一轮复习等比数列及其前n项和学案含答案

合集下载

高三数学人教版A版数学(理)高考一轮复习教案:5.3 等比数列及其前n项和 Word版含答案

高三数学人教版A版数学(理)高考一轮复习教案:5.3 等比数列及其前n项和 Word版含答案

第三节 等比数列及其前n 项和等比数列(1)理解等比数列的概念.(2)掌握等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.(4)了解等比数列与指数函数的关系.知识点一 等比数列的相关概念公式易误提醒1.在等比数列中易忽视每项与公比都不为0.2.在运用等比数列的前n 项和公式时,必须对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.[自测练习]1.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A.32 B.23 C .-23D.23或-23解析:由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8,解得⎩⎪⎨⎪⎧a 1=27,q =23.或⎩⎪⎨⎪⎧a 1=-27,q =-23. 又a 1<0,因此q =-23.答案:C2.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24解析:由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.答案:A知识点二 等比数列的性质设数列{a n }是等比数列,S n 是其前n 项和.1.若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N +.特别地,若2s =p +r ,则a p a r =a 2s ,其中p ,s ,r ∈N +.2.相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N +).3.若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n (其中b ,p ,q 是非零常数),也是等比数列.4.S m +n =S n +q n S m =S m +q m S n .5.当q ≠-1,或q =-1且k 为奇数时,S k ,S 2k -S k ,S 3k -S 2k ,…是等比数列. 6.若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3n T 2n,…成等比数列.7.若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .易误提醒1.在性质中,当q =-1且k 为偶数时,S k ,S 2k -S k ,S 3k -S 2k ,…不是等比数列. 2.在运用等比数列及其前n 项和的性质时,要注意字母间的上标、下标的对应关系.[自测练习]3.在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:由a 3a 5a 7=-33,∴a 35=-33,又a 2a 8=a 25=3.答案:A4.(2015·唐山期末)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2B.73C.310D .1或2解析:设S 2=k ,S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,S 4=3k ,∴S 6S 4=7k 3k =73,故选B.答案:B考点一 等比数列的基本运算|1.(2015·高考全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84解析:由于a 1(1+q 2+q 4)=21,a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B2.已知等比数列{a n }的前n 项和为S n ,且S 3=7a 1,则数列{a n }的公比q 的值为( ) A .2 B .3 C .2或-3D .2或3解析:因为S 3=a 1+a 2+a 3=7a 1,所以a 2+a 3=6a 1,即a 1q +a 1q 2=6a 1,q 2+q -6=0,解得q =2或-3,故选C.答案:C3.(2016·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n=( )A .4n -1B .4n -1C .2n -1D .2n -1解析:设{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①②可得1+q 2q +q 3=2,∴q =12,代入①得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n =4⎝⎛⎭⎫1-12n 42n =2n -1,选D. 答案:D解决等比数列有关问题的常用思想方法(1)方程的思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想:等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.考点二 等比数列的判定与证明|已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. [解] (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1,②②-①得a n +1-a n +a n +1=1,即2a n +1=a n +1, ∴2(a n +1-1)=a n -1,即2c n +1=c n . 由a 1+S 1=1得a 1=12,∴c 1=a 1-1=-12,从而c n ≠0,∴c n +1c n =12.所以数列{c n }是以-12为首项,12为公比的等比数列.(2)由(1)知c n =-12×⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , 又c n =a n -1,∴a n =c n +1=1-⎝⎛⎭⎫12n,∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n ,又b 1=a 1=12,适合上式,故b n =⎝⎛⎭⎫12n .等比数列的判定方法(1)定义法:若a n +1a n=q (q 为非零常数,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.1.已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. 解:(1)证明:∵S n +1=4a n +2, ∴S 2=4a 1+2,即a 1+a 2=4a 1+2, ∴a 2=3a 1+2=5, ∴b 1=a 2-2a 1=3.又a n +1=S n +1-S n =4a n +2-(4a n -1+2)=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2), 即b n =2b n -1(n ≥2),又b 1=3,则b n ≠0,∴b n b n -1=2(n ≥2).从而数列{b n }是以3为首项,以2为公比的等比数列. (2)由(1)知b n =3·2n -1,即a n +1-2a n =3·2n -1∴a n +12n -1-a n 2n -2=3且a 12-1=2, ∴数列⎩⎨⎧⎭⎬⎫a n 2n -2是首项为2,公差为3的等差数列,∴a n2n -2=2+(n -1)×3=3n -1, ∴a n =(3n -1)·2n -2.考点三 等比数列的性质及应用|(1)(2015·衡阳联考)若函数f (x )=log 2x4,在等比数列{a n }中,a 2·a 5·a 8=8,则f (a 1)+f (a 2)+…+f (a 9)=( )A .-9B .-8C .-7D .-10[解析] 因为a 2·a 5·a 8=8,所以a 5=2,f (a 1)+f (a 2)+…+f (a 9)=log 2a 14+log 2a 24+…+log 2a 94=log 2⎝⎛⎭⎫a 14a 24…a 94=log 2a 9549=log 22949=log 22-9=-9,故选A. [答案] A(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=( ) A.18 B .-18C.578D.558[解析] 因为a 7+a 8+a 9=S 9-S 6, 在等比数列中S 3,S 6-S 3, S 9-S 6也成等比,即8,-1,S 9-S 6成等比,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18.[答案] A等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.2.(2015·呼和浩特调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22 C. 2D .2解析:利用等比数列的性质求出公比, 再求解a 1.因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0,所以q =2,a 1=a 2q =22,故选B.答案:B3.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析:由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案:-1218.分类讨论思想在等比数列中的应用【典例】 (2015·高考湖南卷)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S n .[思路点拨] (1)利用数列递推关系式,结合a n 和S n 的关系得出结论;(2)利用分类讨论思想写出数列通项,结合等比数列再进行分类求和.[解] (1)证明:由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3, 因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2. 又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1. 故对一切n ∈N *,a n +2=3a n .(2)由(1)知,a n ≠0,所以a n +2a n=3,于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列,因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+…+3n -1)+2(1+3+…+3n -1)=3(1+3+…+3n -1)=3(3n -1)2,从而S 2n -1=S 2n -a 2n =3(3n -1)2-2×3n -1=32(5×3n -2-1).综上所述,S n=⎩⎨⎧32(5×3n -32-1),当n 是奇数,32(3n2-1),当n 是偶数.[方法点评] 分类讨论思想在等比数列中应用较多,常见的分类讨论有: (1)已知S n 与a n 的关系,要分n =1,n ≥2两种情况. (2)等比数列中遇到求和问题要分公比q =1,q ≠1讨论. (3)项数的奇、偶数讨论.(4)等比数列的单调性的判断注意与a 1,q 的取值的讨论.[跟踪练习] 已知数列{a n }的前n 项和S n =a n -1(a ≠0),则{a n }( ) A .一定是等差数列 B .一定是等比数列C .或者是等差数列,或者是等比数列D .既不可能是等差数列,也不可能是等比数列解析:∵S n =a n-1(a ≠0),∴a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.即a n =⎩⎪⎨⎪⎧a -1,n =1,(a -1)a n -1,n ≥2. 当a =1时,a n =0,数列{a n }是一个常数列,也是等差数列;当a ≠1时,数列{a n }是一个等比数列.答案:CA 组 考点能力演练1.(2016·太原一模)已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:设等比数列{a n }的公比为q ,q >0,则a 23=a 2a 4=1,又a 2+a 4=52,且{a n }单调递减,所以a 2=2,a 4=12,q 2=14,q =12,所以a 1=a 2q=4,故选B.答案:B2.已知数列{a n }的前n 项和为S n ,且S n +a n =2n (n ∈N *),则下列数列中一定为等比数列的是( )A .{a n }B .{a n -1}C .{a n -2}D .{S n }解析:由S n +a n =2n (n ∈N *) ①可得S n -1+a n -1=2(n -1)(n ≥2,n ∈N *) ②,①-②得a n =12a n -1+1(n ≥2,n ∈N *),所以a n -2=12(a n -1-2)(n ≥2,n ∈N *),且a 1=1,a 1-2=-1≠0,所以{a n -2}一定是等比数列,故选C.答案:C3.已知等比数列{a n }的前n 项积为T n ,且公比q ≠1,若T 7=128,则( ) A .a 4=2 B .a 5=2 C .a 6=2D .a 1=2解析:因为T n 为等比数列{a n }的前n 项积,所以T 7=a 74=128,则a 4=2,故选A. 答案:A4.设S n 是等比数列{a n }的前n 项和,若2a 1+3a 2=1,a 3=3a 4,则2S n +a n =( ) A .1 B.13 C.12D .2解析:设等比数列{a n }的公比为q ,因为2a 1+3a 2=1,a 3=3a 4,所以2a 1+3a 1q =1 ①,a 1q 2=3a 1q 3 ②,由②得q =13,代入①得a 1=13,所以a n =a 1q n -1=⎝⎛⎭⎫13n ,S n=13×⎝⎛⎭⎫1-13n 1-13=12×⎝⎛⎭⎫1-13n ,则2S n +a n =1. 答案:A5.(2015·衡水二模)已知S n 是等比数列{a n }的前n 项和,a 1=120,9S 3=S 6,设T n =a 1a 2a 3·…·a n ,则使T n 取最小值的n 的值为( )A .3B .4C .5D .6解析:设等比数列{a n }的公比为q ,由9S 3=S 6知,q ≠1,故9(1-q 3)1-q =1-q 61-q ,解得q =2,又a 1=120,所以a n =a 1q n -1=2n -120.因为T n =a 1a 2a 3·…·a n ,故当T n 取最小值时,a n ≤1,且a n +1≥1,即⎩⎨⎧2n -120≤1,2n20≥1,则n =5,故选C.答案:C6.若正项数列{a n }满足a 2=12,a 6=132,且a n +1a n =a n a n -1(n ≥2,n ∈N *),则log 2a 4=________.解析:由a n +1a n =a n a n -1(n ≥2,n ∈N *)可得数列{a n }是等比数列,所以a 24=a 2a 6=164,又a 4>0,则a 4=18,故log 2a 4=log 2 18=-3.答案:-37.已知在等比数列{a n }中,a 5a 11=6,a 6+a 10=7,则a 7a 9的值是________.解析:因为{a n }是等比数列,所以a 5a 11=a 6a 10=6,又a 6+a 10=7,解得⎩⎪⎨⎪⎧a 6=1,a 10=6或⎩⎪⎨⎪⎧a 6=6,a 10=1,设{a n }的公比为q ,则q 4=6或16,q 2=6或66,所以a 7a 9=1q 2=66或 6.答案:66或 6 8.等比数列的首项是-1,前n 项和为S n ,如果S 10S 5=3132,则S 4的值是________.解析:由已知得S 10S 5=1-q 101-q 5=1+q 5=3132,故q 5=-132,解得q =-12,S 4=(-1)×⎝⎛⎭⎫1-1161+12=-58.答案:-589.(2015·陕西一检)已知正整数数列{a n }是首项为2的等比数列,且a 2+a 3=24. (1)求数列{a n }的通项公式;(2)设b n =2n3a n,求数列{b n }的前n 项和T n .解:(1)设正整数数列{a n }的公比为q ,则2q +2q 2=24, ∴q =3, ∴a n =2×3n -1.(2)∵b n =2n 3a n =2n 3×2×3n -1=n3n , ∴T n =13+232+333+…+n3n ,①∴13T n =132+233+…+n -13n +n3n +1.② 由①-②,得23T n =13+132+133+…+13n -n 3n 1. ∴T n =32⎣⎢⎡⎦⎥⎤13⎝⎛⎭⎫1-13n 1-13-n 3n +1=3n +1-2n -34×3n. 10.已知等比数列{a n }的前n 项和是S n ,S 18∶S 9=7∶8.(1)求证:S 3,S 9,S 6依次成等差数列;(2)a 7与a 10的等差中项是否是数列{a n }中的项?如果是,是{a n }中的第几项?如果不是,请说明理由.解:(1)证明:设等比数列{a n }的公比为q ,若q =1,则S 18=18a 1,S 9=9a 1,S 18∶S 9=2∶1≠7∶8,∴q ≠1.∴S 18=a 11-q (1-q 18),S 9=a 11-q(1-q 9),S 18∶S 9=1+q 9. ∴1+q 9=78,解得q =-2-13. ∴S 3=a 1(1-q 3)1-q =32×a 11-q ,S 6=a 1(1-q 6)1-q =34×a 11-q ,S 9=a 11-q(1-q 9)=98×a 11-q . ∵S 9-S 3=-38×a 11-q ,S 6-S 9=-38×a 11-q, ∴S 9-S 3=S 6-S 9.∴S 3,S 9,S 6依次成等差数列.(2)a 7与a 10的等差中项等于a 7+a 102=a 1(2-2-2-3)2=a 116, 设a 7与a 10的等差中项是数列{a n }中的第n 项,则a 1(-2-13)n -1=a 116, 化简得(-2)-n -13=(-2)-4,即-n -13=-4,解得n =13. ∴a 7与a 10的等差中项是数列{a n }中的第13项.B 组 高考题型专练1.(2014·高考大纲全国卷)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .3解析:lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 4·a 5)4=lg(2×5)4=4,故选C. 答案:C2.(2015·高考全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( ) A .2B .1 C.12 D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝⎛⎭⎫14×q 3-1,∴q 6-16q 3+64=0, ∴(q 3-8)2=0,∴q 3=8,∴q =2.∴a 2=12,故选C. 答案:C3.(2015·高考全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =________.解析:因为在数列{a n }中,a 1=2,a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列,因为S n =126,所以2-2n +11-2=126,解得2n +1=128,所以n =6. 答案:64.(2015·高考湖北卷)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n . 解:(1)由题意有⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2, 即⎩⎪⎨⎪⎧ 2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧ a 1=1,d =2,或⎩⎪⎨⎪⎧ a 1=9,d =29.故⎩⎪⎨⎪⎧ a n =2n -1,b n =2n -1或⎩⎨⎧ a n =19(2n +79),b n =9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是 T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n . 故T n =6-2n +32n -1.。

