高考培优课程秋季数学讲义:二项式定理—其他应用【学生版】

合集下载

高考数学讲义二项式定理讲义(B级).学生版

高考数学讲义二项式定理讲义(B级).学生版

二项式定理内容要求层次重难点二项式定理 B1.理解二项式定理,能准确地写出二项式的展开式;2.会区分项的系数与项的二项式系数;3.掌握二项式定理在近似计算及证明整除性中的应用;4.熟练掌握二项式定理的基本问题――通项公式及其应用二项展开式的特点与功能B二项式系数的性质B二项式定理的定义二项式定理的证明二项展开式的通项二项式系数的性质二项式定理高考要求知识框架二项式定理一、定义:n nn r r n rn n n n n n n n b b a b a b a a b a C C C C C ++++++=+---ΛΛ22211)( )(*N n ∈,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做n b a )(+的二项展开式;上述二项展开式中各项的系数),,2,1,0(n r C rn Λ= 叫做二项式系数,第1+r 项叫做二项展开式的通项,用1+r T 表示;r r n rn r b a T C -+=1叫做二项展开式的通项公式. 二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共1+n (二项式的指数+1)项;指数:二项展开式各项的第一字母a 依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母b 依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数n ;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母b 的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a ,b 不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在b b a )(+的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据. 三、二项式系数的性质1. 对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等.2. 单调性:二项式系数(数列)在前半部分逐渐增大,在后半部分逐渐减小,在中间(项)取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数C n n2最大;当n 为奇数时,二项展开式中间两项的二项式系数Cn n21-,Cn n21+ 相等,且最大.3. 组合总数公式:n nn n n n C C C C 221=++++Λ 即二项展开式中各项的二项式系数之和等于n 2. 4. “一分为二”的考察:二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即15314202-=+++=+++n n n n n n n C C C C C C ΛΛ.知识内容1. 二项式定理及其展开式【例1】 求5)1(x x +的展开式.【例2】 0.9915的近似值(精确到0.001)是【例3】 求证:(1)11--n n 能被2)1(-n 整除)3,(≥∈n N n ;2. 二项式系数【例4】 在8)1)(1(+-x x 的展开式中5x 的系数是( )A . –14B . 14C . –28D . 28【例5】 设1,2,3,4,5,k =则5)2(+x 的展开式中k x 的系数不可能是( )A . 10B . 40C . 50D . 80例题精讲【例6】 在8765)1()1()1()1(x x x x -+-+-+-的展开式中,3x 的项的系数为( )A . 74B . 121C . –74D . –121【例7】 已知n xx )21(3-)(*∈N n 的展开式中奇数项的二项式系数之和等于512,试求:(1)二项式系数最大的项; (2)系数的绝对值最大的项; (3)系数最大的项.【例8】 设2002002210200)14(x a x a x a a x ++++=-Λ ,求 ①展开式中各二项式系数的和;②展开式中各项系数的和; ③19931a a a +++Λ的值 ④20042a a a +++Λ的值 ⑤20021a a a +++Λ 的值3. 二项式展开式的通项公式【例9】 求9)1(xx -的二项展开式中3x 的系数.【例10】 求7)21(x +的二项展开式中,第4项的系数和第4项的二项式系数.【例11】 求10)1(xx +的二项展开式的第6项.【例12】 二项式6)1(xx +的展开式中常数项的值为______.【例13】 103)1(xx -展开式中的常数项是______.【例14】 (2010江西卷理6)8)2(x -展开式中不含4x 项的系数的和为( )A .-1B .0C .1D .24. 二项式定理在解决整除性问题中的应用【例15】 今天是星期一,再过n 8天后的那一天是星期几?【例16】 9291除以100的余数是( ).5. 信息迁移【例17】 若)()21(2004200422102004R x x a x a x a a x ∈++++=-Λ,)()()(200402010a a a a a a ++++++Λ= _______.(用数字作答)【例18】 已知函数1212)(+-=x x x f ,求证:对于任意不小于3的自然数n ,都有1)(+>n n n f .【例19】 求证:*12(1)3(2,)n n n N n <+<≥∈1. 在使用通项公式r r n rn r b a T C -+=1时,要注意:①通项公式是表示第r +1项,而不是第r 项②展开式中第r +1项的二项式系数C rn 与第r +1项的系数不同③通项公式中含有a ,b ,n ,r ,1+r T 五个元素,只要知道其中的四个元素,就可以求出第五个元素在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组)这里必须注意n 是正整数,r 是非负整数且r ≤n2. 证明组合恒等式常用赋值法3. 二项式定理应用通常有以下几类题型:①通项应用型:利用通项公式研究具体某一项系数的性质等问题②系数配对型:展开两因式乘积或可化为两因式乘积的三项式,求某项系数③系数性质型:灵活应用二项式系数性质或赋值求系数和④利用二项式定理求近似值,证明整除性或求余数问题,证明恒等式或不等式⑤在概率等方面的应用课堂总结【习题1】(2010全国Ⅰ卷理5)533)1()21(x x -+的展开式中x 的系数是( )A . -4B . -2C . 2D . 4【习题2】4)2(x x +的展开式中3x 的系数是( )A 6B 12C 24D . 48【习题3】73)12(xx -的展开式中常数项是( )A 14B -14C 42D -42【习题4】(2010陕西卷理4))(5R x x a x ∈⎪⎭⎫ ⎝⎛+展开式中3x 的系数为10,则实数a 等于( )A .-1B .0.5C .1D .2【习题5】若n xxx )1(3+的展开式中的常数项为84,则n =_____________【习题6】已知n x x )1(lg +展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,求x 的值【习题7】(2010安徽卷理12)6)(xy y x -展开式中,3x 的系数等于________.课后检测。

