高中物理竞赛方法集锦对称法7

合集下载

物理解题技巧高中对称法

物理解题技巧高中对称法

物理解题技巧高中对称法物理解题技巧高中自然界和自然科学中,普遍存在着优美和谐的对称现象.对称性就是事物在变化时存在的某种不变性.物理中对称现象比比皆是,对称的结构、对称的作用、对称的电路、对称的物和像等等.一般情况下对称表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.利用对称性解题时有时能一眼看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称性解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径.静力学问题解题的思路和方法确定研究对象:并将“对象”隔离出来-。

必要时应转换研究对象。

这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。

分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。

以受力图表示。

根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。

对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。

认识物体的平衡及平衡条件对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度为零,则称为平衡,欲使质点平衡须有∑F=0。

若将各力正交分解则有:∑FX=0,∑FY=0。

这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论:这三个力矢量组成封闭三角形。

任何两个力的合力必定与第三个力等值反向。

对物体受力的分析及步骤明确研究对象分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法”作图时力较大的力线亦相应长些每个力标出相应的符号(有力必有名),用英文字母表示用正交分解法解题列动力学方程受力不平衡时一些物体的受力特征:轻杆或弹簧对物体可以有压力或者拉力。

绳子或橡皮筋可受拉力不能受压力,同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。

例谈对称法在高中物理解题中的应用

例谈对称法在高中物理解题中的应用

龙源期刊网
例谈对称法在高中物理解题中的应用
作者:高耀东
来源:《理科考试研究·高中》2013年第10期
对称法是迅速解决高中物理题的一种有效手段,是学生在解题中常用的一种具体的解题方法,虽然在高考题中没有单独的正面考查,但是在高考题中经常有所渗透和体现,从侧面考查考生的直观思维能力和客观猜想推理能力。

用对称法解题有利于培养学生的应试能力和提高学生的物理素养,作为一种重要的物理思想和解题方法,笔者用例题谈对称法在高中物理解题中的应用。

一、时间对称
例1一人在离地H高度处,以相同的速率v0同时抛出两小球A和B,A被竖直上抛,B
被竖直下抛,两球落地时间差为Δt,求速率v0。

解题方法与技巧对于A的运动,当其上抛后再落回抛出点时,由于速度对称,向下的速
度仍为v0,所以A球在抛出点以下的运动和B球完全相同,落地时间亦相同,因此,Δt就是A球在抛出点以上的运动时间,根据时间对称,Δt=2v01g,所以v0=gΔt12。

二、物镜对称。

高中物理模型法解题——对称法模型

高中物理模型法解题——对称法模型

高中物理模型法解题———对称法解题模型【模型概述】物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中.在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性.应用这种对称性不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法. 利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题.【知识链接】一、运动学相关知识(一)竖直上抛运动1.竖直上抛运动的特点①初速度竖直向上.②只受重力作用的匀变速直线运动.③若以初速度方向为正方向,则a=-g.2. 竖直上抛运动的两种处理方法①分步处理上升阶段为初速度不为零的匀减速直线运动,;下降阶段为自由落体运动。

②整体处理整体而言,竖直上抛运动为初速度不为零的匀减速直线运动,设初速度的方向为正向,则加速度为。

3.竖直上抛运动的对称性①上升的最大高度,上升到最大高度所需时间上,下降到抛出点时所需时间下。

下落过程是上升过程的逆过程,所以质点在通过同一高度位置时,上升速度与下落速度大小相等、方向相反;物体在通过同一段高度的过程中,上升时间与下落时间相等。

②v-t图象和h-t图象中的对称性,如下图所示:(二)带电粒子在匀强磁场中的运动1.带电粒子在匀强磁场中的运动的处理方法①圆心的确定方法方法一若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心,如图(a);方法二若已知粒子运动轨迹上的两点和其中某一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,中垂线与垂线的交点即为圆心,如图(b)。

② 半径的计算方法方法一 由物理方程求:半径R =mv qB ;方法二 由几何方程求:一般由数学知识(勾股定理、三角函数等)计算来确定。

对称法解决竖直上抛问题

对称法解决竖直上抛问题

从地面竖直上抛一物体A,同时在离地面某一高度处有另一物 体B自由下落,两物体在空中相遇时速率都为v,则下列说法中 正确的是( )。 A.物体A、B各自在空中运动的总时间相等 B.物体A上抛的初速度和物体B落地时速度的大小相等,都是2v C.两物体在空中相遇时的位置一定是物体B开始下落时高度的 中点 D.物体A能上升的最大高度和物体B开始下落时的高度相同
易错点:多解性问题是竖直上抛中容易忽视的地方,在这里 一定要特别注意,题目已知速度或者位移大小时,要明白同 一个位置对应两个时刻,物体可能处于上升状态,也有可能 处于下降状态
不计空气阻力,以一定的初速度竖直上抛一物体,从抛出至回到抛 出点的时间为 t ,现在物体上升的最大高度的一半处设置一块挡板, 物体撞击挡板前后的速度大小相等、方向相反,撞击所需时间不计, 则这种情况下物体上升和下降的总时间约为( )。
A. 0.5t B. 0.4t C. 0.3t D. 0.2t
答案
C
解析:竖直上抛运动上升过程和下降过程具有严格的对称性,包括速度对 称,时间对称和能量对称等,所以研究下降过程即可以推导上升过程的情 况,下降用时为 0.5t ,物体下落位移为h=1/2g(0.5t)2=1/8gt2 ,下降 一半位移有 1/2gt12=0.5h=1/16gt2 ,可得 t1=√2/4t,所以第二次物体 上升与下降用的时间为t2=t-2t1≈0.3t ,故C项正确。
ቤተ መጻሕፍቲ ባይዱ 答案
B,D
解析:A、B项,设两物体从下落到相遇的时间为 t ,竖直上抛物体的 初速度为 vo ,则由题意得: vo-gt=gt=v ,解得 vo=2v ;根据 竖直上抛运动的对称性可知,B自由落下到地面的速度为 2v ,在空 中运动的时间 tB=2v/g ;A竖直上抛,在空中运动的时间 tA=2×2v/g=4v/g 。故A项错误,B项正确。 C、D项,物体A能上升的最大高度 hA=(2v)2/2g ,B开始下落的高 度 hB=1/2g(2v/g)2,hA=hB;两物体在空中相遇的高度 h=1/2gt2=1/2g(v/g)2=v2/2g=hB/4 ,故C项错误,D项正确。 综上所述,本题正确答案为BD。