高考数学课标通用(理科)一轮复习配套教师用书:第六章 数列 6.3 等比数列及其前n项和 Word版含答案

高考数学课标通用(理科)一轮复习配套教师用书:第六章 数列 6.3 等比数列及其前n项和 Word版含答案

§6.3 等比数列及其前n 项和考纲展示►1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.考点1 等比数列的判定与证明1.等比数列的有关概念 (1)定义:如果一个数列从第________项起,每一项与它的前一项的比等于________(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的________,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么________叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔________.答案:(1)2 同一个常数 公比 (2)GG 2=ab 2.等比数列的有关公式 (1)通项公式:a n =________.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧,q =1,a 1-q n 1-q =a 1-a n q1-q ,q ≠1.答案:(1)a 1qn -1(2)na 1[典题1] 已知数列{a n }的前n 项和为S n ,在数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列;(2)求数列{b n }的通项公式. (1)[证明]∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①,得a n +1-a n +a n +1=1, ∴2a n +1=a n +1, ∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. 又a 1+a 1=1,∴a 1=12,又c n =a n -1,∴c 1=a 1-1=-12.∴{c n }是以-12为首项,以12为公比的等比数列.(2)[解] 由(1)可知,c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n . 又b 1=a 1=12,代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n.[点石成金] 等比数列的四种常用判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则数列{a n }是等比数列.(2)中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n -1(c ,q 均是不为0的常数,n ∈N *),则数列{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则数列{a n }是等比数列.[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,求证:数列{b n }是等比数列; (2)求数列{a n }的通项公式.(1)证明:由a 1=1及S n +1=4a n +2,得a 1+a 2=S 2=4a 1+2.∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2,①S n =4a n -1+2,②①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1). ∵b n =a n +1-2a n ,∴b n =2b n -1,故{b n }是首项b 1=3,公比为2的等比数列. (2)解:由(1)知,b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)·34=3n -14, 化简,得a n =(3n -1)·2n -2.考点2 等比数列的基本运算(1)[教材习题改编]已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项公式a n =________.答案:3×2n -3解析:设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3=a 1q 2=3,①a 10=a 1q 9=384,②②÷①,得q 7=128,即q =2, 把q =2代入①,得a 1=34,∴数列{a n }的通项公式为a n =a 1q n -1=34×2n -1=3×2n -3.(2)[教材习题改编]设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.答案:34等比数列的两个非零量:项;公比.(1)等比数列x,3x +3,6x +6,…的第4项等于________. 答案:-24解析:由等比数列的前三项为x,3x +3,6x +6,可得(3x +3)2=x (6x +6),解得x =-3或x =-1(此时3x +3=0,不合题意,舍去),则该等比数列的首项为x =-3,公比q =3x +3x=2,所以第4项为(6x +6)×q =-24.(2)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =__________. 答案:-2解析:∵S 3+3S 2=0, ∴a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2.[考情聚焦] 等比数列的基本运算是高考的常考内容,题型既有选择、填空题,也有解答题,难度适中,属中低档题.主要有以下几个命题角度: 角度一求首项a 1,公比q 或项数n[典题2] [2017·浙江绍兴柯桥区高三二模]已知等比数列{a n }的前n 项和为S n ,满足a 5=2S 4+3,a 6=2S 5+3,则此数列的公比为( )A .2B .3C .4D .5[答案] B[解析] 由a 5=2S 4+3,a 6=2S 5+3可得a 6-a 5=2a 5,即a 6a 5=3,故选B. 角度二 求通项或特定项[典题3] [2017·广西南宁测试]在各项均为正数的等比数列{a n }中,a 1=2,且2a 1,a 3,3a 2成等差数列,则a n =________.[答案] 2n[解析] 设数列{a n }的公比为q , ∵2a 1,a 3,3a 2成等差数列, ∴2a 1+3a 2=2a 3,即2a 1+3a 1q =2a 1q 2,即2q 2-3q -2=0, 解得q =2或q =-12.∵q >0,∴q =2. ∵a 1=2,∴数列{a n }的通项公式为a n =a 1q n -1=2n.角度三 求前n 项和[典题4] (1)已知正项数列{a n }为等比数列,且5a 2是a 4与3a 3的等差中项,若a 2=2,则该数列的前5项的和为( )A.3312 B .31 C.314D .以上都不正确[答案] B[解析] 设{a n }的公比为q ,q >0. 由已知,得a 4+3a 3=2×5a 2,即a 2q 2+3a 2q =10a 2,即q 2+3q -10=0, 解得q =2或q =-5(舍去), 又a 2=2,则a 1=1,所以S 5=a 1-q 51-q=-251-2=31.(2)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________. [答案] 28[解析] 由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1-q n1-q,得S 6=a 1-361-3,S 3=a 1-331-3,所以S 6S 3=a 1-361-3·1-3a 1-33=28.[点石成金] 解决与等比数列有关问题的常用思想方法(1)方程的思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想:等比数列的前n 项和公式涉及对公比q 的分类讨论.当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1-q n1-q=a 1-a n q1-q. 考点3 等比数列的性质等比数列的常用性质(1)通项公式的推广:a n =a m ·________(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =________=________.(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.答案:(1)qn -m(2)a p ·a q a 2k等比数列的基本公式:通项公式;前n 项和公式.(1)在等比数列{a n }中,若a 1=12,a 4=4,则公比q =________.答案:2解析:由a 4=a 1q 3,得4=12q 3,解得q =2.(2)各项均为正数的等比数列{a n }的前n 项和为S n ,若S 8S 4=1716,则公比q =________.答案:12解析:易知公比q 不为1,由等比数列求和公式得1-q 81-q 4=1716,即1+q 4=1716,所以q 4=116,得q =12或q =-12(舍去).应用等比数列的前n 项和公式的两个注意点:公比应分q =1与q ≠1讨论;注意利用性质.(1)设数列{a n }是等比数列,其前n 项和为S n ,且S 3=3a 3,则此数列的公比q =________. 答案:1或-12解析: 当q =1时,S 3=3a 1=3a 3,符合题意;当q ≠1时,a 1-q 31-q=3a 1q 2,∵a 1≠0,所以1-q 3=3q 2(1-q ), ∴2q 3-3q 2+1=0, 即(q -1)2(2q +1)=0, 解得q =-12.综上所述,q =1或q =-12.(2)在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项的和S 15=________.答案:11解析:由题意知a 1+a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9,…成等比数列,其公比q =-21=-2,首项为a 1+a 2+a 3=1,因此该数列的前5项和就是数列{a n }的前15项的和,故S 15=1×[1--5]1--=11.[典题5] (1)[2017·广东广州综合测试]已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9=( )A .10B .20C .100D .200[答案]C[解析]a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. (2)[2017·吉林长春调研]在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.[答案] 14[解析] 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,又a n -1a n a n +1=a 31q3n -3=324, 因此q3n -6=81=34=q 36,所以3n -6=36,即n =14.[点石成金] 等比数列常见性质的应用等比数列的性质可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.1.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( ) A .2 B.73 C.310D .1或2答案:B解析:设S 2=k ,S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,S 4=3k ,∴S 6S 4=7k 3k =73. 2.[2017·甘肃兰州诊断]数列{a n }的首项为a 1=1,数列{b n }为等比数列且b n =a n +1a n,若b 10b 11=2 015 110,则a 21=________.答案:2 015 解析:由b n =a n +1a n,且a 1=1,得 b 1=a 2a 1=a 2,b 2=a 3a 2,a 3=a 2b 2=b 1b 2,b 3=a 4a 3,a 4=a 3b 3=b 1b 2b 3,…,a n =b 1b 2…b n -1,∴a 21=b 1b 2…b 20. ∵数列{b n }为等比数列,∴a 21=(b 1b 20)(b 2b 19)…(b 10b 11)=(b 10b 11)10=(2 015110 )10=2 015.[方法技巧] 1.判断数列为等比数列的方法 (1)定义法:a n +1a n =q (q 是不等于0的常数,n ∈N *)⇔数列{a n }是等比数列;也可用a na n -1=q (q 是不等于0的常数,n ∈N *,n ≥2)⇔数列{a n }是等比数列.二者的本质是相同的,其区别只是n 的初始值不同.(2)等比中项法:a 2n +1=a n a n +2(a n a n +1a n +2≠0,n ∈N *)⇔数列{a n }是等比数列. 2.常用结论(1)若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列. (2)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q . [易错防范] 1.特别注意当q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.真题演练集训1.[2015·新课标全国卷Ⅱ]已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84答案:B解析:设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21,得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B.2.[2016·新课标全国卷Ⅰ]设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.答案:64解析:设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12,∴a 1a 2…a n =⎝ ⎛⎭⎪⎫12(-3)+(-2)+…+(n -4) =⎝ ⎛⎭⎪⎫1212n (n -7) =⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤n -722-494 ,当n =3或4时,12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -722-494取到最小值-6,此时⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤n -722-494 取到最大值26,所以a 1a 2…a n 的最大值为64.3.[2015·新课标全国卷Ⅰ]在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.答案:6解析:∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列. 又∵S n =126,∴1-2n1-2=126,∴n =6.4.[2015·安徽卷]已知数列{}a n 是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{}a n 的前n 项和等于________.答案:2n -1解析:设等比数列的公比为q ,则有⎩⎪⎨⎪⎧ a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧ a 1=1,q =2或⎩⎪⎨⎪⎧ a 1=8,q =12.又{a n }为递增数列,∴⎩⎪⎨⎪⎧ a 1=1,q =2,∴S n =1-2n1-2=2n -1. 5.[2016·新课标全国卷Ⅲ]已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ. 解:(1)由题意,得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0,得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 从而得通项公式a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)由(1),得S n =1-⎝ ⎛⎭⎪⎫λλ-1n . 由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132, 即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1.课外拓展阅读分类讨论思想在等比数列中的应用[典例] 已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式;(2)求证:S n +1S n ≤136(n ∈N *). [审题视角](1)利用等差数列的性质求出等比数列的公比,写出通项公式;(2)求出前n 项和,根据函数的单调性证明.(1)[解析] 设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12. 又a 1=32,所以等比数列{a n }的通项公式为 a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n . (2)[证明] 由(1)知,S n =1-⎝ ⎛⎭⎪⎫-12n , S n +1S n =1-⎝ ⎛⎭⎪⎫-12n +11-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧ 2+12n n +,n 为奇数,2+12n n -,n 为偶数.当n 为奇数时,S n +1S n随n 的增大而减小, 所以S n +1S n ≤S 1+1S 1=136; 当n 为偶数时,S n +1S n随n 的增大而减小, 所以S n +1S n ≤S 2+1S 2=2512. 故对于n ∈N *,有S n +1S n ≤136.方法点睛1.分类讨论思想在等比数列中应用较多,常见的分类讨论有:(1)已知S n 与a n 的关系,要分n =1,n ≥2两种情况讨论.(2)等比数列中遇到求和问题要分公比q =1,q ≠1讨论.(3)项数的奇、偶数讨论.(4)等比数列的单调性的判断注意与a1,q的取值的讨论.2.数列与函数联系密切,证明与数列有关的不等式,一般是求数列中的最大项或最小项,可以利用图象或者数列的增减性求解,同时注意数列的增减性与函数单调性的区别.提醒完成课时跟踪检测(三十三)。