高考数学总复习 基础知识名师讲义 第十章 第四节二项式定理及其应用 理

高考数学总复习 基础知识名师讲义 第十章 第四节二项式定理及其应用 理

第四节 二项式定理及其应用知识梳理1.二项式定理:()a +b n=__________________________(n ∈N *).其通项是:T r +1=________________(r =0,1,2,…,n ),亦可写成:T r +1=C r n a n⎝ ⎛⎭⎪⎫b a r .其中,C rn (r =0,1,2,…,n )叫做二项式系数,而系数则是字母前的常数.()a -b n =________________________(n ∈N *).特别地:()1+x n=__________________________(n ∈N *).答案:2.二项展开式系数的性质:(1)对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即____________________.(2)增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得________值.如果二项式的幂指数是偶数,则中间一项的二项式系数最大,即n 为偶数时:()C rn max = Cn2n;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大,即n 为奇数时:()C r n max = Cn -12n= Cn +12n.(3)所有二项式系数的和等于2n,即________________=2n(用赋值法可以证明). 奇数项的二项式系数和与偶数项的二项式系数和相等,即C 0n +C 2n +…=C 1n +C 3n +…=2n-1. 答案:3.在使用二项展开式的通项公式T r + 1 =C r n an -r b r时,要注意:(1)通项公式是表示第r +1项,而不是第r 项.(2)展开式中第r +1项的二项式系数C rn 与第r +1项的系数不同.(3)通项公式中含有a ,b ,n ,r ,T r + 1 五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组).这里必须注意n 是正整数,r 是非负整数,且r ≤n .4.证明组合恒等式常用赋值法.基础自测1.(2013·新课标全国卷Ⅱ)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( )A .-4B .-3C .-2D .-1解析:由x 2的系数为5 得C 25+a C 15=5,解得a =-1.故选D. 答案:D2.⎝⎛⎭⎪⎫x +12x 8的展开式中常数项为( )A.3516 B.358 C.354D .105 解析:原式展开式的第r +1项为T r +1=C r8(x )8-r·⎝ ⎛⎭⎪⎫12x r =⎝ ⎛⎭⎪⎫12r C r 8x 4-r .令4-r =0,则r =4.所以展开式中常数项为⎝ ⎛⎭⎪⎫124C 48=358.故选B.答案:B3.(2013·揭阳一模)若二项式⎝ ⎛⎭⎪⎫x +12x n的展开式中,第4项与第7项的二项式系数相等,则展开式中x 6的系数为______________.(用数字作答)解析:由题意可得,C 3n =C 6n ,解得n =9.因为⎝ ⎛⎭⎪⎫x +12x 9的展开式的通项为T r +1=⎝ ⎛⎭⎪⎫12r C r 9x 9-r x -r 2=⎝ ⎛⎭⎪⎫12r C r 9x 9-3r 2, 令9-3r2=6,解得r =2.此时的系数为⎝ ⎛⎭⎪⎫122C 29=9.答案:94.若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0, 则a 1+a 2+a 3+a 4+a 5=________(用数字作答).解析:令x =1得a 5+a 4+a 3+a 2+a 1+a 0=-1;令x =0,得a 0=-32.所以 a 5+a 4+a 3+a 2+a 1=31.答案:311.(2013·辽宁卷)使⎝⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7 解析:展开式的通项公式T r +1=C rn (3x )n -r⎝ ⎛⎭⎪⎫1x x r ,所以T r +1=3n -r C rn xn -52r ,r =0,1,2,…,n .令n -52r =0,n =52r ,故最小正整数n =5.故选B.答案:B2.(2012·湖北卷)设a ∈Z,且0≤a <13,若512 012+a 能被13整除,则a =( )A .0B .1C .11D .12 解析: 512 012+a =a +(13×4-1)2 012=a +(1-13×4)2 012=a +1-C 12 012(13×4)+C 22 012(13×4)2-…+C 2 0122 012 (13×4)2 012,显然当a +1=13k ,k ∈Z,即a =-1+13k ,k ∈Z 时,512012+a =13×4[-C 12 012+C 22 012(13×4)1-…+C 2 0122 012(13×4)2 011]+13k ,能被13整除.因为a ∈Z,且0≤a <13, 所以a =12.故选D.答案:D3.(2013·大纲全国卷)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112 D .168解析: (1+x )8展开式中x 2的系数是C 28,(1+y )4的展开式中y 2的系数是C 24,根据多项式乘法法则可得(1+x )8(1+y )4展开式中x 2y 2的系数为C 28C 24=28×6=168.故选D.答案:D1.如果⎝⎛⎭⎪⎫x +1x n展开式中,第4项与第6项的系数相等,则n =________,展开式中的常数项的值等于________.答案:8 702.(2013·江门二模)(1+2x )n 的展开式中x 3的系数等于x 2的系数的4倍,则n 等于________.解析:设(1+2x )n的展开式的通项公式为T r +1, 则T r +1=C r n (2x )r =2r ·C r n ·x r, 令r =3得展开式中x 3的系数为:8C 3n , 令r =2得展开式中x 2的系数为4C 2n . 依题意,8C 3n =4×4C 2n , 即n n -n -3×2×1=2×n n -2,解得n =8.答案:83.已知展开式(x -1)6=a 0+a 1x +…+a 6x 6,则a 0+a 6=________. 解析:展开式的通项公式为T r +1=C r 6x 6-r·(-1)r,r =6时,a 0=1;r =0时,a 6=1,所以a 0+a 6=2.答案:2。

高考数学一轮复习二项式定理培优课件

高考数学一轮复习二项式定理培优课件
系数不同.( √ )
解析 二项展开式中 Cknan-kbk 是第 k+1 项,二项式系数最大的项为中间一项或 中间两项,故(1)(2)均不正确.
索引
2.(选修三P34T1改编)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的
项的系数是( D )
A.74
B.121
C.-74
由于 C12 024x+C22 024x2+C32 024x3+…+C22 002244x2 024=(1+x)2 024-1=i2 024-1=1-1
=0.
索引
(2)已知-C1100(2-x)+C2100(2-x)2-C3100(2-x)3+…+C110000(2-x)100=a0+a1x+ a2x2+…+a100x100,则 a1+a2+a3+…+a99 的值是___-2_____. 解析 记 f(x)=1-C1100(2-x)+C2100(2-x)2-C3100(2-x)3+…+C110000(2-x)100-1= [1-(2-x)]100-1=(x-1)100-1, 即(x-1)100-1=a0+a1x+a2x2+…+a100x100. 令x=1,得a0+a1+a2+…+a100=-1. 令x=0,得a0=0, 又易知a100=1, 所以a1+a2+a3+…+a99=-2.
索引
(2)(多选)已知(1-2x)2 024=a0+a1x+a2x2+…+a2 024x2 024,下列命题中正确的是
( ACD )
A.展开式中所有项的二项式系数的和为 22 024
B.展开式中所有奇次项系数的和为32
024-1 2
C.展开式中所有偶次项系数的和为32
024+1 2
D.a21+a222+a233+…+a222 002244=-1