高考物理复习热点解析—对称法

高考物理复习热点解析—对称法

高考物理复习热点解析—对称法由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中.应用这种对称性不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题。

应用对称性去求解某些具体的物理问题的思维方法在物理学中称为物理解题中的对称法。

例题1.(多选)如图所示,立方体ABCD EFGH的四个顶点A、C、F、H处各固定着一个电荷量均为Q的正点电荷,M为AC连线的中点,N为CH连线的中点。

下列说法正确的是()A.B、D两点处的电势相同B.M、N两点处的电势相同C.B、D两点处的电场强度相同D.M、N两点处的电场强度相同【答案】AB【解析】AC.设正方体中心为O,根据几何关系可知三角形ACH和ACF为全等的等边三角形。

设A、C、H在D点产生的电场强度为E1,电势为φ1;A、C、F在B点处产生的电场强度为E2,电势为φ2。

根据对称性可知φ1等于φ2,E1沿OD方向,E2沿OB方向。

而F在D 点产生的电场强度方向沿OD方向,H在B点产生的电场强度沿OB方向,根据对称性以及电场的叠加可知B、D两点电场强度大小相同、方向不同。

而F在D点产生的电势与H在B点产生的电势相等,则根据电势的叠加可知B、D两点电势相等,故A正确,C错误;BD.根据对称性可知A、C两点在M产生的合场强为零,F、H两点在M产生的合场强沿OM 方向;H 、C 两点在N 产生的合场强为零,A 、F 在N 产生的合场强沿ON 方向,根据对称性以及电场的叠加可知M 、N 两点电场强度大小相同、方向不同。

而A 、C 在M 产生的电势与H 、C 在N 产生的电势相等,H 、F 在M 产生的电势又与A 、F 在N 产生的电势相等,根据电势的叠加可知M 、N 两点电势相等,故B 正确,D 错误。

故选AB 。

例题2.(多选)如图所示,一轻质弹簧下端系一质量为m 的书写式激光笔,组成一竖直悬挂的弹簧振子,在竖直平面内装有记录纸。

高中物理竞赛试题解题方法对称法1

高中物理竞赛试题解题方法对称法1

高中物理竞赛试题解题方法:对称法方法简介由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中. 应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法. 利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题.赛题精析例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度.解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A ′点水平抛出所做的运动.根据平抛运动的规律:⎪⎩⎪⎨⎧==2021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:hg s y g x v 2320==例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ.解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解.物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有⎩⎨⎧==⎪⎩⎪⎨⎧-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得202sin 2dg v θ=所以抛射角2012arcsin 2dg v θ= 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物?解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可.由题意作图7—3,设顶点到中心的距离为s ,则由已知条件得 a s 33=由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为v v v 2330cos =='由此可知三角形收缩到中心的时间为 v a v s t 32='=此题也可以用递推法求解,读者可自己试解。

高中物理解题常用思维方法

高中物理解题常用思维方法高中物理解题常用思维方法一、逆向思维法逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果。