高考数学专题《等比数列及其前n项和》习题含答案解析

高考数学专题《等比数列及其前n项和》习题含答案解析

专题7.3 等比数列及其前n 项和1.(2021·全国高考真题(文))记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( )A .7B .8C .9D .10【答案】A 【解析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案.【详解】∵n S 为等比数列{}n a 的前n 项和,∴2S ,42S S -,64S S -成等比数列∴24S =,42642S S -=-=∴641S S -=,∴641167S S =+=+=.故选:A.2.(2021·山东济南市·)已知S n 是递增的等比数列{a n }的前n 项和,其中S 3=72,a 32=a 4,则a 5=( )A .116B .18C .8D .16【答案】C 【解析】设等比数列的公比为q ,根据题意列方程,解出1a 和q 即可.【详解】解:设递增的等比数列{a n }的公比为q ,且q >1,∵S 3=72,234a a =,∴1a (1+q +q 2)=72,21a q 4=1a q 3,解得1a =12,q =2;1a =2,q =12(舍去).练基础则5a =4122⨯==8.故选:C .3.(2021·重庆高三其他模拟)设等比数列{}n a 的前n 项和为271,8,4n S a a =-=,则6S =( )A .212-B .152C .212D .632【答案】C 【解析】设等比数列{}n a 公比为q ,由572a a q =结合已知条件求q 、1a ,再利用等比数列前n 项和公式求6S .【详解】设等比数列{}n a 公比为q ,则572a a q =,又2718,4a a =-=,∴12q =-,故116a =,又1(1)1-=-nn a q S q ,即666311616[1()]216421321()22S ⨯⨯--===--.故选:C4.(2021·合肥市第六中学高三其他模拟(理))若等比数列{}n a 满足12451,8a a a a +=+=,则7a =( )A .643B .643-C .323D .323-【答案】A 【解析】设等比数列{}n a 的公比为q ,根据等比数列的通项公式建立方程组,解之可得选项.【详解】设等比数列{}n a 的公比为q ,则345128a a q a a +==+,所以2q =,又()11121+11,3a a a a q =+==,所以6671123643a a q ==⨯⨯=,故选:A.5.(2020·河北省曲阳县第一高级中学高一期末)中国古代数学著作《算法统宗》中记载了这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,问此人第二天走了( )A .6里B .24里C .48里D .96里【答案】D 【解析】根据题意,记每天走的路程里数为,可知是公比的等比数列,由,得,解可得,则;即此人第二天走的路程里数为96;故选:D .6.(2021·江苏南通市·高三其他模拟)已知等比数列{}n a 的公比为q ,前n 项和为n S ,则“1q >”是“112n n n S S S -++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D 【解析】由112n n n S S S -++>可得出1n n a a +>,取10a <,由101n n q a a +<⇔,进而判断可得出结论.【详解】若112n n n S S S -++>,则11n n n n S S S S +-->-,即1n n a a +>,所以,数列{}n a 为递增数列,若10a <,101n n q a a +<<⇔>,所以,“1q >”是“112n n n S S S -++>”的既不充分也不必要条件.故选:D.7.(2021·黑龙江大庆市·大庆实验中学高三其他模拟(文))在数列{}n a 中,44a =,且22n n a a +=,则{}n a {}n a 12q =6378S =6161[1()]2378112-==-a S 1192a =211192962a a q =⨯=⨯=21nni a==∑___________.【答案】122n +-【解析】由44a =,22n n a a +=,得到22a =且22n na a +=,得出数列{}2n a 构成以2为首项,以2为公比的等比数列,结合等比数列的求和公式,即可求解.【详解】由22n n a a +=,可得22n na a +=,又由44a =,可得4224a a ==,所以22a =,所以数列{}2n a 构成以2为首项,以2为公比的等比数列,所以1212(12)2212n nn n i a +=-==--∑.故答案为:122n +-.8.(2021·浙江杭州市·杭州高级中学高三其他模拟)已知数列{}n a 满足21n n S a =-,则1a =_____,n S =_______.【答案】1 21n -【解析】利用1n n n a S S -=-求通项公式,再求出n S .【详解】对于21n n S a =-,当n =1时,有1121S a =-,解得:1a =1;当2n ≥时,有1121n n S a --=-,所以()112121=n n n n n a S S a a ----=--,所以1=2nn a a -,所以数列{}n a 为等比数列,111=2n n n a a q--=,所以122112nn n S -==--.故答案为:1,21n -.9.(2021·浙江杭州市·杭州高级中学高三其他模拟)已知数列{}n a 满足21n n S a =-,则3a =________,n S =________.【答案】4 21n -【解析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出数列的通项公式,再代入求出n S .【详解】解:因为21n n S a =-当1n =时,1121S a =-,解得11a =;当2n …时,1121n n S a --=-,所以111(21)(21)22n n n n n n n a S S a a a a ---=-=---=-,即12n n a a -=于是{}n a 是首项为1,公比为2的等比数列,所以12n n a -=.所以34a =,11212212n nn n S a -=-⨯-==-故答案为:4;21n -;10.(2018·全国高考真题(文))等比数列{a n }中,a 1=1 , a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .【答案】(1)a n =(―2)n―1或a n =2n―1 .(2)m =6.【解析】(1)设{a n }的公比为q ,由题设得a n =q n―1.由已知得q 4=4q 2,解得q =0(舍去),q =―2或q =2.故a n =(―2)n―1或a n =2n―1.(2)若a n =(―2)n―1,则S n =1―(―2)n3.由S m =63得(―2)m =―188,此方程没有正整数解.若a n =2n―1,则S n =2n ―1.由S m =63得2m =64,解得m =6.综上,m =6.1.(辽宁省凌源二中2018届三校联考)已知数列为等比数列,且,则( )A.B.C.D. 【答案】B【解析】由等比数列的性质可得: ,,结合可得: ,结合等比数列的性质可得: ,即:本题选择B 选项.2.(2021·全国高三其他模拟(文))如图,“数塔”的第i 行第j 个数为12j -(其中i ,*j N ∈,且i j ≥).将这些数依次排成一列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,记作数列{}n a ,设{}n a 的前n 项和为n S .若1020n S =,则n =()A .46B .47C .48D .49【答案】C 【解析】{}n a 2234764a a a a =-=-46tan 3a a π⎛⎫⋅= ⎪⎝⎭32343364,4a a a a a ==-∴=-4730a a q =<2764a =78a =-463732a a a a ==463222tan tan tan 10tan 3333a a πππππ⎛⎫⎛⎫⎛⎫⋅==+== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭练提升根据“数塔”的规律,可知第i 行共有i 个数,利用等比数列求和公式求出第i 行的数字之和,再求出前m 行的和,即可判断1020n S =取到第几行,再根据每行数字个数成等差数列,即可求出n ;【详解】解:“数塔”的第i 行共有i 个数,其和为211212222112i i i --++++==-- ,所以前m 行的和为()()()123121222222212m m m m m m +-++++-=-=-+- 故前9行所有数学之和为102111013-=,因此只需要加上第10行的前3个数字1,2,4,其和为10131241020+++=,易知“数塔”前m 行共有()12m m +个数,所以9103482n ⨯=+=故选:C3.(2021·江苏高三其他模拟)已知数列{}n a 满足11a =,()1lg 1091n an a +=++,其前n 项和为n S ,则下列结论中正确的有( )A .{}n a 是递增数列B .{}10n a +是等比数列C .122n n n a a a ++>+D .(3)2n n n S +<【答案】ACD 【解析】将递推公式两边同时取指数,变形得到1110109n n a a +-=+,构造等比数列可证{}1010n a+为等比数列,求解出{}n a 通项公式则可判断A 选项;根据()()()2132101010a a a ++≠+判断B 选项;根据{}n a 的通项公式以及对数的运算法则计算()122n n n a a a ++-+的正负并判断C 选项;将{}n a 的通项公式放缩得到()lg 2101n n a n <⨯<+,由此进行求和并判断D 选项.【详解】因为()1lg 1091n an a +=++,所以()11lg 109n an a +-=+,从而1110109n n a a +-=+,110101090n n a a +=⨯+,所以()11010101010n n a a ++=⨯+,所以11010101010n na a ++=+,又1101020a +=,{}1010n a +是首项为20,公比为10的等比数列,所以110102010210n a n n -+=⨯=⨯,所以1021010n a n =⨯-,即()lg 21010nn a =⨯-,又因为21010n y =⨯-在[)1,,*n n N ∈+∞∈时单调递增,lg y x =在定义域内单调递增,所以{}n a 是递增数列,故A 正确;因为1231011,10lg19010lg1911,10lg199010lg19911a a a +=+=+=++=+=+,所以()()()()()222213101010lg191111lg19911lg 1922lg1911lg199a a a +-++=+-+=+-,所以()()()2222213361101010lg 1911lg1911lg199lg 1911lg0199a a a +-++=+-=+>,所以()()()2132101010a a a ++≠+,所以{}10n a +不是等比数列,故B 错误.因为()()()()121222lg 21010lg 21010lg 21010n n n n n n a a a ++++-+=⨯--⨯--⨯-()()()()()()2211211210102101 lglg210102101021012101n n n n n n +++-+⨯-⨯-=⨯-⨯-⨯-⨯-=,而()()()211221121012101210141041014102102101n n n nnn n n -++-⨯--⨯-⨯-=⨯-⨯+-⨯+⨯+⨯-20100.21041016.2100nnnn=⨯+⨯-⨯=⨯>,从而()()()211210121012101nn n -+⨯->⨯-⋅⨯-,于是,122n n n a a a ++>+,故C 正确.因为()()lg 21010lg 210lg 21nnn n a n =⨯-<⨯=+<+,所以()()21322nn n n n S +++<=,故D 正确.故选:ACD.4. (2019·浙江高三期末)数列的前n 项和为,且满足,Ⅰ求通项公式;Ⅱ记,求证:.【答案】Ⅰ;Ⅱ见解析【解析】Ⅰ,当时,,{}n a n S 11a =()11.n n a S n N ++=+∈()n a ()12111n n T S S S =++⋯+31222n n T -≤<(1) 2n n a -=()(1)1n n a S +=+Q ①∴2n ≥11n n a S -=+②得,又,,数列是首项为1,公比为2的等比数列,;证明:Ⅱ,,时,,,同理:,故:.5.(2021·河北衡水中学高三三模)已知数列{}n a 的前n 项和为n S ,且满足13a =,()122n n a xa n n -=+-≥,其中x ∈R .(1)若1x =,求出n a ;(2)是否存在实数x ,y 使{}n a yn +为等比数列?若存在,求出n S ,若不存在,说明理由.【答案】(1)2382n n n a -+=;(2)存在,()21242n n n n S ++=--.【解析】(1)将1x =代入,由递推关系求出通项公式,并检验当1n =时是否满足,即可得到结果;(2)先假设存在实数x ,y 满足题意,结合已知条件求出满足数列{}n a yn +是等比数列的实数x ,y 的值,运用分组求∴-①②()122n n a a n +=≥2112a S =+=Q 212a a ∴=∴{}n a 12n n a -∴=(1)2nn a += 21n n S ∴=-2n ≥Q 111122n n n S -≤≤1121111113142112212n n n n T S S S -⎛⎫- ⎪⎝⎭∴=++⋯+≥+=--11111221221212n n n T -⎛⎫- ⎪⎝⎭≤+=-<-31222n n T -≤<和法求出n S 的值.【详解】(1)由题可知:当1x =时有:12n n a a n --=-,当2n ≥时,()()()()()()121321213012232n n n n n a a a a a a a a n ---=+-+-+⋅⋅⋅+-=++++⋅⋅⋅+-=+,又13a =满足上式,故()()22138322nn n n n a ---+=+=.