二项式定理+课件-2024-2025学年高二上学期数学湘教版(2019)选择性必修第一册

二项式定理+课件-2024-2025学年高二上学期数学湘教版(2019)选择性必修第一册

a7 .
解:
在展开式中取 x 0 ,则 a0 1 .
再在展开式中取 x 1,得 1 a0 a1 a2
于是 a1 a2
a7 1 a0 2
a7 ,
课堂巩固
A 1.已知
x2 2
1 x
n
的展开式中第
9
项为常数项,则展开式中的各项系数之和为(
)
1 A. 210
B.
1 210
C. 210
D. 210
解析:
Tr 1 Crnan rbr
在二项式定理中,如果设 a 1,b x ,则得到公式:
(1 x)n C0n C1n x C2n x2
Crn xr
Cnn xn
例题来了
例 1 求 (3 x 1 )4 的展开式. x
解:
(3 x 1 )4 (3x 1)4
x
x2
1 x2
[C40 (3x)4
C41 (3x)3
解析:由于 x5 y2 x2 2 x y2 , 所以 2x2 x y 5 的展开式中含 x5 y2 的项为 C52 2x2 2 C13x1 C22 y 2 120x5 y2 , 所以 2x2 x y 5 的展开式中 x5 y2 的系数为 120.
7.
2
x
1 x
作黑球.考虑 n 个均放有一个红球和一个黑球的盒子.现从每个盒子中取一个球,有选
红球或选黑球两利选择,其结果可分为 n 1类:

1
类,取出的
n
个球中,有
n
个红球,即
0
个黑球,共有
C
0 n
种取法,所以展开式
中一共有 C0n 项 an .
第 2 类,取出的 n 个球中,有 n 1 个红球,即 1 个黑球,共有C1n 种取法,所以