高中物理解题常用思维方法二、对称法对称性就是事物在变化时存在的某种不变性。

自然界和自然科学中,普遍存在着优美和谐的对称现象。

利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤。

从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力。

用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径。

高中物理解题常用思维方法三、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点。

运用物理图象处理物理问题是识图能力和作图能力的综合体现。

它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效。

高中物理解题常用思维方法四、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立。

求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径。

在分析弹力或摩擦力的有无及方向时,常利用该法。

高中物理解题常用思维方法五、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件。

这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法。

高中物理竞赛方法集锦

三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。

在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。

使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。

赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。

设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。

解析:该题不能用速度分解求解,考虑采用“微元法”。

设某一时间人经过AB 处,再经过一微小过程△t (△t →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度h H Hv t S h H H t S v A A t C C t C -=∆∆-=∆∆='→∆'→∆00lim lim可见v c 与所取时间△t 的长短无关,所以人影的顶端C 点做匀速直线运动.例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况.在铁链上任取长为△L 的一小段(微元)为研究对象,其受力分析如图3—2—甲所示.由于该元处于静止状态,所以受力平衡,在切线方向上应满足:θθθθT G T T +∆=∆+cos θρθθcos cos Lg G T ∆=∆=∆由于每段铁链沿切线向上的拉力比沿切线向下的拉力大△T θ,所以整个铁链对A 端的拉力是各段上△T θ的和,即 ∑∑∑∆=∆=∆=θρθρθcos cos L g Lg T T观察 θcos L ∆的意义,见图3—2—乙,由于△θ很小,所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R , 所以 ∑=∆R L θcos 可得铁链A 端受的拉力 ∑=∆=gR L g T ρθρcos例3:某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为A v ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度B v 的大小.解析:此题可根据万有引力提供行星的向心力求解.也可根据开普勒第二定律,用微元法求解.设行星在近日点A 时又向前运动了极短的时间△t ,由于时间极短可以认为行星在△t 时间内做匀速圆周运动,线速度为A v ,半径为a ,可以得到行星在△t 时间内扫过的面积 a t v S A a ⋅∆=21 同理,设行星在经过远日点B 时也运动了相同的极短时间△t ,则也有 b t v S B b ⋅∆=21 由开普勒第二定律可知:S a =S b 即得 A B v b a v = 此题也可用对称法求解.例4:如图3—4所示,长为L 的船静止在平静的水面上, 立于船头的人质量为m ,船的质量为M ,不计水的阻力, 人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒.设人在走动过程中的△t 时间内为匀速运动,则可计算出船的位移.设v 1、v 2分别是人和船在任何一时刻的速率,则有21Mv mv = ① 两边同时乘以一个极短的时间△t , 有 t Mv t mv ∆=∆21 ②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的, 所以人和船位移大小分别为t v s ∆=∆11,t v s ∆=∆22由此将②式化为 21s M s m ∆=∆ ③把所有的元位移分别相加有 ∑∑∆=∆21s M s m ④即 ms 1=Ms 2 ⑤ 此式即为质心不变原理. 其中s 1、s 2分别为全过程中人和船对地位移的大小, 又因为 L=s 1+s 2 ⑥由⑤、⑥两式得船的位移 L m M m s +=2 例5:半径为R 的光滑球固定在水平桌面上,有一质量为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈 不能看成质点,所以应将弹性绳圈分割成许多小段,其中 每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙.先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角是△θ,则每一小段的质量 M m πθ2∆=∆ △m 在该平面上受拉力F 的作用,合力为 2sin 2)2cos(2θθπ∆=∆-=F F T 因为当θ很小时,θθ≈sin 所以θθ∆=∆=F F T 22 再看正视图3—5—乙,△m 受重力△mg ,支持力N ,二力的合力与T 平衡.即 θtan ⋅∆=mg T现在弹性绳圈的半径为 R R r 2222==ππ 所以 ︒===4522sin θθR r 1tan =θ因此T=Mg mg πθ2∆=∆ ①、②联立,θπθ∆=∆F Mg 2, 解得弹性绳圈的张力为: π2Mg F = 设弹性绳圈的伸长量为x 则 R R R x πππ)12(2-=-=所以绳圈的劲度系数为:RMg R Mg x F k 222)12()12(2ππ+=-== 例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω,r 应取最大值.如图3—6所示,在圆环上取一小段△L ,对应的圆心角为△θ,其质量可表示为M m πθ2∆=∆,受圆环对它的张 力为T ,则同上例分析可得 22sin 2ωθmr T ∆=∆ 因为△θ很小,所以22sin θθ∆≈∆,即2222ωπθθMr T ∆=∆⋅ 解得最大角速度 MrT πω2= 例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大? 解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t 时刻起取很小一段时间△t ,在△t 内又有△M=ρ△x 落到地面上静止.地面对△M 作用的冲量为I t Mg F ∆=∆∆-)( 因为 0≈∆⋅∆t Mg所以 x v v M t F ∆=-⋅∆=∆ρ0 解得冲力:t x v F ∆∆=ρ,其中tx ∆∆就是t 时刻链条的速度v , 故 2v F ρ= 链条在t 时刻的速度v 即为链条下落长为x 时的即时速度,即v 2=2g x ,代入F 的表达式中,得 gx F ρ2= 此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力.所以在t 时刻链条对地面的总压力为.332L Mgx gx gx gx N ==+=ρρρ 例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大?解析:钉子对绳子另一端的作用力随滑落绳的长短而变化, 由此可用微元法求解.如图3—8所示,当左边绳端离钉子的距离为x 时,左边绳长为)(21x l -,速度 gx v 2=,右边绳长为).(21x l + 又经过一段很短的时间△t 以后,左边绳子又有长度t V ∆21的一小段转移到右边去了,我们就分 析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉 力T 和它本身的重力l m g t v /(21=∆λλ为绳子的线密度),根据动量定理,设向上方向为正 )21(0)21(v t v t g t v T ⋅∆--=∆∆-λλ由于△t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略,所以有 λλgx v T ==221 因此钉子对右边绳端的作用力为 )31(21)(21l x mg T g x l F +=++=λ 例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长 但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与 绳间光滑接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位 长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳, 其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求 解.