(2)假设存在实数x ,y 满足题意,则当2n ≥时,由题可得:()()111n n n n a yn x a y n a xa xy y n xy --+=+-⇔=+--⎡⎤⎣⎦,和题设12n n a xa n -=+-对比系数可得:1xy y -=,22xy x -=-⇔=,1y =.此时121n n a na n -+=+-,114a +=,故存在2x =,1y =使得{}n a yn +是首项为4,公比为2的等比数列.从而()()1112121224122nn n n n n nn n a n a n S a a a ++-++=⇒=-⇒=++⋅⋅⋅+=--.所以()21242n n n n S ++=--.6.(2021·辽宁本溪市·高二月考)已知数列{}n a ,满足11a =,121n n a a n +=+-,设n n b a n =+,n n c a n λ=+(λ为实数).(1)求证:{}n b 是等比数列;(2)求数列{}n a 的通项公式;(3)若{}n c 是递增数列,求实数λ的取值范围.【答案】(1)证明见解析;(2)2nn a n =-;(3)()1,-+∞.【解析】(1)由121n n a a n +=+-,变形为()11222n n n a n a n a n +++=+=+,再利用等比数列的定义证明;(2)由(1)的结论,利用等比数列的通项公式求解;(3)根据{}n c 是递增数列,由10n n c c +->,*n N ∈恒成立求解.【详解】(1)因为121n n a a n +=+-,所以()11222n n n a n a n a n +++=+=+,即12n n b b +=,又因为11120b a =+=≠,所以0n b ≠,所以12n nb b +=,所以{}n b 是等比数列.(2)由1112b a =+=,公比为2,得1222n n n b -=⋅=,所以2nn n a b n n =-=-.(3)因为()21nn n c a n n λλ=+=+-,所以()()11211n n c n λ++=+-+,所以1122121n n n n n c c λλ++-=-+-=+-,因为{}n c 是递增数列,所以*10,n n c c n N +->∈成立,故210n λ+->,*n N ∈成立,即12n λ>-,*n N ∈成立,因为{}12n-是递减数列,所以该数列的最大项是121-=-,所以λ的取值范围是()1,-+∞.7.(2021·河南商丘市·高二月考(理))在如图所示的数阵中,从任意一个数开始依次从左下方选出来的数可组成等差数列,如:2,4,6,8,…;依次选出来的数可组成等比数列,如:2,4,8,16,….122344468858121616记第n 行第m 个数为(),f n m .(Ⅰ)若3n ≥,写出(),1f n ,(),2f n ,(),3f n 的表达式,并归纳出(),f n m 的表达式;(Ⅱ)求第10行所有数的和10S .【答案】(Ⅰ)(),1f n n =,()(),221f n n =-,()(),342f n n =-,()()12,1m m m f n n --+=;(Ⅱ)102036=S .【解析】(I )由数阵写出(),1f n n =,()(),221f n n =-,()(),342f n n =-,由此可归纳出()()12,1m m m f n n --+=.(II )()()()()1010,110,210,310,10S f f f f =++++ 291029282 1 =+⨯+⨯++⨯ ,利用错位相减法求得结果.【详解】(Ⅰ)由数阵可知:(),1f n n =,()(),221f n n =-,()(),342f n n =-,由此可归纳出()()12,1m m m f n n --+=.(Ⅱ)()()()()1010,110,210,310,10S f f f f =++++ 291029282 1 =+⨯+⨯++⨯ ,所以231010220292821S =+⨯+⨯++⨯ ,错位相减得291010102222S =-+++++ ()102121012-=-+-2036=.8.(2021·山东烟台市·高三其他模拟)已知数列{}n a 的前n 项和为n S ,且满足11a =,12n n S na +=,*n ∈N .(1)求{}n a 的通项公式;(2)设数列{}n b 满足11b =,12nn n b b +=,*n ∈N ,按照如下规律构造新数列{}n c :123456,,,,,,a b a b a b ,求{}n c 的前2n 项和.【答案】(1)n a n =,*n ∈N ;(2)数列{}n c 的前2n 项和为1222++-n n .【解析】(1)由()12n n n a S S n -=-≥可得1(2)1n na a n n n+=≥+可得答案;(2)由12nn n b b +=得1122n n n b b +++=,两式相除可得数列{}n b 的偶数项构成等比数列,再由(1)可得数列{}n c 的前2n 项的和.【详解】(1)由12n n S na +=,12(1)(2)n n S n a n -=-≥,得12(1)n n n a na n a +=--,所以1(2)1n na a n n n +=≥+.因为122S a =,所以22a =,所以212n a an ==,(2)n a n n =≥.又当1n =时,11a =,适合上式.所以n a n =,*n ∈N .(2)因为12nn n b b +=,1122n n n b b +++=,所以*22()n nb n b +=∈N ,又122b b =,所以22b =.所以数列{}n b 的偶数项构成以22b =为首项、2为公比的等比数列.故数列{}n c 的前2n 项的和()()21321242n n n T a a a b b b -=+++++++ ,()122212(121)22212nn n n n T n +-+-=+=+--所以数列{}n c 的前2n 项和为1222++-n n .9.(2019·浙江高考模拟)已知数列中,, (1)令,求证:数列是等比数列;{}n a ()110,2*n n a a a n n N +==+∈+11n n n b a a =-+{}n b(2)令 ,当取得最大值时,求的值.【答案】(I )见解析(2)最大,即【解析】(1)两式相减,得 ∴即:∴ 数列是以2为首项,2为公比的等比数列(2)由(1)可知, 即也满足上式令,则 ,3nn n a c =n c n 3,n n c =3k =121221n n n n a a n a a n +++=+=++Q ,211221n n n n a a a a +++-=-+()211121n n n n a a a a +++-+=-+12n nb b +=21120a b ==≠Q 又,{}n b 2nn b =121nn n a a +-=-2121a a -=-23221a a -=-⋅⋅⋅⋅⋅⋅()11212n n n a a n ---=-≥()211222121n n n a a n n -∴-=++⋅⋅⋅+--=--2,21n n n a n ∴≥=--11,0n a ∴==21n n a n ∴=--111212233n n n n n n n n c c +++----=∴=11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=()212nf n n =+-()11232n f n n ++=+-()()122n f n f n ∴+-=-∴ 最大,即10.(2021·浙江高三其他模拟)已知数列{}n a 满足112a =,123n n a a ++=,数列{}n b 满足11b =,()211n n nb n b n n +-+=+.(1)数列{}n a ,{}n b 的通项公式;(2)若()1n n n n c b b a +=-,求使[][][][]1222021n c c c c +++⋅⋅⋅+≤成立([]n c 表示不超过n c 的最大整数)的最大整数n 的值.【答案】(1)112nn a ⎛⎫=+- ⎪⎝⎭,2n b n =;(2)最大值为44.【解析】(1)由题得数列{}1n a -是等比数列,即求出数列{}n a 的通项;由题得{}n b n 是一个以111b=为首项,以1为公差的等差数列,即得数列{}n b 的通项公式;(2)先求出[]()*1,16,2,2,21,21,22n n n c k N n n k n n k =⎧⎪=⎪=∈⎨=+⎪⎪+=+⎩,再求出[][][][]()2*12221,1,3,2,231,2122n n c c c c n n n k k N n n n k ⎧⎪=⎪⎪++++=+=∈⎨⎪⎪+-=+⎪⎩即得解.【详解】解:(1)由123n n a a ++=得()11112n n a a +-=--,所以数列{}1n a -是等比数列,公比为12-,()()()()()()12,234f f f f f f n ∴=>>>⋅⋅⋅>()()()()1210,310,3,0f f f n f n ==>=-<∴≥<Q 123345...c c c c c c ∴>,3,n n c =3k =解得112nn a ⎛⎫=+- ⎪⎝⎭.由()211n n nb n b n n +-+=+,得111n nb b n n+-=+,所以{}n b n 是一个以111b=为首项,以1为公差的等差数列,所以1(1)1n bn n n=+-⨯=,解得2n b n =.(2)由()1n n n n c b b a +=-得()12121121(1)22n nn n n c n n ⎛⎫+⎛⎫=++-=++- ⎪ ⎪ ⎪⎝⎭⎝⎭,记212n n n d +=,1112321120222n n n n n n n nd d +++-++-=-=<,所以{}n d 为单调递减且132d =,254d =,3718d =<,所以[]()*1,16,2,2,21,21,22n n n c k N n n k n n k =⎧⎪=⎪=∈⎨=+⎪⎪+=+⎩,因此[][][][]()2*12221,1,3,2,231,2122n n c c c c n n n k k N n n n k ⎧⎪=⎪⎪++++=+=∈⎨⎪⎪+-=+⎪⎩,当2n k =时,2320212n n +≤的n 的最大值为44;当2+1n k =时,231202122n n +-≤的n 的最大值为43;故[][][][]1222021n c c c c +++⋅⋅⋅+≤的n 的最大值为44.1.(2021·全国高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A .甲是乙的充分条件但不是必要条件练真题B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B 【解析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .2.(2020·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( )A .2n –1B .2–21–n C .2–2n –1D .21–n –1【答案】B 【解析】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩,所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-.故选:B.3.(2019·全国高考真题(文))已知各项均为正数的等比数列的前4项和为15,且,则( ){}n a 53134a a a =+3a =A .16B .8C .4D .2【答案】C 【解析】设正数的等比数列{a n }的公比为,则,解得,,故选C .4.(2019·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若,则S 4=___________.【答案】.【解析】设等比数列的公比为,由已知,即解得,所以.5.(2020·海南省高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--【解析】(1) 设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,q 2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩11,2a q =⎧⎨=⎩2314a a q ∴==13314a S ==,58q 223111314S a a q a q q q =++=++=2104q q ++=12q =-441411()(1)521181()2a q S q ---===---数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512n n n +⎡⎤--⎢⎥⎣⎦==----.6.(2021·浙江高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33(4nn a =-⋅;(2)31λ-≤≤.【解析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解.【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-,当2n ≥时,由1439n n S S +=-①,得1439n n S S -=-②,①-②得143n na a +=122730,0,164n n n a a a a +=-≠∴≠∴=,又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933(3(444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)(34n n n n b a n -=-=-,所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭ ,2413333333321(5)(4)444444n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,两式相减得234113333333(4)4444444n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n n T n +=-⋅,由n n T b λ≤得1334((4)(44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤;4n >时,312344n n n λ≥-=----,得3λ≥-;所以31λ-≤≤.。