高中数学完整讲义——二项式定理1.二项展开式1求展开式中的指定项

高中数学完整讲义——二项式定理1.二项展开式1求展开式中的指定项

1.二项式定理⑴二项式定理()()011222...nn n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理.⑵二项式系数、二项式的通项011222...n n n n nn n n n C a C a b C a b C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r rnC a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr n T C a b -+=.⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意①通项1r n r rr nT C a b -+=是()na b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r rnC b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是()na b +这个标准形式下而言的,如()na b -的二项展开式的通项公式是()11rr n r rr n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系知识内容求展开式中的指定项数是不同的概念.⑤设1,a b x ==,则得公式:()12211......nr r n nn n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r rnC a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:()na b +展开式的二项式系数是:012,,,...,n n n n n C C C C ,从函数的角度看r n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n m n n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大. 由于展开式各项的二项式系数顺次是 ()01211,,112n n n n n n C C C -===⋅,()()312123n n n n C --=⋅⋅,...,()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1knn n n n k n k C k k---+-+=⋅⋅⋅-,...,1n n C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间.当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n nC .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1122n n nnCC-+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.【例1】62⎛⎝的展开式中的第四项是 .【例2】6⎛⎫的展开式中,3x 的系数等于_ ___.【例3】((3511+-的展开式中x 的系数是A .4-B .2-C .2D .4典例分析【例4】 若9a x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数是84-,则a = .【例5】 5a x x ⎛⎫+ ⎪⎝⎭()x ∈R 展开式中3x 的系数为10,则实数a 等于A .1-B .12C .1D .2【例6】 若2012(12)n n n x a a x a x a x -=++++,则2a 的值是( )A .84B .84-C .280D .280-【例7】8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【例8】 若()554541031x a x a x a x a +=++⋅⋅⋅++,则2a 的值为( )A .270B .2702xC . 90D .902x【例9】 的展开式中的系数是_______(用数字作答).【例10】 在的展开式中,的系数为_______(用数字作答).64(1(1+x 25(42)x x ++x【例11】 在的展开式中,的系数为_______(用数字作答).【例12】 在的展开式中,的系数为_______(用数字作答).【例13】 求展开式中含项系数.【例14】 在的展开式中,项的系数是 .(用数字作答)【例15】 的展开式中的系数等于________.(用数字作答)【例16】展开式中的系数是_______(用数字作答).【例17】 在的展开式中的系数是( )25(42)x x ++2x 25(42)x x ++3x 294(31)(21)x x x +-+2x 26(1)(1)(1)x x x ++++++2x 2345(1)(1)(1)(1)(1)x x x x x ---+---+-2x 291()2x x-9x 8(1)(1)x x -+5xA .−14B .14C .−28D .28【例18】 在的展开式中,含的项的系数是( )A .15-B .85C .120-D .274【例19】 在的展开式中,含项的系数是 (用数字作答)【例20】 求展开式中的系数.【例21】 的展开式中的系数是_______(用数字作答).【例22】 在的展开式中,的系数为_______(用数字作答).【例23】 在的展开式中,的系数为_______(用数字作答).(1)(2)(3)(4)(5)x x x x x -----4x 56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-3x 26(1)x x +-5x 64(1(1+x 25(42)x x ++x 25(42)x x ++2x【例24】 在的展开式中,的系数为_______(用数字作答).【例25】 求展开式中含项系数.【例26】 在的展开式中,项的系数是 .(用数字作答)【例27】 的展开式中的系数等于________.(用数字作答)【例28】展开式中的系数是_______(用数字作答).25(42)x x ++3x 294(31)(21)x x x +-+2x 26(1)(1)(1)x x x ++++++2x 2345(1)(1)(1)(1)(1)x x x x x ---+---+-2x 291()2x x-9x【例29】 在的展开式中的系数是( )A .−14B .14C .−28D .28【例30】 在的展开式中,含的项的系数是( )(A )15- (B )85 (C )120- (D )274【例31】 在的展开式中,含项的系数是 (用数字作答)【例32】 求展开式中的系数.【例33】 在二项式的展开式中,含的项的系数是( )A .B .C .D .【例34】的展开式中的系数是______,的系数为______.8(1)(1)x x -+5x (1)(2)(3)(4)(5)x x x x x -----4x 56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-3x 26(1)x x +-5x 521x x ⎛⎫- ⎪⎝⎭4x 10-105-534(12)(1)x x +-x 2x【例35】 的展开中含的项的系数为( )A .B .C .D .【例36】 的展开式中的系数是( )A .B .C .3D . 4【例37】 求展开式中的系数;【例38】 在二项式的展开式中,含的项的系数是( )A .B .C .D .【例39】的展开式中的系数是( ) A .B .C .D .【例40】 在的展开式中,的系数为 (用数字作答)411(1)x x ⎛⎫++ ⎪⎝⎭2x 461012((6411+x 4-3-()()31011x x -+5x 521x x ⎛⎫- ⎪⎝⎭4x 10-105-56(2)x +3x 2040801604(1x【例41】 在的展开式中,的系数为 _____ (用数字作答)【例42】 的二项展开式中含的项的系数为( ) A .B .C .D .【例43】 若的二项展开式中的系数为则 .(用数字作答)【例44】 设常数,展开式中的系数为,则=_____.【例45】 已知(是正整数)的展开式中,的系数小于120,则 .((333(1)11x +++++x 91x x ⎛⎫- ⎪⎝⎭3x 36-84-3684261()x ax +3x 5,2a =0a>24(ax 3x 32a 26(1)kx +k 8x k =【例46】 已知的展开式中的系数与的展开式中的系数相等 .【例47】的二项展开式的第项的系数为() A .B .C .D .【例48】 若的二项展开式中的系数为则.(用数字作答)【例49】 若与的展开式中含的系数相等,则实数的取值范围是( )A .B .C .D .【例50】 已知,则二项式 展开式中含项的系数是 .【例51】 在的展开式中,的系数是的系数与的系数的等差中项,若实数,那么.5(cos 1)x θ+2x 45()4x +3x cos θ=106210-252-210252261()x ax +3x 5,2a =__________21()n x m ++2(1)(*0)n mx n m +∈≠N ,n x m 12(]23,2[1)3,(0)-∞,(0)+∞,()π0sin cos a x x dx =+⎰6⎛ ⎝2x 7(1)ax +3x 2x 4x 1a >_______a =【例52】 已知(是正整数)的展开式中,的系数小于,则______.【例53】的展开式中的系数为 .【例54】 若的展开式中,的系数是的系数的倍,求;【例55】的展开式中,的系数与的系数之和等于__________.【例56】 已知为实数,展开式中的系数是,则_______.26(1)kx +k 8x 120k=4(33x y (1)n x +3x x 7n 10()x y -73x y 37x y a 10()x a +7x 15-a =【例57】 二项式的展开式中第三项系数比第二项系数大,求第项的系数.【例58】 求的二项展开式中含的项的二项式系数与系数.【例59】 若的展开式中前三项的系数成等差数列,则展开式中项的系数为_______.【例60】 令为的展开式中含项的系数,则数列的前项和为.41nx ⎛⎫ ⎪⎝⎭44491x x ⎛⎫- ⎪⎝⎭3x 12nx x ⎛⎫+ ⎪⎝⎭4x n a 1()(1)n n f x x +=+1n x -1{}na 2009______【例61】 在的展开式中,的系数是的系数与的系数的等差中项,求的值.【例62】 已知,则 .【例63】 在展开式中,与的系数分别为,如果3ab =,那么的值为() A . B . C . D .【例64】 若的展开式中的系数是, 则实数的值是_______.7(1)ax +(1)a >3x 2x 4x a ()52551110ax x bx a x +=++++b =()1n x +3x 2x a b ,b 706055405(1)ax -3x 80-a【例65】 设常数,展开式中的系数为,则 .【例66】 若展开式中含项的系数与含项的系数之比为,则等于( ) A .B .C .D .【例67】 设为的展开式中含项的系数,则数列的前项和为_____【例68】 已知展开式的第二项与第三项的系数比是,则________.【例69】 在的展开式中,如果第项和第项的二项式系数相等,则第项为______0a>42ax ⎛ ⎝3x 32a =12nx x ⎛⎫- ⎪⎝⎭21x 41x 5-n 46810n a 1()(1)n n f x x +=+1n x -1n a ⎧⎫⎨⎬⎩⎭n 12nx x ⎛⎫+ ⎪⎝⎭1:2n =220(1)x -4r 2r +4r【例70】 若在二项式的展开式中任取一项,则该项的系数为奇数的概率是.【例71】【例72】 已知展开式中最后三项的系数的和是方程的正数解,它的中间项是,求的值.【例73】【例74】 设数列是等比数列,,公比是的展开式的第二项. ⑴用表示通项与前项和;⑵若用表示10(1)x +_____lg lg 2(21)x n x ++2lg(7272)0y y --=410+x {}n a 311232C m m m a +-=Αq 421()4x x +n x ,n a n n S 1212C C C n n n n n n A S S S =+++n x ,n A。

二项式定理课件-完美版

二项式定理课件-完美版

二项式定理的证明
二项式定理的证明可以采用数学归纳法,将其分成多个步骤,逐步推导出结 论。
二项式定理的应用
二项式定理在概率论、组合数学、排列组合等领域具有广泛的应用。它可以 用于求解二项式系数、展开多项式、计算概率等。
相关例题分析
通过具体的例题分析,我们可以更好地理解和应用二项式定理。我们将解答 一些典型的问题,帮助您掌握其中的关键思想和技巧。
二项式定理课件-完美版
欢迎来到二项式定理课件-完美版!在本次课程中,我们将深入探讨二项式定 理,包括定义、公式、证明、应用、相关例题分析、扩展以及结论和总结。
二项式定理的定义
二项式定理是一种代数公式,用于展开一个二项式的n次幂。
பைடு நூலகம்
二项式定理的公式
二项式定理的公式可以表示为:(a+b)×(a+b)=n!(n-k)!×a×a+b+n!k!×a×b+a
二项式定理的扩展
除了传统的二项式定理,还存在许多拓展的定理和公式,如多项式定理、卢 卡斯定理等。它们进一步延伸了二项式定理的应用范围。
结论和总结
通过学习本次课件,我们详细了解了二项式定理的定义、公式、证明、应用、 相关例题分析和扩展。希望您能够喜欢并从中获益。