在与圆盘接触的半圆形中取一小段绳元△L ,△L 所对应的 圆心角为△θ,如图3—9—甲所示,绳元△L 两端的张力均为T , 绳元所受圆盘法向支持力为△N ,因细绳质量可忽略,法向合力为 零,则由平衡条件得: 2sin 22sin 2sin θθθ∆=∆+∆=∆T T T N 当△θ很小时,22sin θθ∆≈∆ ∴△N=T △θ 又因为 △L=R △θ则绳所受法向支持力线密度为 R T R T L N n =∆∆=∆∆=θθ ① 以M 、m 分别为研究对象,根据牛顿定律有 Mg -T=Ma ② T -mg=m a ③ 由②、③解得: mM Mmg T +=2 将④式代入①式得:R m M Mmg n )(2+= 例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切.若在切点放一质点m ,恰使两边圆环对m 的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m 的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m 的相互作用,然后推及整个圆环即可求解. 如图3—10所示,过切点作直线交大小圆分别于P 、Q 两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元 αα∆⋅=∆∆⋅=∆2221r L R L其对应的质量分别为 αρρ∆⋅=∆=∆21111R l mαρρ∆⋅=∆=∆22222r l m 由于△α很小,故△m 1、△m 2与m 的距离可以认为分别是 ααcos 2cos 221r r R r ==所以△m 1、△m 2与m 的万有引力分别为 222222212111)cos 2(2,)cos 2(2ααρααρr m R G r m Gm F R m R G r m Gm F ∆⋅=∆=∆∆⋅=∆=∆ 由于α具有任意性,若△F 1与△F 2的合力为零,则两圆环对m 的引力的合力也为零, 即2221)cos 2(2)cos 2(2ααρααρr m r G R m R G ∆⋅=∆⋅ 解得大小圆环的线密度之比为:r R =21ρρ 例11:一枚质量为M 的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v ,那么火箭发动机的功率是多少?解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t 时间内喷出的气体为研究对象,设火箭推气体的力为F ,根据动量定理,有F △t=△m ·v 因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg即 Mg ·△t=△m ·v △t=△m ·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为: 221mv W ∆=所以发动机的功率 MgV Mg mV mv t W P 21)/(212=∆∆=∆=例12:如图3—11所示,小环O 和O ′分别套在不动的竖直 杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运动,求当∠AOO ′=α时,环O 的速度.解析:O 、O ′之间的速度关系与O 、O ′的位置有关,即与α 角有关,因此要用微元法找它们之间的速度关系.设经历一段极短时间△t ,O ′环移到C ′,O 环移到C ,自C ′ 与C 分别作为O ′O 的垂线C ′D ′和CD ,从图中看出. ααcos ,cos D O C O OD OC ''=''= 因此OC+O ′C ′=αcos D O OD ''+ ① 因△α极小,所以EC ′≈ED ′,EC ≈ED ,从而OD+O ′D ′≈OO ′-CC ′ ②由于绳子总长度不变,故 OO ′-CC ′=O ′C ′ ③由以上三式可得:OC+O ′C ′=αcos C O '' 即)1cos 1(-''=αC O OC 等式两边同除以△t 得环O 的速度为 )1cos 1(0-=αv v 例13: 在水平位置的洁净的平玻璃板上倒一些水银,由于重力和 表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆 饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的 接触角可按180°计算.已知水银密度33/106.13m kg ⨯=ρ,水 银的表面张力系数./49.0m N =σ当圆饼的半径很大时,试估算其厚度h 的数值大约为多少?(取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h 的简单函数,而且支持力N 和重力mg 都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.在圆饼的侧面取一个宽度为△x ,高为h 的体积元,,如图 3—12—甲所示,该体积元受重力G 、液体内部作用在面 积△x ·h 上的压力F ,x gh xh hg S P F ∆⋅=∆⋅==22121ρρ, 还有上表面分界线上的张力F 1=σ△x 和下表面分界线上的 张力F 2=σ△x .作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出.由力的平衡条件有:0cos 21=--F F F θ即 0cos 212=∆-∆-∆x x x gh σθσρ 解得:θρθσcos 1107.2)cos 1(23+⨯=+=-gh 由于 ,2cos 11,20<+<<<θπθ所以 故2.7×10-3m<h<3.8×10-3m 题目要求只取1位有效数字,所以水银层厚度h 的估算值为3×10-3m 或4×10-3m.例14:把一个容器内的空气抽出一些,压强降为p ,容器 上有一小孔,上有塞子,现把塞子拔掉,如图3—13所示. 问空气最初以多大初速度冲进容器?(外界空气压强为p 0、密度为ρ)解析:该题由于不知开始时进入容器内分有多少,不知它 们在容器外如何分布,也不知空气分子进入容器后压强如 何变化,使我们难以找到解题途径.注意到题目中“最初”二字,可以这样考虑:设小孔的面积为S ,取开始时位于小孔外一薄层气体为研究对象,令薄层厚度为△L ,因△L 很小,所以其质量△m 进入容器过程中,不改变容器压强,故此薄层所受外力是恒力,该问题就可以解决了.由以上分析,得:F=(p 0-p)S ① 对进入的△m 气体, 由动能定理得:221mv L F ∆=∆ ② 而 △m=ρS △L联立①、②、③式可得:最初中进容器的空气速度 ρ)(20p p v -=例15:电量Q 均匀分布在半径为R 的圆环上(如图3—14 所示),求在圆环轴线上距圆心O 点为x 处的P 点的电场 强度.解析:带电圆环产生的电场不能看做点电荷产生的电场, 故采用微元法,用点电荷形成的电场结合对称性求解.选电荷元 ,2R Q R q πθ∆=∆它在P 点产生的电场的场强的x 分量为: 22222)(2cos x R xx R R Q R k r q k E x ++∆=∆=∆πθα 根据对称性 322322322)(2)(2)(2x R kQx x R kQxx R kQx E E x +=+=∆+=∆=∑∑ππθπ由此可见,此带电圆环在轴线P 点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P 点产生的场强大小,方向是沿轴线的方向.例16:如图3—15所示,一质量均匀分布的细圆环,其半径为R ,质量为m.令此环均匀带正电,总电量为Q.现将此环平放在绝缘的光滑水平桌面上,并处于磁感应强度为B 的均匀磁场中,磁场方向竖直向下. 当此环绕通过其中心的竖直轴以匀角速度ω沿图示方向旋转时,环中的张力等于多少?(设圆环的带电量不减少,不考虑环上电荷之间的作用)解析:当环静止时,因环上没有电流,在磁场中不受力,则 环中也就没有因磁场力引起的张力.当环匀速转动时,环上电 荷也随环一起转动,形成电流,电流在磁场中受力导致环中存 在张力,显然此张力一定与电流在磁场中受到的安培力有关. 由题意可知环上各点所受安培力方向均不同,张力方向也不同, 因而只能在环上取一小段作为研究对象,从而求出环中张力的 大小.在圆环上取△L=R △θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流 πω2Q I =,电流元I △L 所受的安培力θπω∆=∆=∆QB R LB I F 2 因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,R m F T 22sin2ωθ∆=∆-∆ 当△θ很小时,R m QB R T 2222sin ωθπωθθθ∆=∆-∆∆≈∆ θπωθπωθθπ∆=∆-∆∴∆=∆2222R m QB R T m m Θ解得圆环中张力为 )(2ωπωm QB R T += 例17:如图3—16所示,一水平放置的光滑平行导轨上放一质量 为m 的金属杆,导轨间距为L ,导轨的一端连接一阻值为R 的电 阻,其他电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面. 现给金属杆一个水平向右的初速度v 0,然后任其运动,导轨足够 长,试求金属杆在导轨上向右移动的最大距离是多少? 解析:水平地从a 向b 看,杆在运动过程中的受力分析 如图3—16—甲所示,这是一个典型的在变力作用下求位移的题,用我们已学过的知识好像无法解决,其实只要 采用的方法得当仍然可以求解.设杆在减速中的某一时刻速度为v ,取一极短时间△t ,发 生了一段极小的位移△x ,在△t 时间内,磁通量的变化为 △φ △φ=BL △x tRx BL tR R I ∆∆=∆∆Φ==ε金属杆受到安培力为tRx L B ILB F ∆∆==22安 由于时间极短,可以认为F 安为恒力,选向右为正方向,在△t 时间内, 安培力F 安的冲量为:Rx L B t F I ∆-=∆⋅-=∆22安 对所有的位移求和,可得安培力的总冲量为x R L B R x L B I 2222)(-=∆-=∑ ① 其中x 为杆运动的最大距离,对金属杆用动量定理可得 I=0-mV 0 ②由①、②两式得:220L B R mV x =。