高考理科数学一轮复习课时提升作业:第5章 5.3《等比数列及其前n项和》(含答案)

高考理科数学一轮复习课时提升作业:第5章 5.3《等比数列及其前n项和》(含答案)

课时提升作业三十二等比数列及其前n项和(25分钟50分)一、选择题(每小题5分,共25分)1.(2016·济南模拟)已知等比数列的前三项依次为a-1,a+1,a+4,则a n=( ) A.4· B.4·C.4·D.4·【解析】选C.由于等比数列{a n}的前三项依次为a-1,a+1,a+4,得(a+1)2=(a-1)(a+4),解得a=5,因此前三项依次为4,6,9,公比q=,因此a n=4·.2.在等比数列{a n}中,a3=6,前3项之和S3=18,则公比q的值为( )A.1B.-C.1或-D.-1或【解析】选C.根据已知条件得所以=3.整理得2q2-q-1=0,解得q=1或q=-.【易错警示】解答本题会出现以下错误:利用等比数列的前n项和公式表示S3后,计算结果中把q=1的结果舍去了,导致错误的原因是忽视了q=1与q≠1时,前n项和的计算公式不同.3.已知数列{a n}的前n项和S n=2n-1,则数列{a n}的奇数项的前n项和为( )A. B.C. D.【解析】选C.依题意,当n≥2时,a n=S n-S n-1=2n-1;当n=1时,a1=S1=2-1=1,a n=2n-1也适合a1.因此,a n=2n-1,=2,数列{a n}是等比数列,数列{a n}的奇数项的前n项和为=.4.(2016·广安模拟)设等比数列{a n}的前n项积P n=a1·a2·a3·…·a n,若P12=32P7,则a10等于( )A.16B.8C.4D.2【解析】选D.由P12=32P7,得a8·a9·a10·a11·a12=32,即=32,于是a10=2.5.(2016·临沂模拟)记等比数列{a n}的前n项积为T n(n∈N*),已知a m-1·a m+1-2a m=0,且T2m-1=128,则m的值为( )A.4B.7C.10D.12【解析】选A.因为{a n}为等比数列,所以a m-1·a m+1=,又a m-1·a m+1-2a m=0,故a m=2,由等比数列的性质可知前2m-1项积为T2m-1=,从而22m-1=128,故m=4.【加固训练】(2016·乌鲁木齐模拟)已知正项等比数列{a n}的前n项和为S n,b n=,且{b n}的前n项和为T n,若对一切正整数n都有S n>T n,则数列{a n}的公比q的取值范围是( ) A.0<q<1 B.q>1C.q>D.1<q<【解析】选 B.由于{a n}是等比数列,公比为q,所以b n==a n,于是b1+b2+…+b n=(a1+a2+…+a n),即T n=·S n.又S n>T n,且T n>0,所以q2=>1.因为a n>0对任意n∈N*都成立,所以q>0,因此公比q的取值范围是q>1.二、填空题(每小题5分,共15分)6.(2016·安庆模拟)设公比为q(q>0)的等比数列{a n}的前n项和为S n,若S2=3a2+2,S4=3a4+2,则q= .【解析】当q=1时,由S2=3a2+2得a2=-2,由S4=3a4+2得a4=2,两者矛盾,舍去,则q≠1,联立可解得答案:7.在公比为正数的等比数列中,a1+a2=2,a3+a4=8,则S8= .【解析】方法一:S8=(a1+a2)+(a3+a4)+(a5+a6)+(a7+a8)=2+8+32+128=170.方法二:q2==4,又q>0,所以q=2.所以a1(1+q)=a1(1+2)=2,所以a1=.所以S8==170.答案:1708.(2016·抚州模拟)已知数列满足log3a n+1=log3a n+1(n∈N*),且a2+a4+a6=9,则log3(a5+a7+a9)的值是.【解题提示】根据数列满足log3a n+1=log3a n+1(n∈N*)可以确定数列是公比为3的等比数列,再根据等比数列的通项公式即可通过a2+a4+a6=9求出a5+a7+a9的值,进而求得log3(a5+a7+a9)的值. 【解析】log3a n+1=log3a n+log33=log33a n,所以3a n=a n+1且a n>0,a n+1>0,所以数列{a n}为公比q=3的等比数列,因为a2+a4+a6=9,设首项为a,所以aq+aq3+aq5=9,所以a5+a7+a9=q3(aq+aq3+aq5)=33×9=35,从而log3(a5+a7+a9)=log335=5.答案:5三、解答题9.(10分)(2016·聊城模拟)已知等比数列{a n}的所有项均为正数,首项a1=1,且a4,3a3,a5成等差数列.(1)求数列{a n}的通项公式.(2)数列{a n+1-λa n}的前n项和为S n,若S n=2n-1(n∈N*),求实数λ的值.【解析】(1)设数列{a n}的公比为q,由条件可知q3,3q2,q4成等差数列,所以6q2=q3+q4,解得q=-3或q=2,因为q>0,所以q=2.所以数列{a n}的通项公式为a n=2n-1(n∈N*).(2)记b n=a n+1-λa n,则b n=2n-λ·2n-1=(2-λ)2n-1,若λ=2,则b n=0,S n=0,不符合条件;若λ≠2,则=2,数列{b n}为首项为2-λ,公比为2的等比数列,此时S n=(1-2n)=(2-λ)(2n-1),因为S n=2n-1,所以λ=1.【加固训练】1.(2016·烟台模拟)已知数列{c n},其中c n=2n+3n,且数列{c n+1-pc n}为等比数列,求常数p. 【解析】因为{c n+1-pc n}是等比数列,所以当n≥2时,有(c n+1-pc n)2=(c n+2-pc n+1)(c n-pc n-1),将c n=2n+3n代入上式,得2=·,即2=.整理得(2-p)(3-p)·2n·3n=0.所以2-p=0或3-p=0,所以p=2或p=3.【一题多解】解答本题,还有以下解法:方法一:由c n=2n+3n,得c1=5,c2=13,c3=35,c4=97.因而数列{c n+1-pc n}的前三项依次为13-5p,35-13p,97-35p.由题意得:(35-13p)2=(13-5p)(97-35p),整理得:p2-5p+6=0,解得p=2或p=3.当p=2时,c n+1-pc n=(2n+1+3n+1)-2(2n+3n)=3n,所以==3.所以此时{c n+1-pc n}是等比数列.同理p=3时数列{c n+1-pc n}也是等比数列,所以p=2或p=3.方法二:{c n+1-pc n}是等比数列⇔=非零常数.因为===2+=2+.为使为非零常数,也就是使2+为非零常数.所以p-2=0或p-3=0,所以p=2或p=3.2.设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式.(2)设q≠1,证明数列{a n+1}不是等比数列.【解析】(1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,所以S n=,所以S n=(2)假设{a n+1}是等比数列,则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),+2a k+1+1=a k a k+2+a k+a k+2+1,q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,因为a1≠0,所以2q k=q k-1+q k+1.因为q≠0,所以q2-2q+1=0,所以q=1,与已知矛盾,所以假设不成立,故{a n+1}不是等比数列.(20分钟40分)1.(5分)在14与之间插入n个数组成等比数列,若各项总和为,则此数列的项数为( )A.4B.5C.6D.7【解析】选D.因为14≠,所以q≠1,所以S n=,所以=.解得q=-,=14×,所以n=5.故该数列共7项.【加固训练】(2016·成都模拟)已知等比数列{a n}的前n项和为S n,且a1+a3=,a2+a4=,则= ( )A.4n-1B.4n-1C.2n-1D.2n-1【解析】选 D.设等比数列{a n}的公比为q,则q===,所以== =2n-1.2.(5分)(2016·郑州模拟)在等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于( )A.6B.5C.4D.3【解析】选C.因为等比数列{a n}中a4=2,a5=5,所以q==,a1===,lga1=lg,lga n-lga n-1=lg=lg(n≥2),所以{lga n}是等差数列.所以{lga n}的前8项和为8×lg+lg=8(4lg2-3lg5)+28(lg5-lg2)=4lg5+4lg2=4.3.(5分)(2016·通化模拟)一正数等比数列前11项的几何平均数为32,从这11项中抽去一项后所余下的10项的几何平均数为32,那么抽去的这一项是第项.【解题提示】由前11项之积除以抽去一项后所剩下的10项之积,可求出抽去的一项.【解析】由于数列的前11项的几何平均数为32,所以该数列的前11项之积为3211=255.抽去一项后所剩下的10项之积为3210=250,所以抽去的一项为255÷250=25.又因a1·a11=a2·a10=a3·a9=a4·a8=a5·a7=,所以a1·a2·…·a11=.故有=255,即a6=25.所以抽出的应是第6项.答案:6【加固训练】在等比数列{a n}中,若a3=4,a9=1,则a6= ,若a3=4,a11=1,则a7= . 【解析】设数列{a n}的公比为q,则a3,a6,a9组成的新数列的公比为q3.若a3=4,a9=1,则=4,a6=±2,符合题意;a3,a7,a11组成的新数列的公比为q4,由a3=4,a11=1,得=4,当a7=2时,q4=,符合题意,当a7=-2时,q4=-,不合题意,舍去.答案:±2 24.(12分)数列{a n}中,S n=1+ka n(k≠0,k≠1).(1)证明:数列{a n}为等比数列.(2)求通项a n.(3)当k=-1时,求++…+.【解析】(1)因为S n=1+ka n,①S n-1=1+ka n-1(n≥2),②①-②得S n-S n-1=ka n-ka n-1(n≥2),所以(k-1)a n=ka n-1,由已知可得a n=0时S n=1无意义,所以=为非零常数,n≥2. 所以{a n}是公比为的等比数列.(2)因为S1=a1=1+ka1,所以a1=.所以a n=·=-.(3)因为{a n}中a1=,q=,所以{}是首项为,公比为的等比数列.当k=-1时,等比数列{}的首项为,公比为,所以++…+==.5.(13分)(2016·日照模拟)已知数列中,a1=1,a n+1=(1)证明数列是等比数列.(2)求a2n及a2n-1.【解析】(1)设b n=a2n-,则b1=a2-=-=-,因为=====.所以数列是以-为首项,为公比的等比数列.(2)由(1)得b n=a2n-=-·=-·,即a2n=-·+,由a2n=a2n-1+(2n-1),得a2n-1=3a2n-3(2n-1)=-·-6n+.【加固训练】设数列{a n}的前n项和为S n,其中a n≠0,a1为常数,且-a1,S n,a n+1成等差数列.(1)求{a n}的通项公式.(2)设b n=1-S n,问:是否存在a1,使数列{b n}为等比数列?若存在,求出a1的值;若不存在,请说明理由.【解析】(1)依题意,得2S n=a n+1-a1.当n≥2时,有两式相减,得a n+1=3a n(n≥2).又因为a2=2S1+a1=3a1,a n≠0,所以数列{a n}是首项为a1,公比为3的等比数列.因此,a n=a1·3n-1(n∈N*).(2)因为S n==a1·3n-a1,b n=1-S n=1+a1-a1·3n.要使{b n}为等比数列,当且仅当1+a1=0,即a1=-2.所以存在a1=-2,使数列{b n}为等比数列.。

高考数学一轮复习 第五章 数列 5.3 等比数列及其前n项和学案(含解析)

高考数学一轮复习 第五章 数列 5.3 等比数列及其前n项和学案(含解析)

等比数列及其前n 项和【考纲传真】1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.【知识扫描】知识点1 等比数列的有关概念1.定义;如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,公比的表达式为a n +1a n=q . 2.等比中项;如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab . 知识点2 等比数列的有关公式1.通项公式:a n =a 1q n -1=a m q n -m .2.前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1-q n 1-q=a 1-a n q 1-q ,q ≠1.1.必会结论;等比数列的性质 (1)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },{|a n |},⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列.(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.(5)若等比数列{a n }共2k (k ∈N *)项,则S 偶S 奇=q . 2.必清误区(1)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,与等差数列不同.(2)由a n +1=qa n (q ≠0)并不能断言{a n }是等比数列,还要验证a 1≠0.【学情自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)数列a ,a ,a ,…(a ∈R )必为等比数列.( )(2)当q <0时,等比数列{a n }为递减数列.( )(3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }是等比数列.( )2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A .-12B .-2C .2 D.12 3.(2015·广东高考)若三个正数a ,b ,c 成等比数列,其中a =5+26,c =5-26,则b =________.4.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.5.(2014·重庆高考)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .参考答案1【解析】 (1)错误.a =0时不能构成等比数列.(2)错误.当q <0时,{a n }为摆动数列.(3)错误.G 2=abD ⇒/G 为a ,b 的等比中项.(4)错误.若a 1=0,则{a n }不是等比数列.【答案】 (1)× (2)× (3)× (4)× 2【解析】 由题意知q 3=a 5a 2=18,∴q =12. 【答案】 D3【解析】 ∵a ,b ,c 成等比数列,∴b 2=a ·c =(5+26)(5-26)=1.又b >0,∴b =1.【答案】 14【解析】 设等比数列{a n }的公比为q ,因为8a 2+a 5=0,所以8a 1q +a 1q 4=0.∴q 3+8=0,∴q =-2,∴S5S 2=a 1-q 51-q ·1-q a 1-q 2=1-q 51-q 2=1--51-4=-11.【答案】 -115【解】 (1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n a 1+a n 2=n +2n -2=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0,所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1-q n1-q =23(4n -1).。