高三数学教案《二项式定理》优秀3篇

高三数学教案《二项式定理》优秀3篇

高三数学教案《二项式定理》优秀3篇1. 介绍本文档将介绍三篇优秀的高三数学教案,主题为《二项式定理》。

这些教案从不同的角度和方法讲解了二项式定理,帮助学生更好地理解和应用该定理,提高数学解题能力。

2. 教案一:《二项式定理初步认识》2.1 教学目标•了解二项式的定义和性质•掌握二项式展开的基本方法•能够灵活应用二项式定理解决实际问题2.2 教学内容1.二项式的定义和性质–介绍二项式的概念和表达形式–讲解二项式的性质,如二项式系数的对称性等2.二项式展开的基本方法–介绍二项式在展开时的基本方法–给出一些例题进行演示和练习3.实际问题的应用–利用二项式定理解决实际问题,如排列组合问题等–给出一些实际问题的例题和练习2.3 教学方法•讲授与演示相结合:通过讲解二项式的定义和性质,并用例题演示二项式展开的基本方法,加深学生对二项式定理的理解•提问与讨论:引导学生参与讨论,思考问题的解决方法,培养学生的分析和解决问题的能力•练习与巩固:给学生一定数量的练习题,巩固所学知识,并能够应用到实际问题中2.4 教学评价与反馈•教学评价:通过课堂上教师的观察、学生的表现及课后作业的完成情况,进行教学评价•教学反馈:及时给予学生反馈,并指导学生改正错误,提高学习效果3. 教案二:《二项式定理的证明与应用》3.1 教学目标•掌握二项式定理的证明方法•理解二项式定理的应用领域•提高数学推理和证明能力3.2 教学内容1.二项式定理的证明方法–讲解二项式定理的组合证明方法,如二项式系数的递推关系等–通过数学推理,证明二项式定理的正确性2.二项式定理的应用–介绍二项式定理在组合数学、概率论等领域的应用–给出一些应用题进行练习,提高学生的应用能力3.数学推理与证明–培养学生的数学推理和证明能力,通过解答证明题加深学生对二项式定理的理解3.3 教学方法•讲授与演示相结合:通过讲解二项式定理的证明方法,并演示具体的证明过程,加强学生对二项式定理的理解•课堂讨论:引导学生进行证明题的讨论和分析,提高学生的数学推理能力•练习与应用:给学生一些练习题,加深学生对二项式定理的应用理解3.4 教学评价与反馈•教学评价:通过课堂上的表现、学生的参与情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进学习方法,提高学习效果4. 教案三:《二项式定理与三角恒等式》4.1 教学目标•掌握二项式定理与三角恒等式的联系和应用•理解二项式定理与三角恒等式在数学中的重要性•提高学生的综合应用能力4.2 教学内容1.二项式定理与三角恒等式的联系和应用–介绍二项式定理与三角恒等式之间的联系和应用–分析二项式展开式的三角形式及其与三角恒等式的关系2.二项式定理与三角恒等式的具体应用–给出一些具体的二项式展开题目,引导学生将其化简成三角恒等式形式–通过练习题,锻炼学生的综合应用能力4.3 教学方法•讲授与实例演示:通过讲解二项式定理与三角恒等式的联系,并给出具体的例题进行演示,加深学生对二项式定理和三角恒等式的理解•练习与应用:给学生一些练习题,锻炼学生将二项式展开式化简成三角恒等式形式的能力•问题探究与讨论:引导学生思考和探索二项式定理与三角恒等式之间的更多联系4.4 教学评价与反馈•教学评价:通过观察学生的课堂表现、参与讨论的情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进问题解决的方法,提高学习效果5. 总结本文档介绍了三篇优秀的高三数学教案,主题为《二项式定理》。