高中物理竞赛方法集锦

高中物理竞赛方法集锦三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。

在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。

使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。

赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。

设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。

解析:该题不能用速度分解求解,考虑采用“微元法”。

设某一时间人经过AB 处,再经过一微小过程△t (△t →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的移动速度h H Hv t S h H H t S v A A t C C t C -=??-=??='→?'→?00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶端C 点做匀速直线运动.例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况.在铁链上任取长为△L 的一小段(微元)为研究对象,其受力分析如图3—2—甲所示.由于该元处于静止状态,所以受力平衡,在切线方向上应满足:θθθθT G T T +?=?+cos θρθθcos cos Lg G T ?=?=?由于每段铁链沿切线向上的拉力比沿切线向下的拉力大△T θ,所以整个铁链对A 端的拉力是各段上△T θ的和,即∑∑∑?=?=?=θρθρθcos cos L g Lg T T观察θcos L ?的意义,见图3—2—乙,由于△θ很小,所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R ,所以∑=?R L θcos 可得铁链A 端受的拉力∑=?=gR L g T ρθρcos例3:某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为A v ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度B v 的大小.解析:此题可根据万有引力提供行星的向心力求解.也可根据开普勒第二定律,用微元法求解.设行星在近日点A 时又向前运动了极短的时间△t ,由于时间极短可以认为行星在△t 时间内做匀速圆周运动,线速度为A v ,半径为a ,可以得到行星在△t 时间内扫过的面积 a t v S A a ??=21 同理,设行星在经过远日点B 时也运动了相同的极短时间△t ,则也有 b t v S B b ??=21 由开普勒第二定律可知:S a =S b 即得A B v b a v = 此题也可用对称法求解.例4:如图3—4所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒.设人在走动过程中的△t 时间内为匀速运动,则可计算出船的位移.设v 1、v 2分别是人和船在任何一时刻的速率,则有21Mv mv = ① 两边同时乘以一个极短的时间△t ,有t Mv t mv ?=?21 ②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为t v s ?=?11,t v s ?=?22 由此将②式化为21s M s m ?=? ③把所有的元位移分别相加有∑∑?=?21s M s m ④即ms 1=Ms 2 ⑤ 此式即为质心不变原理. 其中s 1、s 2分别为全过程中人和船对地位移的大小,又因为L=s 1+s 2 ⑥由⑤、⑥两式得船的位移 L m M m s +=2 例5:半径为R 的光滑球固定在水平桌面上,有一质量为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙.先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角是△θ,则每一小段的质量M m πθ2?=? △m 在该平面上受拉力F 的作用,合力为2sin 2)2cos(2θθπ?=?-=F F T 因为当θ很小时,θθ≈sin 所以θθ?=?=F F T 22 再看正视图3—5—乙,△m 受重力△mg ,支持力N ,二力的合力与T 平衡.即θtan ??=mg T现在弹性绳圈的半径为 R R r 2222==ππ 所以 ?===4522sin θθR r 1tan =θ因此T=Mg mg πθ2?=? ①、②联立,θπθ?=?F Mg 2,解得弹性绳圈的张力为:π2Mg F = 设弹性绳圈的伸长量为x 则R R R x πππ)12(2-=-=所以绳圈的劲度系数为:RMg R Mg x F k 222)12()12(2ππ+=-== 例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω,r 应取最大值.如图3—6所示,在圆环上取一小段△L ,对应的圆心角为△θ,其质量可表示为M m πθ2?=?,受圆环对它的张力为T ,则同上例分析可得 22sin 2ωθmr T ?=? 因为△θ很小,所以22sin θθ?≈?,即2222ωπθθMr T ?=?? 解得最大角速度 MrT πω2= 例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t 时刻起取很小一段时间△t ,在△t 内又有△M=ρ△x 落到地面上静止.地面对△M 作用的冲量为I t Mg F ?=??-)( 因为0≈t Mg所以 x v v M t F ?=-??=?ρ0 解得冲力:t x v F ??=ρ,其中tx ??就是t 时刻链条的速度v ,故2v F ρ= 链条在t 时刻的速度v 即为链条下落长为x 时的即时速度,即v 2=2g x ,代入F 的表达式中,得 gx F ρ2= 此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力.所以在t 时刻链条对地面的总压力为.332L Mgx gx gx gx N ==+=ρρρ 例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大?解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解.如图3—8所示,当左边绳端离钉子的距离为x 时,左边绳长为)(21x l -,速度 gx v 2=,右边绳长为).(21x l + 又经过一段很短的时间△t 以后,左边绳子又有长度t V ?21的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉力T 和它本身的重力l m g t v /(21=?λλ为绳子的线密度),根据动量定理,设向上方向为正 )21(0)21(v t v t g t v T ??--=??-λλ由于△t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略,所以有λλgx v T ==221 因此钉子对右边绳端的作用力为 )31(21)(21l x mg T g x l F +=++=λ 例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解.在与圆盘接触的半圆形中取一小段绳元△L ,△L 所对应的圆心角为△θ,如图3—9—甲所示,绳元△L 两端的张力均为T ,绳元所受圆盘法向支持力为△N ,因细绳质量可忽略,法向合力为零,则由平衡条件得:2sin 22sin 2sin θθθ?=?+?=?T T T N 当△θ很小时,22sin θθ?≈? ∴△N=T △θ 又因为△L=R △θ则绳所受法向支持力线密度为R T R T L N n =??=??=θθ ① 以M 、m 分别为研究对象,根据牛顿定律有 Mg -T=Ma ② T -mg=m a ③ 由②、③解得: mM Mmg T +=2 将④式代入①式得:R m M Mmg n )(2+= 例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切.若在切点放一质点m ,恰使两边圆环对m 的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m 的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m 的相互作用,然后推及整个圆环即可求解. 