高考数学一轮复习 第5章 数列 第3节 等比数列及其前n项和教学案(含解析)理-人教版高三全册数学教

高考数学一轮复习 第5章 数列 第3节 等比数列及其前n项和教学案(含解析)理-人教版高三全册数学教

第三节 等比数列及其前n 项和[考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=a b.2.等比数列的通项公式与前n 项和公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.(5)当q ≠-1时,数列S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列. [常用结论]1.“G 2=ab ”是“a ,G ,b 成等比数列”的必要不充分条件.2.若q ≠0,q ≠1,则S n =k -kq n(k ≠0)是数列{a n }成等比数列的充要条件,此时k =a 11-q.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=a b.( )(3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a. ( )[答案] (1)× (2)× (3)× (4)×2.(教材改编)等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36C.812D .54C [公比q =a 4a 3=1812=32,则a 6=a 4q 2=18×⎝ ⎛⎭⎪⎫322=812.]3.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为__________.27,81 [设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.]4.在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=________.4 [由题意知⎩⎪⎨⎪⎧a 3=a 1q 2=1,a 2+a 4=a 1q +a 1q 3=52,消去a 1得1q +q =52,解得q =12或q =2.又0<q <1,故q =12,此时a 1=4.]5.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =__________.6 [∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列. 又∵S n =126,∴21-2n1-2=126,解得n =6.]等比数列基本量的运算1.(2019·某某模拟)已知公比q ≠1的等比数列{a n }的前n 项和为S n ,若a 1=1,S 3=3a 3,则S 5=( )A .1B .5 C.3148 D.1116D [由S 3=3a 3得a 1+a 2=2a 3,∴1+q =2q 2,解得q =-12或q =1(舍).∴S 5=1-⎝ ⎛⎭⎪⎫-1251-⎝ ⎛⎭⎪⎫-12=23×3332=1116,故选D.]2.(2017·某某高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.32 [设{a n}的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧a 11-q 31-q =74,a11-q 61-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32.]3.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .[解] (1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1--2n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1.由S m =63得2m=64,解得m =6.综上,m =6.[规律方法] 解决等比数列有关问题的两种常用思想 方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q (1-q n)(q <1)或S n =a 1q -1(qn-1)(q >1).等比数列的判定与证明【例1】 (2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解] (1)由条件可得a n +1=2n +1na n .将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.[规律方法] 等比数列的判定方法 1定义法:若q 为非零常数,n ∈N *,则{a n }是等比数列.2等比中项法:若数列{a n }中,a n ≠0,且a \o\al(2,n +1)=a n ·a n +2n ∈N*,则数列{a n }是等比数列.3通项公式法:若数列通项公式可写成a n =c ·qnc ,q 均是不为0的常数,n ∈N *,则{a n }是等比数列.4前n 项和公式法:若数列{a n }的前n 项和S n =kq n-k k 为常数且k ≠0,q ≠0,1,则{a n }是等比数列.说明:前两种方法是证明等比数列的常用方法,后两种方法常用于选择题、填空题中的判定.(2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.[解] (1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.等比数列性质的应用►考法1 等比数列项的性质【例2】 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________. (1)50 (2)31 [(1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5. 所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×1-251-2=31.]►考法2 等比数列前n 项和的性质【例3】 (1)等比数列{a n }中,前n 项和为48,前2n 项和为60,则其前3n 项和为________. (2)数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式a n =________.(1)63 (2)12×⎝ ⎛⎭⎪⎫13n -1[(1)法一:设数列{a n }的前n 项和为S n .因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 11-q n1-q=48,①a 11-q 2n1-q=60,②②÷①,得1+q n =54,所以q n=14.③将③代入①,得a 11-q=64. 所以S 3n =a 11-q 3n 1-q =64×⎝ ⎛⎭⎪⎫1-143=63.法二:设数列{a n }的前n 项和为S n , 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =S 2n -S n2S n+S 2n =60-48248+60=63.法三:设数列{a n }的前n 项和为S n , 因为S 2n =S n +q nS n ,所以q n=S 2n -S n S n =14, 所以S 3n =S 2n +q 2nS n =60+⎝ ⎛⎭⎪⎫142×48=63.(2)设此数列{a n }的公比为q ,由题意,知S 奇+S 偶=4S 偶,所以S 奇=3S 偶,所以q =S 偶S 奇=13. 又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64, 所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1qn -1=12×⎝ ⎛⎭⎪⎫13n -1.][规律方法] 应用等比数列性质解题时的两个关键点1在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.(1)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( )A.12B.22C. 2 D .2(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50(1)B (2)B [(1) a 5·a 7=a 26=4a 24,∴a 6=2a 4,则a 6a 4=q 2=2.∴q =2,从而a 1=12=22,故选B. (2)S 12=(a 1+a 2+a 3)+(a 4+a 5+a 6)+(a 7+a 8+a 9)+(a 10+a 11+a 12)=4+8+16+32=60.]等差、等比数列的综合问题【例4】 (1)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12 B.5+12 C.3-52D.3+52A [设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),由a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 31+q2a 41+q2=1q=25+1=25-15+15-1=5-12,故选A.] (2)(2018·高考)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. ①求{a n }的通项公式; ②求e a 1+e a 2+…+e a n . [解] ①设{a n }的公差为d . 因为a 2+a 3=5ln 2, 所以2a 1+3d =5ln 2. 又a 1=ln 2,所以d =ln 2. 所以a n =a 1+(n -1)d =n ln 2. ②因为e a 1=e ln 2=2,==e ln 2=2,所以数列{e a n }是首项为2,公比为2的等比数列. 所以e a 1+e a 2+…+e a n =2×1-2n1-2=2(2n-1).[规律方法] 等差数列和等比数列的综合问题,涉及的知识面很宽,题目的变化也很多,但是万变不离其宗,只要抓住基本量a 1,d q 充分运用方程、函数、转化等数学思想方法,合理调用相关知识,就不难解决这类问题.在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n . [解] (1)设等差数列{a n }的公差为d ,则依题意有⎩⎪⎨⎪⎧a 1=1,a 1+3d 2=a 1+d a 1+7d ,解得d =1或d =0(舍去), ∴a n =1+(n -1)=n . (2)由(1)得a n =n , ∴b n =2n,∴b n +1b n=2, ∴{b n }是首项为2,公比为2的等比数列, ∴T n =21-2n1-2=2n +1-2.1.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C.12D.18C [法一:∵a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2,∴a 2=a 1q =14×2=12,故选C.法二:∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1), 将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12,故选C.]2.(2014·全国卷Ⅱ)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1) C.n n +12D.n n -12A [由a 2,a 4,a 8成等比数列,得a 24=a 2a 8,即(a 1+6)2=(a 1+2)(a 1+14),∴a 1=2.∴S n=2n +n n -12×2=2n +n 2-n =n (n +1).]3.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. -8 [设等比数列{a n }的公比为q , ∵a 1+a 2=-1,a 1-a 3=-3, ∴a 1(1+q )=-1,①a 1(1-q 2)=-3.②②÷①,得1-q =3,∴q =-2. ∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8.]4.(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.[解] 设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0. 解得q =-5或q =4.word当q=-5时,由①得d=8,则S3=21.当q=4时,由①得d=-1,则S3=-6.自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________- 11 - / 11。

高考数学一轮复习 第六章 数列 第3节 等比数列及其前n项和教学案(含解析)新人教A版-新人教A版高

高考数学一轮复习 第六章 数列 第3节 等比数列及其前n项和教学案(含解析)新人教A版-新人教A版高

第3节 等比数列及其前n 项和考试要求 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知 识 梳 理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列. 数学语言表达式:a na n -1=q (n ≥2,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab . 2. 等比数列的通项公式及前n 项和公式(1)假设等比数列{a n }的首项为a 1,公比是q ,那么其通项公式为a n =a 1q n -1;通项公式的推广:a n =a m qn -m.(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1〔1-q n 〕 1-q =a 1-a n q1-q.3.等比数列的性质{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)假设k +l =m +n (k ,l ,m ,n ∈N *),那么有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .[常用结论与微点提醒]1.假设数列{a n },{b n }(项数相同)是等比数列,那么数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 也是等比数列.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.诊 断 自 测1.判断以下结论正误(在括号内打“√〞或“×〞) (1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,那么其前n 项和为S n =a 〔1-a n 〕1-a.( )(4)数列{a n }为等比数列,那么S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)假设a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)假设a 1=1,q =-1,那么S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×2.(老教材必修5P53T1改编){a n }是等比数列,a 4=16,公比q =2,那么a 1等于( ) A.2 B.-2 C.12D.-12解析 由题意,得a 4=a 1q 3=8a 1=16,解得a 1=2. 答案 A3.(老教材必修5P61T1改编)等比数列{a n }的首项a 1=-1,前n 项和为S n ,假设S 10S 5=3132,那么{a n }的通项公式a n =________. 解析 因为S 10S 5=3132,所以S 10-S 5S 5=-132, 因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,那么a n =-⎝ ⎛⎭⎪⎫-12n -1.答案 -⎝ ⎛⎭⎪⎫-12n -14.(2020·晋冀鲁豫名校联考)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,假设a 1a m =9,那么m 的值为( ) A.8 B.9 C.10 D.11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10. 答案 C5.(2018·卷)“十二平均律〞是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.假设第一个单音的频率为f ,那么第八个单音的频率为( ) A.32f B.322f C.1225f D.1227f解析 由题意知十三个单音的频率依次构成首项为f ,公比为122的等比数列,设此数列为{a n },那么a 8=1227f ,即第八个单音的频率为1227f . 答案 D6.(2019·全国Ⅰ卷)设S n 为等比数列{a n }的前n 项和.假设a 1=13,a 24=a 6,那么S 5=________.解析 由a 24=a 6得(a 1q 3)2=a 1q 5,整理得q =1a 1=3.所以S 5=a 1〔1-q 5〕1-q =13〔1-35〕1-3=1213.答案1213考点一 等比数列基本量的运算[例1] (1)(2019·全国Ⅲ卷)各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,那么a 3=( ) A.16 B.8 C.4 D.2(2)(2020·某某一模)在数列{a n }中,满足a 1=2,a 2n =a n -1·a n +1(n ≥2,n ∈N *),S n 为{a n }的前n 项和,假设a 6=64,那么S 7的值为( )A.126B.256C.255D.254解析 (1)设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.(2)数列{a n }中,满足a 2n =a n -1a n +1(n ≥2), 那么数列{a n }为等比数列,设其公比为q , 又由a 1=2,a 6=64,得q 5=a 6a 1=32,那么q =2, 那么S 7=a 1〔1-27〕1-2=28-2=254.答案 (1)C (2)D规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二〞,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1〔1-q n 〕1-q =a 1-a n q1-q.[训练1] (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,那么S 4=( ) A.9 B.15 C.18 D.30(2)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,那么a 4=________. 解析 (1)设数列{a n }的公比为q (q >0),那么⎩⎪⎨⎪⎧2S 3=2〔a 1+a 1q +a 1q 2〕=8a 1+3a 1q ,a 1q 3=16,解得q =2,a 1=2,所以S 4=2〔1-24〕1-2=30.(2)由{a n }为等比数列,设公比为q .