3 第3讲 二项式定理

3 第3讲 二项式定理

第3讲 二项式定理1.二项式定理 (1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).(2)通项:第k +1项为T k +1=C k n an -k b k . (3)二项式系数:二项展开式中各项的二项式系数为:C k n (k =0,1,2,…,n ). 2.二项式系数的性质判断正误(正确的打“√”,错误的打“×”)(1)(a +b )n 的展开式中的第r 项是C r n an -r b r .( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( )(4)通项T r +1=C r n an -r b r 中的a 和b 不能互换.( ) (5)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)×(教材习题改编)二项式⎝⎛⎭⎫2x +1x 26的展开式中,常数项的值是( ) A .240 B .60 C .192D .180解析:选A.二项式⎝⎛⎭⎫2x +1x 26展开式的通项为T r +1=C r 6(2x )6-r ⎝⎛⎭⎫1x 2r=26-r C r 6x 6-3r,令6-3r =0,得r =2,所以常数项为26-2C 26=16×6×52×1=240.(2017·高考全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80解析:选C.当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.⎝⎛⎭⎫1x +x n的展开式中,第3项与第7项的二项式系数相等,则展开式中的第4项为________.解析:由题意得C 2n =C 6n ,所以n =8.所以⎝⎛⎭⎫1x +x 8展开式的第4项为T 4=C 38⎝⎛⎭⎫1x 3x 5=56x 2. 答案:56x 2在二项式⎝⎛⎭⎫x 2-ax 5的展开式中,x 的系数是-10,则实数a 的值为________. 解析:T r +1=C r 5(x 2)5-r⎝⎛⎭⎫-a x r=(-a )r C r5x 10-3r . 当10-3r =1时,r =3,于是x 的系数为(-a )3C 35=-10a 3=-10,a =1.答案:1二项展开式中的特定项或特定项的系数(高频考点)二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择题、填空题的形式呈现,试题多为容易题或中档题.高考对二项式定理的考查主要有以下三个命题角度:(1)求展开式中的某一项;(2)求展开式中的项的系数或二项式系数; (3)由已知条件求n 的值或参数的值.[典例引领]角度一 求展开式中的某一项⎝⎛⎭⎫x 3-2x 4+⎝⎛⎭⎫x +1x 8的展开式中的常数项为( ) A .32 B .34 C .36D .38【解析】 ⎝⎛⎭⎫x 3-2x 4的展开式的通项为T k +1=C k 4(x 3)4-k·⎝⎛⎭⎫-2x k=C k4(-2)k x 12-4k , 令12-4k =0,解得k =3,⎝⎛⎭⎫x +1x 8的展开式的通项为 T r +1=C r 8·x8-r·⎝⎛⎭⎫1x r=C r8·x 8-2r , 令8-2r =0,得r =4,所以所求常数项为C 34(-2)3+C 48=38.【答案】 D角度二 求展开式中的项的系数或二项式系数(2017·高考全国卷Ⅰ)⎝⎛⎭⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .35【解析】 (1+x )6展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.【答案】 C角度三 由已知条件求n 的值或参数的值(2016·高考山东卷)若(ax 2+1x)5的展开式中x 5的系数是-80,则实数a =________.【解析】 (ax 2+1x)5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r·x 10-5r 2,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2. 【答案】 -2与二项展开式有关问题的解题策略(1)求展开式中的第n 项,可依据二项式的通项直接求出第n 项.(2)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (3)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.[通关练习]1.若⎝⎛⎭⎫x 6+1x x n的展开式中含有常数项,则正整数n 的最小值等于( )A .3B .4C .5D .6解析:选C.T r +1=C r n (x 6)n -r⎝⎛⎭⎫1x x r=C r n x 6n -152r ,当T r +1是常数项时,6n -152r =0,即n=54r ,又n ∈N *,故n 的最小值为5,故选C. 2.(x 2-x +1)10的展开式中x 3项的系数为( ) A .-210 B .210 C .30D .-30解析:选A.(x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210.3.(2018·贵州省适应性考试)(x +1)(x +a )4的展开式中含x 4项的系数为9,则实数a 的值为________.解析:(x +1)(x +a )4=x (x +a )4+(x +a )4,对于x (x +a )4,T 2=x ×C 14x 3a ,对于(x +a )4,T 0=C 04x 4a 0,所以4a +1=9,解得a =2.答案:2二项式系数的性质或各项系数和[典例引领](1)在二项式⎝⎛⎭⎫x 2-1x 11的展开式中,系数最大的项为第________项. (2)(2018·安徽省“江南十校”联考)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.【解析】 (1)依题意可知T r +1=C r 11(-1)r x22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611.当r =6时,T 7=C 611x 4,故系数最大的项是第七项.(2)令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.【答案】 (1)七 (2)1或-3本例(2)变为:若(x +2+m )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =2,得到a 0+a 1+a 2+…+a 9=(4+m )9,令x =0,得到a 0-a 1+a 2-a 3+…-a 9=(m +2)9,所以有(4+m )9(m +2)9=39,即m 2+6m +5=0,解得m =-1或-5.答案:-1或-5赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[通关练习]1.在⎝⎛⎭⎫x 2+1x n的展开式中,只有第4项的二项式系数最大,则展开式中常数项是( ) A .15 B .20 C .30D .120解析:选A.因为二项展开式中中间项的二项式系数最大,又二项式系数最大的项只有第4项,所以展开式中共有7项, 所以n =6, 展开式的通项为T r +1=C r 6(x 2)6-r⎝⎛⎭⎫1x r=C r6x 12-3r , 令12-3r =0,则r =4,故展开式中的常数项为T 5=C 46=15.2.(2017·高考浙江卷)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.解析:由题意知a 4为含x 的项的系数,根据二项式定理得a 4=C 23×12×C 22×22+C 33×13×C 12×2=16,a 5是常数项,所以a 5=C 33×13×C 22×22=4.答案:16 4二项式定理的应用[典例引领]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A .0 B .1 C .11D .12【解析】 512 018+a =(52-1)2 018+a =C 02 018522 018-C 12 018522 017+…+C 2 0172 018×52×(-1)2 017+C 2 0182 018×(-1)2 018+a .因为52能被13整除,所以只需C 2 0182 018×(-1)2 018+a 能被13整除,即a +1能被13整除,所以a =12.【答案】 D(1)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式,应注意:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)求余数问题时,应明确被除式f (x )与除式g (x )(g (x )≠0),商式q (x )与余式的关系及余式的范围.求证:3n >(n +2)·2n -1(n ∈N *,n >2).证明:因为n ∈N *,且n >2, 所以3n =(2+1)n 展开后至少有4项.(2+1)n =2n +C 1n ·2n -1+…+C n -1n ·2+1≥2n+n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1, 故3n >(n +2)·2n -1(n ∈N *,n >2).二项展开式中系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.易错防范(1)通项T k +1=C k n an -k b k是展开式的第k +1项,不是第k 项. (2)(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.(3)易混淆二项式中的“项”“项的系数”“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n (k =0,1,…,n ).1.(2018·广东测试)⎝⎛⎭⎫x 2-12x 6的展开式中,常数项是( ) A .-54B.54 C .-1516D.1516解析:选D.T r +1=C r 6(x 2)6-r⎝⎛⎭⎫-12x r =⎝⎛⎭⎫-12rC r6x 12-3r ,令12-3r =0,解得r =4.所以常数项为⎝⎛⎭⎫-124C 46=1516.故选D.2.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数为( ) A .50 B .55 C .45D .60解析:选B.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数是C 45+C 46+C 47=55.故选B.3.设复数x =2i 1-i (i 是虚数单位),则C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=( ) A .i B .-i C .-1+iD .-1-i解析:选C.x =2i 1-i =-1+i ,C 12 107x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=(1+x )2 017-1=i 2 017-1=-1+i.4.(2018·昆明市教学质量检测)(1+2x )3(2-x )4的展开式中x 的系数是( ) A .96 B .64 C .32D .16解析:选B.