如图3—10所示,过切点作直线交大小圆分别于P 、Q 两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元αα??==?2221r L R L其对应的质量分别为αρρ??=?=?21111R l mαρρ??=?=?22222r l m 由于△α很小,故△m 1、△m 2与m 的距离可以认为分别是ααcos 2cos 221r r R r ==所以△m 1、△m 2与m 的万有引力分别为222222212111)cos 2(2,)cos 2(2ααρααρr m R G r m Gm F R m R G r m Gm F ??=?==?=? 由于α具有任意性,若△F 1与△F 2的合力为零,则两圆环对m 的引力的合力也为零,即2221)cos 2(2)cos 2(2ααρααρr m r G R m R G ??=?? 解得大小圆环的线密度之比为:r R =21ρρ 例11:一枚质量为M 的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v ,那么火箭发动机的功率是多少?解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t 时间内喷出的气体为研究对象,设火箭推气体的力为F ,根据动量定理,有F △t=△m ·v 因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg即Mg ·△t=△m ·v △t=△m ·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为: 221mv W ?=所以发动机的功率 MgV Mg mV mv t W P 21)/(212=??=?=例12:如图3—11所示,小环O 和O ′分别套在不动的竖直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运动,求当∠AOO ′=α时,环O 的速度.解析:O 、O ′之间的速度关系与O 、O ′的位置有关,即与α 角有关,因此要用微元法找它们之间的速度关系.设经历一段极短时间△t ,O ′环移到C ′,O 环移到C ,自C ′ 与C 分别作为O ′O 的垂线C ′D ′和CD ,从图中看出. ααcos ,cos D O C O OD OC ''=''= 因此OC+O ′C ′=αcos D O OD ''+ ① 因△α极小,所以EC ′≈ED ′,EC ≈ED ,从而OD+O ′D ′≈OO ′-CC ′ ②由于绳子总长度不变,故OO ′-CC ′=O ′C ′ ③由以上三式可得:OC+O ′C ′=αcos C O '' 即)1cos 1(-''=αC O OC 等式两边同除以△t 得环O 的速度为 )1cos 1(0-=αv v 例13:在水平位置的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算.已知水银密度33/106.13m kg ?=ρ,水银的表面张力系数./49.0m N =σ当圆饼的半径很大时,试估算其厚度h 的数值大约为多少?(取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h 的简单函数,而且支持力N 和重力mg 都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.在圆饼的侧面取一个宽度为△x ,高为h 的体积元,,如图3—12—甲所示,该体积元受重力G 、液体内部作用在面积△x ·h 上的压力F ,x gh xh hg S P F ??=??==22121ρρ,还有上表面分界线上的张力F 1=σ△x 和下表面分界线上的张力F 2=σ△x .作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出.由力的平衡条件有:0cos 21=--F F F θ即 0cos 212=?-?-?x x x gh σθσρ 解得:θρθσcos 1107.2)cos 1(23+?=+=-gh 由于,2cos 11,20<+<<<θπθ所以故2.7×10-3m<h<="" 的估算值为3×10-3m="" 题目要求只取1位有效数字,所以水银层厚度h=""></h例14:把一个容器内的空气抽出一些,压强降为p ,容器上有一小孔,上有塞子,现把塞子拔掉,如图3—13所示. 问空气最初以多大初速度冲进容器?(外界空气压强为p 0、密度为ρ)解析:该题由于不知开始时进入容器内分有多少,不知它们在容器外如何分布,也不知空气分子进入容器后压强如何变化,使我们难以找到解题途径.注意到题目中“最初”二字,可以这样考虑:设小孔的面积为S ,取开始时位于小孔外一薄层气体为研究对象,令薄层厚度为△L ,因△L 很小,所以其质量△m 进入容器过程中,不改变容器压强,故此薄层所受外力是恒力,该问题就可以解决了.由以上分析,得:F=(p 0-p)S ① 对进入的△m 气体,由动能定理得:221mv L F ?=? ② 而△m=ρS △L联立①、②、③式可得:最初中进容器的空气速度ρ)(20p p v -= 例15:电量Q 均匀分布在半径为R 的圆环上(如图3—14 所示),求在圆环轴线上距圆心O 点为x 处的P 点的电场强度.解析:带电圆环产生的电场不能看做点电荷产生的电场,故采用微元法,用点电荷形成的电场结合对称性求解.选电荷元,2R Q R q πθ=?它在P 点产生的电场的场强的x 分量为: 22222)(2cos x R xx R R Q R k r q k E x ++?=?=?πθα 根据对称性322322322)(2)(2)(2x R kQx x R kQxx R kQx E E x +=+=?+=?=∑∑ππθπ由此可见,此带电圆环在轴线P 点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P 点产生的场强大小,方向是沿轴线的方向.例16:如图3—15所示,一质量均匀分布的细圆环,其半径为R ,质量为m.令此环均匀带正电,总电量为Q.现将此环平放在绝缘的光滑水平桌面上,并处于磁感应强度为B 的均匀磁场中,磁场方向竖直向下. 当此环绕通过其中心的竖直轴以匀角速度ω沿图示方向旋转时,环中的张力等于多少?(设圆环的带电量不减少,不考虑环上电荷之间的作用)解析:当环静止时,因环上没有电流,在磁场中不受力,则环中也就没有因磁场力引起的张力.当环匀速转动时,环上电荷也随环一起转动,形成电流,电流在磁场中受力导致环中存在张力,显然此张力一定与电流在磁场中受到的安培力有关. 由题意可知环上各点所受安培力方向均不同,张力方向也不同,因而只能在环上取一小段作为研究对象,从而求出环中张力的大小.在圆环上取△L=R △θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流πω2Q I =,电流元I △L 所受的安培力θπω?=?=?QB R LB I F 2 因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,R m F T 22sin2ωθ?=?-? 当△θ很小时,R m QB R T 2222sin ωθπωθθθ?=?-??≈? θπωθπωθθπ?=?-?∴?=?2222R m QB R T m m Θ解得圆环中张力为)(2ωπωm QB R T += 例17:如图3—16所示,一水平放置的光滑平行导轨上放一质量为m 的金属杆,导轨间距为L ,导轨的一端连接一阻值为R 的电阻,其他电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面. 现给金属杆一个水平向右的初速度v 0,然后任其运动,导轨足够长,试求金属杆在导轨上向右移动的最大距离是多少?解析:水平地从a 向b 看,杆在运动过程中的受力分析如图3—16—甲所示,这是一个典型的在变力作用下求位移的题,用我们已学过的知识好像无法解决,其实只要采用的方法得当仍然可以求解.设杆在减速中的某一时刻速度为v ,取一极短时间△t ,发生了一段极小的位移△x ,在△t 时间内,磁通量的变化为△φ △φ=BL △x tR x BL tR R I ??=??Φ==ε金属杆受到安培力为tRx L B ILB F ??==22安由于时间极短,可以认为F 安为恒力,选向右为正方向,在△t 时间内,安培力F 安的冲量为:Rx L B t F I ?-=??-=?22安对所有的位移求和,可得安培力的总冲量为x R L B R x L B I 2222)(-=?-=∑ ① 其中x 为杆运动的最大距离,对金属杆用动量定理可得 I=0-mV 0 ②由①、②两式得:220L B R mV x =。