由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,②显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8. 答案 (1)D (2)-8考点二 等比数列的判定与证明[例2] 设数列{a n }的前n 项和为S n ,a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *). (1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.(1)解 因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *), 所以当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4, 所以a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6, 所以a 3=8. 综上,a 2=4,a 3=8.(2)证明 因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),① 所以当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②,得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. 所以-S n +2S n -1+2=0,即S n =2S n -1+2, 所以S n +2=2(S n -1+2).因为S 1+2=4≠0,所以S n -1+2≠0,所以S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列.规律方法 1.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;假设证明某数列不是等比数列,那么只要证明存在连续三项不成等比数列即可.2.在利用递推关系判定等比数列时,要注意对n =1的情形进行验证.[训练2] (2019·某某二模)S n 为等比数列{a n }的前n 项和,a 4=9a 2,S 3=13,且公比q >0. (1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?假设存在,求λ的值;假设不存在,请说明理由.解 (1)易知q ≠1,由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 1〔1-q 3〕1-q=13,q >0,解得a 1=1,q =3, ∴a n =3n -1,S n =1-3n 1-3=3n-12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, ∵S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13, ∴(λ+4)2=(λ+1)(λ+13),解得λ=12,此时S n +12=12×3n,那么S n +1+12S n +12=12×3n +112×3n=3,故存在常数λ=12,使得数列{S n +12}是以32为首项,3为公比的等比数列.考点三 等比数列的性质及应用[例3] (1)(2020·某某统考)等比数列{a n }的各项均为正数,且a 10a 11+a 8a 13=64,那么log 2a 1+log 2a 2+…+log 2a 20=________.(2)(一题多解)(2019·某某模拟)等比数列{a n }的前n 项和为S n ,假设S 10=20,S 30=140,那么S 40=( )A.280B.300C.320D.340解析 (1)由等比数列的性质可得a 10a 11=a 8a 13, 所以a 10a 11+a 8a 13=2a 10a 11=64, 所以a 10a 11=32,所以log 2a 1+log 2a 2+…+log 2a 20=log 2(a 1·a 2·a 3·…·a 20)=log 2[(a 1·a 20)·(a 2·a 19)·(a 3·a 18)·…·(a 10·a 11)]=log 2(a 10·a 11)10=log 23210=50. (2)法一 因为S 10=20≠0,所以q ≠-1,由等比数列性质得S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,∴(S 20-S 10)2=S 10(S 30-S 20), 即(S 20-20)2=20(140-S 20),解得S 20=60, ∴S 20-S 10S 10=60-2020=2, ∴S 40-S 30=S 10·23,∴S 40=S 30+S 10·23=300.应选B.法二 设等比数列{a n }的公比为q ,由题意易知q ≠1,所以a 1〔1-q 10〕1-q =20,a 1〔1-q 30〕1-q=140,两式相除得1-q 301-q 10=7,化简得q 20+q 10-6=0,解得q 10=2,所以S 40=S 30+S 10·q 30=140+160=300,应选B. 答案 (1)50 (2)B规律方法 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“假设m +n =p +q ,那么a m ·a n =a p ·a q 〞,可以减少运算量,提高解题速度.2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.[训练3] (1)(2020·某某质检)在等比数列{a n }中,假设a 3,a 7是方程x 2+4x +2=0的两根,那么a 5的值是( ) A.-2 B.-2C.±2D. 2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,假设S 6S 3=3,那么S 9S 6=________. 解析 (1)根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0,所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73. 法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a (a ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)B (2)73数学运算、数学抽象——等差(比)数列性质的应用1.数学运算是指在明晰运算对象的基础上,依据运算法那么解决数学问题的一种素养.本系列数学运算主要表现为:理解数列问题;掌握数列运算法那么;探究运算思路;求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.2.数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规那么,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想.类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;(2)设{a n }的项数为2n ,公差为d ,那么S 偶-S 奇=nd .[例1] (1)等差数列{a n }的前n 项和为S n ,a m -1+a m +1-a 2m =0,S 2m -1=38,那么m =________. (2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,那么数列的公差d =________.解析 (1)由a m -1+a m +1-a 2m =0,得2a m -a 2m =0,解得a m =0或2.又S 2m -1=〔2m -1〕〔a 1+a 2m -1〕2=(2m -1)a m =38,显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案 (1)10 (2)5类型2 等比数列两个性质的应用在等比数列{a n }中,(1)假设m +n =p +q (m ,n ,p ,q ∈N *),那么a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).[例2] (1)等比数列{a n }中,a 4=2,a 5=5,那么数列{lg a n }的前8项和等于( ) A.6 B.5 C.4 D.3(2)设等比数列{a n }中,前n 项和为S n ,S 3=8,S 6=7,那么a 7+a 8+a 9等于( ) A.18B.-18C.578D.558解析 (1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.答案 (1)C (2)A类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶〞性质:等比数列{a n }中,公比为q . 假设共有2n 项,那么S 偶∶S 奇=q . (2)分段求和:S n +m =S n +q nS m (q 为公比).[例3] (1)等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,那么公比q =________.(2){a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,那么数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.解析 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0. 那么S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116.答案 (1)2 (2)3116A 级 基础巩固一、选择题1.{a n }是等比数列,a 2=2,a 5=14,那么公比q 等于( )A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12.答案 D2.(2019·马某某质检)等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),那么a 7的值为( ) A.2 B.4 C.92D.6解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2. 又∵a 1=1,a 1a 7=a 24=4,∴a 7=4. 答案 B3.(2020·某某一模)等比数列{a n }的前n 项和S n =a ·3n -1+b ,那么a b=( )A.-3B.-1C.1D.3解析 ∵等比数列{a n }的前n 项和S n =a ·3n -1+b ,∴a 1=S 1=a +b ,a 2=S 2-S 1=3a +b -a -b =2a ,a 3=S 3-S 2=9a +b -3a -b =6a ,∵等比数列{a n }中,a 22=a 1a 3, ∴(2a )2=(a +b )×6a ,解得ab=-3. 答案 A4.在数列{a n }中,a 1=1,a n +1=2a n ,那么S n =a 21-a 22+a 23-a 24+…+a 22n -1-a 22n 等于( ) A.13(2n -1) B.15(1-24n ) C.13(4n -1) D.13(1-2n ) 解析 在数列{a n }中,由a n +1=2a n ,a 1=1,得a n +1a n=2, 所以{a n }是等比数列,所以a n =2n -1,那么S n =a 21-a 22+a 23-a 24+…+a 22n -1-a 22n =1-4+16-64+…+42n -2-42n -1=1-〔-4〕2n1-〔-4〕=15(1-42n )=15(1-24n ). 答案 B5.(2020·湘赣十四校联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见末日行里数,请公仔细算相还.〞其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( ) A.6里 B.12里 C.24里 D.96里解析 由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,那么q =12,依题意有a 1〔1-q 6〕1-q =378,解得a 1=192,那么a 6=192×⎝ ⎛⎭⎪⎫125=6,最后一天走了6里,应选A. 答案 A 二、填空题6.等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,那么a 13+a 14a 14+a 15=________.解析 设数列{a n }的公比为q .由题意得a 1+2a 2=a 3, 那么a 1(1+2q )=a 1q 2,q 2-2q -1=0,所以q =1+2(舍负). 那么a 13+a 14a 14+a 15=1q=2-1.答案2-17.假设等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,那么a 2b 2=________. 解析 {a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,那么a 2b 2=22=1. 答案 18.设{a n }是由正数组成的等比数列,S n 是{a n }的前n 项和,a 2a 4=16,S 3=28,那么当a 1a 2…a n 最大时,n 的值为________.解析 由数列{a n }是各项为正数的等比数列,且a 2a 4=16,可得a 3=4.又S 3=a 3⎝ ⎛⎭⎪⎫1q2+1q+1=28,所以1q 2+1q +1=7,即⎝ ⎛⎭⎪⎫1q -2·⎝ ⎛⎭⎪⎫1q +3=0,解得q =12⎝ ⎛⎭⎪⎫q =-13舍去,故a n =a 3q n -3=25-n,那么a 1a 2…a n =24×23×…×25-n =2〔9-n 〕n 2,所以当〔9-n 〕n2取得最大值时,a 1a 2…a n 取得最大值,此时整数n =4或5. 答案 4或5 三、解答题9.(2018·全国Ⅲ卷)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.假设S m =63,求m . 解 (1)设数列{a n }的公比为q ,由题设得a n =qn -1.由得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故{a n }的通项公式为a n =(-2)n -1或a n =2n -1.(2)假设a n =(-2)n -1,那么S n =1-〔-2〕n3.由S m=63得(-2)m=-188,此方程没有正整数解.假设a n=2n-1,那么S n=2n-1.由S m=63得2m=64,解得m=6.综上,m=6.10.(2020·某某省级名校联考)S n是数列{a n}的前n项和,且满足S n-2a n=n-4.(1)证明:{S n-n+2}为等比数列;(2)求数列{S n}的前n项和T n.(1)证明因为a n=S n-S n-1(n≥2),所以S n-2(S n-S n-1)=n-4(n≥2),那么S n=2S n-1-n+4(n≥2),所以S n-n+2=2[S n-1-(n-1)+2](n≥2),又由题意知a1-2a1=-3,所以a1=3,那么S1-1+2=4,所以{S n-n+2}是首项为4,公比为2的等比数列.(2)解由(1)知S n-n+2=2n+1,所以S n=2n+1+n-2,于是T n=(22+23+…+2n+1)+(1+2+…+n)-2n=4〔1-2n〕1-2+n〔n+1〕2-2n=2n+3+n2-3n-82.B级能力提升11.(2020·东北三省四校联考)数列{a n}为正项等比数列,a2=2,a3=2a1,那么a1a2+a2a3+…+a n a n+1=( )A.(2+2)[1-(2)n]B.(2+2)[(2)n-1]C.2(2n-1)D.2(1-2n)解析由{a n}为正项等比数列,且a2=2,a3=2a1,可得a1=1,公比q=2,所以数列{a n a n+1}是以2为首项,2为公比的等比数列,那么a1a2+a2a3+…+a n a n+1=2〔1-2n〕1-2=2(2n-1).应选C.答案 C12.等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,那么使得T n >1的n 的最小值为( )A.4B.5C.6D.7解析 ∵数列{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6.答案 C13.(2020·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,假设a 3a 11=2a 25,且S 4+S 12=λS 8,那么λ=______.解析 ∵数列{a n }是等比数列,a 3a 11=2a 25, ∴a 27=2a 25,∴q 4=2,∵S 4+S 12=λS 8,∴a 1〔1-q 4〕1-q +a 1〔1-q 12〕1-q =λa 1〔1-q 8〕1-q,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.答案 8314.(开放题)(2020·某某模考)在①b 1+b 3=a 2,②a 4=b 4,③S 5=-25这三个条件中任选一个,补充在下面问题中,假设问题中的k 存在,求k 的值;假设k 不存在,说明理由.设等差数列{a n }的前n 项和为S n ,{b n }是等比数列,________,b 1=a 5,b 2=3,b 5=-81,是否存在k ,使得S k >S k +1,且S k +1<S k +2?注:如果选择多个条件分别解答,按第一个解答计分. 解 ∵等比数列{b n }中b 2=3,b 5=-81, ∴b n =-(-3)n -1,b 1=-1,∴a 5=b 1=-1.假设S k >S k +1,那么只需S k >S k +a k +1, 即a k +1<0,同理,假设S k +1<S k +2, 那么只需S k +1<S k +1+a k +2,即a k +2>0.假设选①:b 1+b 3=a 2时,a 2=-1-9=-10, ∴a n =3n -16.当k =4时,a 5<0,a 6>0,S k >S k +1,且S k +1<S k +2成立. 假设选②:a 4=b 4=27,∵a 5=-1,∴{a n }为递减数列,故不存在a k +1<0,a k +2>0, 即不存在k ,使得S k >S k +1,且S k +1<S k +2成立. 假设选③:S 5=-25,S 5=5〔a 1+a 5〕2=5a 3=-25,∴a 3=-5.∴a n =2n -11.当k =4时,a 5<0,a 6>0,S k >S k +1,且S k +1<S k +2成立.C 级 创新猜想15.(新背景题)(2019·某某质检)某市利用第十六届省运会的契机,鼓励全民健身,从2018年7月起向全市投放A ,B 两种型号的健身器材.7月份投放A 型健身器材300台,B 型健身器材64台,计划从8月起,A 型健身器材每月的投放量均为a 台,B 型健身器材每月的投放量比上一月多50%,假设12月底该市A ,B 两种健身器材投放总量不少于2 000台,那么a 的最小值为( )A.243B.172C.122D.74 解析 将每个月的投放量列表如下:那么有64×(1.5+1.52+1.53+1.54+1.55)+64+300+5a ≥2 000,解得a ≥74,所以a 的最小值为74,应选D. 答案 D。