(1+2x )3的展开式的通项公式为T r +1=C r 3(2x )r =2r C r 3x r ,(2-x )4的展开式的通项公式为T k +1=C k 424-k (-x )k =(-1)k 24-k C k 4x k ,所以(1+2x )3(2-x )4的展开式中x 的系数为20C 03·(-1)·23C 14+2C 13·(-1)0·24C 04=64,故选B.5.设n 为正整数,⎝⎛⎭⎫x -1x x 2n展开式中存在常数项,则n 的一个可能取值为( )A .16B .10C .4D .2解析:选B.⎝⎛⎭⎫x -1x x 2n展开式的通项公式为T k +1=C k 2n x 2n -k ⎝⎛⎭⎫-1x x k=C k 2n (-1)kx 4n -5k 2.令4n -5k 2=0,得k =4n5,又k 为正整数,所以n 可取10. 6.⎝⎛⎭⎫x +2x n的展开式的二项式系数之和为8,则展开式的常数项等于( ) A .4 B .6 C .8D .10解析:选B.因为⎝⎛⎭⎫x +2x n的展开式的各个二项式系数之和为8,所以2n =8,解得n =3, 所以展开式的通项为T r +1=C r 3(x )3-r⎝⎛⎭⎫2x r=2r C r3x 3-3r2,令3-3r 2=0,则r =1,所以常数项为6.7.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8解析:选B.(x +y )2m 展开式中二项式系数的最大值为C m 2m ,所以a =C m2m . 同理,b =C m +12m +1.因为13a =7b ,所以13·C m 2m =7·C m +12m +1.所以13·(2m )!m !m !=7·(2m +1)!(m +1)!m !.所以m =6.8.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( ) A .2nB.3n -12C .2n +1D.3n +12解析:选D.设f (x )=(1+x +x 2)n , 则f (1)=3n =a 0+a 1+a 2+…+a 2n ,① f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ,②由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1), 所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12.9.C 22n +C 42n +…+C 2k 2n +…+C 2n 2n (n ∈N *)的值为( )A .2nB .22n -1C .2n -1D .22n -1-1解析:选D.(1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n . 令x =1,得C 02n +C 12n +C 22n +…+C 2n -12n +C 2n 2n =22n ;再令x =-1,得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n 2n =0.两式相加,可得C 22n +C 42n +…+C 2n 2n =22n2-1=22n -1-1.10.(2018·湖北枣阳第一中学模拟)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:选C.(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30,故选C.11.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,那么a 0+a 2+a 4a 1+a 3+a 5的值为( )A .-122121B .-6160C .-244241D .-1解析:选A.令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=1,① 再令x =-1,可得a 0-a 1+a 2-a 3+a 4-a 5=35.②①+②2,得a 0+a 2+a 4=122,①-②2,可得a 1+a 3+a 5=-121, 故a 0+a 2+a 4a 1+a 3+a 5=-122121.12.(2018·石家庄教学质量检测(二))若a =2⎠⎛-33(x +|x |)d x ,则在⎝⎛⎭⎪⎫x -13x a的展开式中,x 的幂指数不是整数的项共有( )A .13项B .14项C .15项D .16项解析:选C.因为a =2⎠⎛-33(x +|x |)d x =2[⎠⎛03(x +x )d x +⎠⎛-30(x -x )d x ]=2x 2|30=18,所以该二项展开式的通项T r +1=C r 18(x )18-r⎝⎛⎭⎪⎫-13x r=(-1)r C r 18x 9-5r 6(0≤r ≤18,且r ∈N ),当r =0,6,12,18时,展开式中x 的幂指数为整数,所以该二项展开式中x 的幂指数不是整数的项有19-4=15项,故选C.13.(2018·广东省五校协作体联考)⎝⎛⎭⎫xy -1x 6展开式中不含x 的项的系数为________. 解析:⎝⎛⎭⎫xy -1x 6展开式中不含x 的项为C 36(xy )3·⎝⎛⎭⎫-1x 3=-20y 3,故不含x 的项的系数为-20.答案:-2014.已知⎝⎛⎭⎫1-1x (1+x )5的展开式中x r (r ∈Z 且-1≤r ≤5)的系数为0,则r =________. 解析:依题意,(1+x )5的展开式的通项公式为T r +1=C r 5x r ,故展开式为⎝⎛⎭⎫1-1x (x 5+5x 4+10x 3+10x 2+5x +1),故可知展开式中x 2的系数为0,故r =2.答案:215.(2018·江西赣州十四县联考)若⎝⎛⎭⎫x +13x n的展开式中前三项的系数分别为A ,B ,C ,且满足4A =9(C -B ),则展开式为x 2的系数为________.解析:易得A =1,B =n 3,C =C 2n 9=n (n -1)18,所以有4=9⎝⎛⎭⎫n 2-n 18-n 3,即n 2-7n -8=0,解得n =8或n =-1(舍).在⎝⎛⎭⎫x +13x 8中,因为通项T r +1=C r 8x 8-r ⎝⎛⎭⎫13x r=C r83r ·x 8-2r ,令8-2r =2,得r =3,所以展开式中x 2的系数为5627.答案:562716.(2018·安徽“江南十校”联考)若(x +y -1)3(2x -y +a )5的展开式中各项系数的和为32,则该展开式中只含字母x 且x 的次数为1的项的系数为________.解析:令x =y =1⇒(a +1)5=32⇒a =1,故原式=(x +y -1)3(2x -y +1)5=[x +(y -1)]3[2x+(1-y )]5,可知展开式中x 的系数为C 13+C 33(-1)3C 15·2=-7.答案:-71.487被7除的余数为a (0≤a <7),则⎝⎛⎭⎫x -ax 26展开式中x -3的系数为( ) A .4 320 B .-4 320 C .20D .-20解析:选B.487=(49-1)7=C 07·497-C 17·496+…+C 67·49-1,因为487被7除的余数为a (0≤a <7), 所以a =6,所以⎝⎛⎭⎫x -6x 26展开式的通项为T r +1=C r 6·(-6)r ·x 6-3r, 令6-3r =-3,可得r =3,所以⎝⎛⎭⎫x -6x 26展开式中x -3的系数为C 36·(-6)3=-4 320. 2.(x +2y )7的展开式中,系数最大的项是( ) A .68y 7 B .112x 3y 4 C .672x 2y 5 D .1 344x 2y 5解析:选C.设第r +1项系数最大,则有⎩⎪⎨⎪⎧C r 7·2r ≥C r -17·2r -1,C r 7·2r ≥C r +17·2r +1, 即⎩⎪⎨⎪⎧7!r !(7-r )!·2r ≥7!(r -1)!(7-r +1)!·2r -1,7!r !(7-r )!·2r≥7!(r +1)!(7-r -1)!·2r +1,即⎩⎨⎧2r ≥18-r ,17-r ≥2r +1解得⎩⎨⎧r ≤163,r ≥133.又因为r ∈Z ,所以r =5.所以系数最大的项为T 6=C 57x 2·25y 5=672x 2y 5.故选C.3.(2018·张掖市第一次诊断考试)设f (x )是⎝⎛⎭⎫x 2+12x 6展开式中的中间项,若f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,则实数m 的取值范围是________.解析:⎝⎛⎭⎫x 2+12x 6的展开式中的中间项为第四项,即f (x )=C 36(x 2)3⎝⎛⎭⎫12x 3=52x 3,因为f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,所以m ≥52x 2在⎣⎡⎦⎤22,2上恒成立,所以m ≥⎝⎛⎭⎫52x 2max =5,所以实数m 的取值范围是[5,+∞).答案:[5,+∞)4.(2018·山西太原模拟)⎝⎛⎭⎫2x +1x -15的展开式中常数项是________. 解析:⎝⎛⎭⎫2x +1x -15表示五个⎝⎛⎭⎫2x +1x -1相乘,则展开式中的常数项由三种情况产生,第一种是从五个⎝⎛⎭⎫2x +1x -1中分别抽取2x ,2x ,1x ,1x,-1,则此时的常数项为C 25·C 23·22·(-1)=-120;第二种情况是从五个⎝⎛⎭⎫2x +1x -1中都抽取-1,则此时的常数项为(-1)5=-1;第三种情况是从五个⎝⎛⎭⎫2x +1x -1中分别抽取2x ,1x,-1,-1,-1,则此时的常数项为C 15·C 14·21·(-1)3=-40,则展开式中常数项为-120-1-40=-161. 答案:-1615.已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.解:(1)通项公式为T k +1=C k n x n -k3⎝⎛⎭⎫-12k x -k 3=C k n ⎝⎛⎭⎫-12k x n -2k 3.因为第6项为常数项,所以k =5时,n -2×53=0, 即n =10.(2)令10-2k 3=2,得k =2, 故含x 2的项的系数是C 210⎝⎛⎭⎫-122=454. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2k 3∈Z ,0≤k ≤10,k ∈N ,令10-2k 3=r (r ∈Z ), 则10-2k =3r ,k =5-32r , 因为k ∈N ,所以r 应为偶数,所以r 可取2,0,-2,即k 可取2,5,8, 所以第3项,第6项与第9项为有理项, 它们分别为C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛⎭⎫-125,C 810⎝⎛⎭⎫-128x -2. 6.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)|a 0|+|a 1|+|a 2|+…+|a 7|.解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)因为a 0=C 07=1,所以a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094. (3)因为(1-2x )7展开式中a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, 所以|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考培优 数学
“二项式定理—其他应用”
学生姓名 授课日期 教师姓名
唐茂钢
授课时长
1h
解决一些高次幂的整除和求余问题、组合恒等式以及不等式的证明中的应用。