高中物理学习方法之对称方法

高中物理学习方法之对称方法对称也是一种重要的思维方法。

对具体的物理问题而言,运用对称的方法往往可以化繁为简。

比如,竖直上抛运动和自由落体运动具有“时间反演操作”规律不变性。

时间反演就是让时间流向倒转,如同将物体的运动用录像机录下后倒过来放映,则竖直上抛就会变成自由落体。

还有,静电场和引力场的合场也可当作等效引力场处理,这对于我们处理问题可带来很大的方便。

化解过程层次:一般说来,复杂的物理过程都是由若干个简单的“子过程”构成的。

因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的“子过程”来研究。

探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键环节。

理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的“综合效应”。

要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。

区分变化条件:物理现象都是在一定条件下发生发展的。

条件变化了,物理过程也会随之而发生变化。

在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。

分清因果地位:物理学中有许多物理量是通过比值来定义的。

如R=U/R、E=F/q 等。

在这种定义方法中,物理量之间并非都互为比例关系的。

但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。

注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。

因果常是一一对应的,不能混淆。

循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。

原型启发法原型启发就是通过与假设的事物具有相似性的东西,来启发人们解决新问题的途径。

能够起到启发作用的事物叫做原型。

原型可来源于生活、生产和实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理竞赛方法集锦对称法7方法简介由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中. 应用这种对称性它不仅能关心我们认识和探究物质世界的某些差不多规律,而且也能关心我们去求解某些具体的物理咨询题,这种思维方法在物理学中称为对称法. 利用对称法分析解决物理咨询题,能够幸免复杂的数学演算和推导,直截了当抓住咨询题的实质,出奇制胜,快速简便地求解咨询题.赛题精析例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度.解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运动轨迹与无墙壁阻挡时小球连续前进的轨迹相对称,如图7—1—甲所示,因此小球的运动可以转换为平抛运动处理, 成效上相当于小球从A ′点水平抛出所做的运动. 依照平抛运动的规律:⎪⎩⎪⎨⎧==2021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h代入后可解得:hg s y g x v 2320== 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ.解析:小球的运动是斜上抛和斜下抛等三段运动组成, 假设按顺序求解那么相当复杂,假如视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解.物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″关于B 墙对称,如图7—2—甲所示,因此有⎩⎨⎧==⎪⎩⎪⎨⎧-==0221sin cos 200y d x gt t v y t v x 落地时θθ图7—1代入可解得20202arcsin 2122sin v dg v dg ==θθ所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终〝盯〞住对方,它们同时起动,经多长时刻可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹差不多上一条复杂的曲线,但依照对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,因此只要求出顶点到中心运动的时刻即可.由题意作图7—3, 设顶点到中心的距离为s ,那么由条件得 a s 33=由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为v v v 2330cos ==' 由此可知三角形收缩到中心的时刻为 va v s t 32='= 此题也能够用递推法求解,读者可自己试解.例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分不放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v .解析:在水平面参考系中建立水平方向的x 轴和y 轴.由系统的对称性可知中心或者讲槽整体将仅在x 轴方向上运动。