高中数学高考高三理科一轮复习资料第5章 5.3 等比数列及其前n项和

高中数学高考高三理科一轮复习资料第5章 5.3 等比数列及其前n项和

因为 q<1,解得 q=-1 或 q=-2. 当 q=-1 时,代入①得 a1=2, - 通项公式 an=2×(-1)n 1; 1 当 q=-2 时,代入①得 a1=2, 1 通项公式 an=2×(-2)n-1.
点评:等比数列基本量的运算是等比数列中的一类基本问 题,解决这类问题的关键在于熟练掌握等比数列的有关公式, 并能灵活运用.尤其需要注意的是,在使用等比数列的前 n 项 和公式时,应根据公比的取值情况进行分类讨论,此外在运算 过程中,还应善于运用整体代换思想简化运算过程.
高中数学
5.3 等比数列及其前n项和
考纲点击 1.理解等比数列的概念. 2.掌握等比数列的通项公式与前 n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并能用 有关知识解决相应的问题. 4.了解等比数列与指数函数的关系
说基础
课前预习读教材
考点梳理 1.等比数列的定义 如果一个数列从第二项起,①____________等于同一个常 数,这个数列叫做等比数列,这个常数叫做等比数列的 ② ______.公比通常用字母 q 表示(q≠0). 2.通项公式与前 n 项和公式. (1)通项公式:③__________,a1 为首项,q 为公比. (2)前 n 项和公式: 当 q=1 时, ④__________; 当 q≠1 时, ⑤______________.
解析:由等比数列的性质知:a1· a19=16=a8· a12=a2 10,∴ a10=4,则 a8· a10· a12=a3 10=64,故选 B. 答案:B
1n 3. 若等比数列{an}的前 n 项和为 Sn=3( ) +m(n∈N*), 则 2 实数 m 的取值为( ) 3 A.- B.-1 2 C.-3 D.一切实数n-1 Nhomakorabea1 -2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学(理科)一轮复习等比数列及其前n项和学案含答案学案30 等比数列及其前n项和导学目标: 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.4.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.自主梳理 1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的________,通常用字母________表示(q≠0). 2.等比数列的通项公式设等比数列{an}的首项为a1,公比为q,则它的通项an=______________. 3.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:an=am•________ (n,m∈N*). (2)若{an}为等比数列,且k+l=m+n (k,l,m,n∈N*),则__________________________. (3)若{an},{bn}(项数相同)是等比数列,则{λan} (λ≠0),1an,{a2n},{an•bn},anbn仍是等比数列. (4)单调性:a1>0,q>1或a1<00<q<1⇔{an}是________数列;a1>0,0<q<1或a1<0q>1⇔{an}是________数列;q=1⇔{an}是____数列;q<0⇔{an}是________数列. 5.等比数列的前n项和公式等比数列{an}的公比为q (q≠0),其前n项和为Sn,当q=1时,Sn=na1;当q≠1时,Sn=--q=--1=a1qnq-1-a1q-1. 6.等比数列前n项和的性质公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为______.自我检测 1.“b=ac”是“a、b、c成等比数列”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.若数列{an}的前n项和Sn=3n-a,数列{an}为等比数列,则实数a的值是 ( ) A.3 B.1 C.0 D.-1 3.(2011•温州月考)设f(n)=2+24+27+…+23n+1 (n∈N*),则f(n)等于 ( ) A.27(8n-1) B.27(8n+1-1) C.27(8n+2-1) D.27(8n+3-1) 4.(2011•湖南长郡中学月考)已知等比数列{an}的前三项依次为a-2,a+2,a+8,则an等于 ( ) A.8•32n B.8•23n C.8•32n-1 D.8•23n-1 5.设{an}是公比为q的等比数列,|q|>1,令bn=an+1 (n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________. 探究点一等比数列的基本量运算例1 已知正项等比数列{an}中,a1a5+2a2a6+a3a7=100,a2a4-2a3a5+a4a6=36,求数列{an}的通项an和前n项和Sn.变式迁移1 在等比数列{an}中,a1+an=66,a2•an-1=128,Sn =126,求n和q.探究点二等比数列的判定例2 (2011•岳阳月考)已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5,n∈N*. (1)证明数列{an+1}是等比数列; (2)求{an}的通项公式以及Sn.变式迁移2 设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*). (1)求a2,a3的值; (2)求证:数列{Sn+2}是等比数列.探究点三等比数列性质的应用例3 (2011•湛江月考)在等比数列{an}中,a1+a2+a3+a4+a5=8,且1a1+1a2+1a3+1a4+1a5=2,求a3.变式迁移3 (1)已知等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,求b5+b9的值; (2)在等比数列{an}中,若a1a2a3a4=1,a13a14a15a16=8,求a41a42a43a44.分类讨论思想与整体思想的应用例(12分)设首项为正数的等比数列{an}的前n项和为80,它的前2n项和为6 560,且前n项中数值最大的项为54,求此数列的第2n项.【答题模板】解设数列{an}的公比为q,若q=1,则Sn=na1,S2n=2na1=2Sn. ∵S2n=6 560≠2Sn=160,∴q≠1,[2分] 由题意得--q=80,--q=6 560. ②[4分] 将①整体代入②得80(1+qn)=6 560,∴qn=81.[6分] 将qn=81代入①得a1(1-81)=80(1-q),∴a1=q-1,由a1>0,得q>1,∴数列{an}为递增数列.[8分] ∴an=a1qn-1=a1q•qn=81•a1q=54. ∴a1q=23.[10分] 与a1=q-1联立可得a1=2,q=3,∴a2n=2×32n-1 (n∈N*).[12分] 【突破思维障碍】 (1)分类讨论的思想:①利用等比数列前n项和公式时要分公比q=1和q≠1两种情况讨论;②研究等比数列的单调性时应进行讨论:当a1>0,q>1或a1<0,0<q<1时为递增数列;当a1<0,q>1或a1>0,0<q<1时为递减数列;当q<0时为摆动数列;当q =1时为常数列.(2)函数的思想:等比数列的通项公式an=a1qn-1=a1q•qn (q>0且q≠1)常和指数函数相联系.(3)整体思想:应用等比数列前n项和时,常把qn,a11-q当成整体求解.本题条件前n 项中数值最大的项为54的利用是解决本题的关键,同时将qn和--q的值整体代入求解,简化了运算,体现了整体代换的思想,在解决有关数列求和的题目时应灵活运用. 1.等比数列的通项公式、前n项公式分别为an=a1qn-1,Sn=na1,q=1,--q,q≠1. 2.等比数列的判定方法: (1)定义法:即证明an+1an=q (q≠0,n∈N*) (q是与n值无关的常数). (2)中项法:证明一个数列满足a2n+1=an•an+2 (n∈N*且an•an+1•an +2≠0). 3.等比数列的性质: (1)an=am•qn-m (n,m∈N*); (2)若{an}为等比数列,且k+l=m+n (k,l,m,n∈N*),则ak•al=am•an; (3)设公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn. 4.在利用等比数列前n项和公式时,一定要对公比q=1或q≠1作出判断;计算过程中要注意整体代入的思想方法. 5.等差数列与等比数列的关系是:(1)若一个数列既是等差数列,又是等比数列,则此数列是非零常数列; (2)若{an}是等比数列,且an>0,则{lg an}构成等差数列. (满分:75分) 一、选择题(每小题5分,共25分) 1.(2010•辽宁)设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5等于 ( ) A.152 B.314 C.334 D.172 2.(2010•浙江)设Sn为等比数列{an}的前n项和,8a2+a5=0,则S5S2等于 ( ) A.-11 B.-8 C.5 D.11 3.在各项都为正数的等比数列{an}中,a1=3,前三项的和S3=21,则a3+a4+a5等于( ) A.33 B.72C.84 D.189 4.等比数列{an}前n项的积为Tn,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是 ( ) A.T10 B.T13 C.T17 D.T25 5.(2011•佛山模拟)记等比数列{an}的前n项和为Sn,若S3=2,S6=18,则S10S5等于( ) A.-3 B.5 C.-31 D.33 题号 1 2 3 4 5 答案二、填空题(每小题4分,共12分) 6.设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}前7项的和为________. 7.(2011•平顶山月考)在等比数列{an}中,公比q=2,前99项的和S99=30,则a3+a6+a9+…+a99=________. 8.(2010•福建)在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an=________. 三、解答题(共38分) 9.(12分)(2010•陕西)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列. (1)求数列{an}的通项;(2)求数列{2an}的前n项和Sn.10.(12分)(2011•廊坊模拟)已知数列{log2(an-1)}为等差数列,且a1=3,a2=5. (1)求证:数列{an-1}是等比数列; (2)求1a2-a1+1a3-a2+…+1an+1-an的值.11.(14分)已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项. (1)求数列{an}与{bn}的通项公式; (2)设数列{cn}对n∈N*均有c1b1+c2b2+…+cnbn=an+1成立,求c1+c2+c3+…+c2 010.答案自主梳理 1.公比q 2.a1•qn-1 4.(1)qn-m (2)ak•al=am•an (4)递增递减常摆动 6.qn 自我检测 1.D 2.B3.B4.C5.-9 课堂活动区例1 解题导引(1)在等比数列的通项公式和前n项和公式中共有a1,an,q,n,Sn五个量,知道其中任意三个量,都可以求出其余两个量.解题时,将已知条件转化为基本量间的关系,然后利用方程组的思想求解; (2)本例可将所有项都用a1和q表示,转化为关于a1和q的方程组求解;也可利用等比数列的性质来转化,两种方法目的都是消元转化.解方法一由已知得: a21q4+2a21q6+a21q8=100,a21q4-2a21q6+a21q8=36.①② ①-②,得4a21q6=64,∴a21q6=16.③ 代入①,得16q2+2×16+16q2=100. 解得q2=4或q2=14. 又数列{an}为正项数列,∴q=2或12. 当q=2时,可得a1=12,∴an=12×2n-1=2n-2, Sn=12(1-2n)1-2=2n-1-12;当q=12时,可得a1=32. ∴an=32×12n-1=26-n. Sn=321-12n1-12=64-26-n. 方法二∵a1a5=a2a4=a23,a2a6=a3a5,a3a7=a4a6=a25,由a1a5+2a2a6+a3a7=100,a2a4-2a3a5+a4a6=36,可得a23+2a3a5+a25=100,a23-2a3a5+a25=36,即(a3+a5)2=100,(a3-a5)2=36. ∴a3+a5=10,a3-a5=±6.解得a3=8,a5=2,或a3=2,a5=8. 当a3=8,a5=2时,q2=a5a3=28=14. ∵q>0,∴q =12,由a3=a1q2=8,得a1=32,∴an=32×12n-1=26-n. Sn =32-26-n×121-12=64-26-n. 当a3=2,a5=8时,q2=82=4,且q>0,∴q=2. 由a3=a1q2,得a1=24=12. ∴an=12×2n -1=2n-2. Sn=12(2n-1)2-1=2n-1-12. 变式迁移1 解由题意得a2•an-1=a1•an=128,a1+an=66,解得a1=64,an=2或a1=2,an=64. 若a1=64,an=2,则Sn=a1-anq1-q=64-2q1-q=126,解得q=12,此时,an=2=64•12n-1,∴n=6. 若a1=2,an=64,则Sn=2-64q1-q=126,∴q=2. ∴an=64=2•2n -1.∴n=6. 综上n=6,q=2或12. 例2 解题导引(1)证明数列是等比数列的两个基本方法:①an+1an=q (q为与n值无关的常数)(n∈N*).②a2n+1=anan+2 (an≠0,n∈N*). (2)证明数列不是等比数列,可以通过具体的三个连续项不成等比数列来证明,也可用反证法. (1)证明由已知Sn+1=2Sn+n+5,n∈N*,可得n≥2时,Sn=2Sn-1+n+4,两式相减得Sn+1-Sn=2(Sn-Sn-1)+1,即an+1=2an+1,从而an+1+1=2(an+1),当n=1时,S2=2S1+1+5,所以a2+a1=2a1+6,又a1=5,所以a2=11,从而a2+1=2(a1+1),故总有an+1+1=2(an+1),n∈N*,又a1=5,a1+1≠0,从而an+1+1an+1=2,即数列{an+1}是首项为6,公比为2的等比数列. (2)解由(1)得an+1=6•2n-1,所以an=6•2n-1-1,于是Sn=6•(1-2n)1-2-n=6•2n-n-6. 变式迁移2 (1)解∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=(a1+a2)+4,∴a2=4;当n=3时,a1+2a2+3a3=2(a1+a2+a3)+6,∴a3=8. (2)证明∵a1+2a2+3a3+…+nan =(n-1)Sn+2n(n∈N*),① ∴当n≥2时,a1+2a2+3a3+…+(n-1)an-1 =(n-2)Sn-1+2(n-1).② ①-②得nan=(n-1)Sn-(n-2)Sn-1+2=n(Sn-Sn-1)-Sn+2Sn-1+2=nan-Sn+2Sn-1+2. ∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,∴Sn+2=2(Sn-1+2).∵S1+2=4≠0,∴Sn-1+2≠0,∴Sn+2Sn-1+2=2,故{Sn+2}是以4为首项,2为公比的等比数列.例3 解题导引在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am•an=ap•aq”,可以减少运算量,提高解题速度.解由已知得 1a1+1a2+1a3+1a4+1a5 =a1+a5a1a5+a2+a4a2a4+a3a23 =a1+a2+a3+a4+a5a23=8a23=2,∴a23=4,∴a3=±2.若a3=-2,设数列的公比为q,则-2q2+-2q-2-2q-2q2=8,即1q2+1q+1+q+q2 =1q+122+q+122+12=-4. 此式显然不成立,经验证,a3=2符合题意,故a3=2. 变式迁移3 解(1)∵a3a11=a27=4a7,∵a7≠0,∴a7=4,∴b7=4,∵{bn}为等差数列,∴b5+b9=2b7=8. (2)a1a2a3a4=a1•a1q•a1q2•a1q3=a41q6=1.① a13a14a15a16=a1q12•a1q13•a1q14•a1q15 =a41•q54=8.② ②÷①:a41•q54a41•q6=q48=8⇒q16=2,又a41a42a43a44=a1q40•a1q41•a1q42•a1q43 =a41•q166=a41•q6•q160=(a41•q6)•(q16)10 =1•210=1 024. 课后练习区 1.B [∵{an}是由正数组成的等比数列,且a2a4=1,∴设{an}的公比为q,则q>0,且a23=1,即a3=1. ∵S3=7,∴a1+a2+a3=1q2+1q+1=7,即6q2-q-1=0. 故q=12或q=-13(舍去),∴a1=1q2=4. ∴S5=4(1-125)1-12=8(1-125)=314.] 2.A [由8a2+a5=0,得8a1q +a1q4=0,所以q=-2,则S5S2=a1(1+25)a1(1-22)=-11.] 3.C [由题可设等比数列的公比为q,则3(1-q3)1-q=21⇒1+q+q2=7⇒q2+q-6=0 ⇒(q+3)(q-2)=0,根据题意可知q>0,故q=2.所以a3+a4+a5=q2S3=4×21=84.] 4.C [a3a6a18=a31q2+5+17=(a1q8)3=a39,即a9为定值,所以下标和为9的倍数的积为定值,可知T17为定值.] 5.D [因为等比数列{an}中有S3=2,S6=18,即S6S3=a1(1-q6)1-qa1(1-q3)1-q=1+q3=182=9,故q=2,从而S10S5=a1(1-q10)1-qa1(1-q5)1-q =1+q5=1+25=33.] 6.127 解析∵公比q4=a5a1=16,且q>0,∴q=2,∴S7=1-271-2=127. 7.1207 解析∵S99=30,即a1(299-1)=30,∵数列a3,a6,a9,…,a99也成等比数列且公比为8,∴a3+a6+a9+…+a99=4a1(1-833)1-8 =4a1(299-1)7=47×30=1207. 8.4n-1 解析∵等比数列{an}的前3项之和为21,公比q =4,不妨设首项为a1,则a1+a1q+a1q2=a1(1+4+16)=21a1=21,∴a1=1,∴an=1×4n-1=4n-1. 9.解(1)由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列,得1+2d1=1+8d1+2d,....................................................................................(4分) 解得d=1或d=0(舍去).故{an}的通项an=1+(n-1)×1=n.............................................................(7分) (2)由(1)知2an=2n,由等比数列前n项和公式,得Sn=2+22+23+ (2)=2(1-2n)1-2 =2n+1-2.………………………………………………………………………………(12分) 10.(1)证明设log2(an-1)-log2(an-1-1)=d (n≥2),因为a1=3,a2=5,所以d=log2(a2-1)-log2(a1-1)=log24-log22=1,…………………………………………………………(3分) 所以log2(an-1)=n,所以an-1=2n,所以an-1an-1-1=2 (n≥2),所以{an-1}是以2为首项,2为公比的等比数列.………(6分) (2)解由(1)可得an-1=(a1-1)•2n-1,所以an=2n+1,…………………………………………………………………………(8分) 所以1a2-a1+1a3-a2+…+1an+1-an =122-2+123-22+…+12n+1-2n =12+122+…+12n=1-12n.………………………………………………………………(12分) 11.解(1)由已知有a2=1+d,a5=1+4d,a14=1+13d,∴(1+4d)2=(1+d)(1+13d).解得d=2(d=0舍).……………………………………………………………………(2分) ∴an=1+(n-1)•2=2n-1.………………………………………………………………(3分) 又b2=a2=3,b3=a5=9,∴数列{bn}的公比为3,∴bn=3•3n-2=3n-1.………………………………………………………………………(6分) (2)由c1b1+c2b2+…+cnbn=an+1得当n≥2时,c1b1+c2b2+…+cn-1bn-1=an. 两式相减得:当n≥2时,cnbn=an+1-an =2.……………………………………………(9分) ∴cn=2bn=2•3n -1 (n≥2).又当n=1时,c1b1=a2,∴c1=3. ∴cn=3 (n =1)2•3n-1(n≥2).……………………………………………………………(11分) ∴c1+c2+c3+…+c2 010 =3+6-2×32 0101-3=3+(-3+32 010)=32 010.…………………………………………(14分)。

相关文档
最新文档