二项式定理在近似计算中有着广泛的用途。

利用二项式定理,可以解决一些高次幂的整除与求余问题。

二项式定理在组合恒等式以及不等式的证明中有着广泛的用途。

【例1】 求6998.0的近似值,使误差小于001.0 【解答】:
【知识点】利用二项式定理进行近似计算 【难度系数】2
【例2】 (02潍坊模拟)求证:15151
能被7整除.
【证明】:
【知识点】在利用二项式定理处理整除问题时,要巧妙地将非标准的二项式问题化归到二项式定理的情境上来,变形要有一定的目的性,要凑出相关的因数。

【难度系数】2
【例3】 若2为正奇数,求1
22117777---++++n n n n n n n C C C 被9除的余数.
【解答】
【知识点】利用二项式定理解决高次幂的整除与求余问题 【难度系数】4
【例4】 证明:50
10010061004100210021-=++-+-C C C C .
【证明】
【知识点】利用二项式定理解决组合恒等式的证明问题 【难度系数】4
【例5】 求证:12n +≥22n n ++(n ∈*N ). 【证明】
【知识点】对于一边是指数式另一边是含指数式或为关于n 的多项式的不等式证明问题,可以用二项式定理证明,先将指数式的底数化为两项的和或差的形式,再用二项式定理展开,通过舍去展开式的若干项进行放缩并用组合数公式展开化简正好为不等式右端的形式,从而证明了不等式.本题也可用数学归纳法证明. 【难度系数】4
【练习1】
今天是星期一,问1003后是星期几? 【难度系数】2 【解答】:
【练习2】设n
n n a 86+=,求83a 被49除所得的余数.
【难度系数】3 【解答】
【练习3】求证: ()*
3
112N n n n
∈≤⎪⎭

⎝⎛+≤.
【难度系数】4 【证明】
课后练习
1.(1)求604.1得近似值(精确到0.01); (2) 求5991.0得近似值(精确到0.001). 【难度系数】2 【解答】
2.求证:()11222221
2
=-+-⋅+⋅---n
n n n n n
C C .
【难度系数】3 【解答】
3.证明:()(
)
n n n n n n n n C C C C C C C 22
5
3126420=-+-++-+-
【难度系数】3 【解答】
4. 设()
1,0,1*12±≠≠∈++++=-q q N n q
q q a n n ,n n
n n n n a C a C a C A +++= 2211. (1)用q 和n 表示n A ; (2)当13<<-q 时,求n
n
n A 2lim
∞→;
(3)设n
n
n A b b b b 2321=++++ ,求证数列}{n b 是等比数列. 【难度系数】5 【解答】:
5. 规定()()!
11m m x x x C m
x +--=
,其中R x ∈,*N m ∈,且10
=x C ,这是组合数
()
n m N m n C m n ≤∈,且*,的一种推广.
(1) 求5
15-C 得值;
(2)组合数的两个性质:①m n n m n C C -=,②m
n m n m n C C C 11+-=+. 是否都能推广到()
*,N m R x C m x ∈∈的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理
由;
(3)已知组合数m n C 是正整数,证明当*
,N m R x ∈∈时,Z C m
x ∈.
【难度系数】5 【解答】。

相关文档
最新文档