设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于如图7—4—甲所示的位置时,相对水平面的两个分速度为 0sin v R v x +=θω ①θωcos R v y -= ②B 球的运动与A 球的运动是对称的.因系统在x 轴方向上动量守恒、机械能也守恒,因此22022021221)(21222mv mv v v m mvmv mv y x x ⨯=++⨯=+ ③ ④将①、②式代入③、④式得:θωsin 2230R v v -=2202002221sin 2v v v Rv R =+++θωω 由此解得 v v )sin 23sin 1(3220θθ--= 当两球间距离为R 时, 30=θ,代入可解得槽中心运动的速度为v v )1011(320-= 例5:用一轻质弹簧把两块质量各为M 和m 的木板连接起来,放在水平上,如图7—5所示,咨询必须在上面木板上施加多大的压力F ,才能使撤去此力后,上板跳起来恰好使下板离地?解析:此题可用能量守恒的观点求解,但过程较繁,而用弹簧形变的〝对称性〞求解就显得简洁明了.假设用拉力F 作用在m 上,欲使M 离地,拉力F 至少应为F=〔M+m 〕g依照弹簧的拉伸和压缩过程具有的对称性,故要产生上述成效,作用在m 上的向下的压力应为F=〔M+m 〕g例6:如图7—6所示,长为l 的两块相同的平均长方形砖块A和B 叠放在一起,A 砖相关于B 砖伸出l /5,B 砖放在水平桌面上,砖的端面与桌面平行. 为保持两砖不翻倒,B 砖伸出桌面的最大长度是多少?解析:此题可用力矩平稳求解,但用对称法求解,会直观简洁.把A 砖右端伸出B 端的l /5截去,补在B 砖的右端,那么变成图7—6—甲所示的对称形状. 伸出最多时对称轴应恰好通过桌边.因此:)5/(l x x l +=-解得B 砖右端伸出桌面的最大长度为5/2l x =. 例7:如图7—7所示,OABC 是一张水平放置的桌球台面.取OA 为x 轴,OC 为y 轴,P 是红球,坐标为〔x ,y 〕,Q 是白球,坐标为〔1x ,1y 〕〔图中未画出Q 球在台面上的位置〕.OA=BC=25dm ,AB=OC=12dm.假设P 球的坐标为:dm y dm x 8,10==处,咨询Q 球的位置在什么范畴内时,可使击出的Q 球顺次与AB 、BC 、CO 和OA 四壁碰撞反弹,最后击中P 球? 解析:由于弹性碰撞反弹服从的规律与光线的反射定律相同,所以作P 点对OA 壁的镜像P 1,P 1对CO 壁的镜像P 2,P 2对BC 壁的镜像P 3和P 3对AB 壁的镜像P 4,那么只需瞄准P 4点击出Q 球,Q 球在AB 壁上D 点反弹后射向P 3,又在BC 壁上E 点反弹后射向P 2,依次类推,最后再经F ,G 二点的反弹击中P 点,如图7—7—甲所示. 然而,假设反弹点E 离B 点太近, Q 球从E 点反弹后EP 2线与CO 的交点,可能不在CO 壁的范畴内而在CO 的延长线上, 这时Q 球就无法击中CO 壁〔而击到OA 壁上〕,不符合题目要求,因此,Q 球能够最后按题目要求击中P 球的条件是:反弹点D 、E 、F 、和G 一定要在相应的台壁范畴之内.P 点的坐标为〔10,8〕,由此可知,各个镜像点的坐标分不为P 1〔10,-8〕,P 2〔-10,-8〕,P 3〔-10,32〕,P 4〔60,32〕设Q 点的坐标为),(y x '';直线QP 4的方程为)(6032x X x yy Y '-'-'-='- ①D 点在此直线上,25=D X ,由上式得: )3532800(601y x x Y D '+'-'-= ② 直线DP 3的方程为)(6032D D x X x y Y Y -'-'--=- ③ E 点在此直线上,Y E =12,由 此式及②式得)3520801(32125y x y x E '-'+-'--= ④直线EP 2的方程为 )(6032E E x X x y Y Y -'-'-=-F 点在此直线上,)288(601012,0y x x Y X F F '+'-'--==所以最后,直线FP 1的方程为 )(6032F F X X x y Y Y -'-'--=- ⑤ G 点在此直线上,Y G =0,因此 )108160(321y x y X G '-'+-'-= ⑥ 反弹点位于相应台壁上的条件为⎪⎪⎭⎪⎪⎬⎫<<<<<<<<250120250120G F E D X Y X Y ⑦将③、④、⑤和⑥式代入⑦,除确信满足无需讨论的不等式外,Q 球按题目要求击中P 球的条件成为⎭⎬⎫-'<'-'<'802035:802035:x y X x y Y E D ⎭⎬⎫-'<'-'<'8045:8045:x y X x y Y G F上面共两个条件,作直线802035:1-=X Y l 及8045:2-=X Y l如图7—7—乙所示,假设Q 球位于2l 下方的三角形D 0AH 0内,即可同时满足⑧、⑨两式的条件,瞄准P 4击出,可按题目要求次序反弹后击中P 球,三角形D 0AH 0三个顶点的坐标如图7—7—乙所示.例8:一无限长平均带电细线弯成如图7—8所示的平面图形,其中AB 是半径为R 的半圆孤,AA ′平行于BB ′,试求圆心O 处的电场强度.解析:如图7—8—甲所示,左上1/4圆弧内的线元△L 1与右下直线上的线元△L 3具有角元△θ对称关系. △L 1电荷与△L 3电荷在O 点的场强△E 1与△E 3方向相反,假设它们的大小也相等,那么左上与右下线元电场强度成对抵消,可得圆心处场强为零.设电荷线密度为常量λ,因△θ专门小,△L 1电荷与△L 3电 荷可看做点电荷,其带电量λθλ321L q R q ∆=∆= 当θθθλθcos cos ,2⋅∆=∆R q 有很小时 又因为 ,cos cos ,2222222211R R K R R K r q K E R q K E θλθθθλ∆=⋅∆==∆=∆ 与△E 1的大小相同,且△E 1与△E 2方向相反,因此圆心O 处的电场强度为零. 例9:如图7—9所示,半径为R 的半圆形绝缘线上、下1/4圆弧上分不平均带电+q 和-q ,求圆心处的场强.解析:因圆弧平均带电, 在圆弧上任取一个微小线元,由于带电线元专门小,能够看成点电荷. 用点电荷场强公式表示它在圆心处的分场强,再应用叠加原理运算出合场强. 由对称性分不求出合场强的方向再求出其值. 在带正电的圆孤上取一微小线元,由于圆弧平均带电,因而线密度R q πλ/2=. 在带负电的圆弧上必定存在着一个与之对称的线元, 两者产生的场强如图7—9—甲所示. 明显, 两者大小相等,其方向分不与x轴的正、负方向成θ角,且在x 轴方向上重量相等.由于专门小,能够认为是点电荷,两线元在O 点的场强为,2sin 222R h K R KR E ∆=∆⋅⋅=∆λθθλ 方向沿y 轴的负方向,因此O 点的合场强应对△E 求和. 即∑∑∑==∆=∆=∆=22224222R Kq R R K h R K R h K E E πλλλ. 例10:电荷q 平均分布在半球面ACB 上,球面的半径为R ,CD 为通过半球顶点C 与球心O 的轴线,如图7—10所示,P 、Q为CD 轴线上在O 点两侧,离O 点距离相等的两点,P 点的电势为U P ,试求Q 点的电势U Q .解析:能够设想一个平均带电、带电量也是q 的右半球,与题中所给的左半球组成一个完整的平均带电球面,依照对称性来解.由对称性可知,右半球在P 点的电势P U '等于左半球在Q 点的电势U Q . 即P P P P Q P Q P U U U U U U U U '+'+=+='而所以有,正是两个半球在P 点的电势,因为球面平均带电,因此.2R q K U U P P ='+由此解得Q 点的电势P Q U RKq U -=2. 例11:如图7—11所示, 三根等长的细绝缘棒连接成等边三角形,A 点为三角形的内心, B 点与三角形共面且与A 相对ac 棒对称,三棒带有平均分布的电荷,现在测得A 、B 两点的电势各为U A 、U B ,现将ac 棒取走,而ab 、bc 棒的电荷分布不变,求这时A 、B 两点的电势A U '、B U '. 解析:ab 、bc 、ac 三根棒中的电荷对称分布,各自对A 点电势的奉献相同,ac 棒对B 点电势的奉献和对A 点电势的奉献相同,而ab 、bc 棒对B 点电势的奉献也相同. 设ab 、bc 、ac 棒各悠闲A 点的电势为U 1,ab 、bc 棒在B 点的电势为U 2. 由对称性知,ac 棒在B 点的电势为U 1.由电势叠加原理得:3U 1=U A ①U 1+2U 2=U B ②由①、②两式得 U 1=U A /36323212A B A B B U U U U U U U -=-=-= 将ac 棒取走后,A 、B 两点的电势分不为623221A B B B A A A U U U U U U U U U +=-='=-=' 例12:如图7—12所示为一块专门大的接地导体板,在与导体板相距为d 的A 处放有带电量为-q 的点电荷.〔1〕试求板上感应电荷在导体内P 点产生的电场强度;〔2〕试求感应电荷在导体外P ′点产生的电场强度〔P与P ′点对导体板右表面是对称的〕;〔3〕在此题情形,试分析证明导体表面邻近的电场强度的方向与导体表面垂直;〔4〕试求导体上的感应电荷对点电荷-q 的作用力;〔5〕假设在切断导体板与地的连线后,再将+Q 电荷置于导体板上,试讲明这部分电荷在导体板上如何分布可达到静电平稳〔略去边缘效应〕.解析:在讨论一个点电荷受到面电荷〔如导体表面的感应电荷〕的作用时,依照〝镜像法〞能够设想一个〝像电荷〞,并使它的电场能够代替面电荷的电场,从而把咨询题大大简化.〔1〕导体板静电平稳后有 E 感=E 点,且方向相反,因此板上感应电荷在导体内P 点产生的场强为2r kq E P =, r 为AP 间距离,方向沿AP ,如图7—12甲所示.〔2〕因为导体接地,感应电荷分布在右表面,感应电荷在P 点和P ′点的电场具有对称性,因此有2r kq E P =',方向如图 7—12—甲所示.〔3〕考察导体板在表面两侧专门靠近表面的两点P 1和1P '.如 前述分析,在导体外1P '点感应电荷产生的场强大小为211r kq E p i ='. 点电荷在1P '点产生的场强大小也是211r kq p E q ='. 方向如图7—12 —乙. 从图看出,1P '点的场强为上述两个场强的矢量和,即与导体表面垂直.〔4〕重复〔2〕的分析可知,感应电荷在-q 所在处A 点的场强为224)2(dkq d kq E iA ==,方向垂直于导体板指向右方,该场作用于点电荷-q 的电场力为224d kq qE F iA -=-=,负号表示力的方向垂直于导体板指向左方.〔5〕切断接地线后,导体板上原先的感应电荷仍保持原先的分布,导体内场强为零.在此情形下再将+Q 电荷加在导体板上,只要新增加的电荷在导体内部各处的场强为零,即可保持静电平稳,我们明白电荷平均分布在导体板的两侧表面时,上述条件即可满足.明显这时+Q 将平均分布在导体板的两侧面上,才能保证板内场强为零,实现静电平稳.1P i E '1P i E '。

相关文档
最新文档