高中物理竞赛解题方法之降维法例题
专题46 割补法、微元法、递推法和降维法(原卷版)

2023年高三物理二轮常见模型与方法强化专训专练专题46 割补法、微元法、递推法和降维法【特训典例】一、割补法1.如图所示,一个质量为M 的匀质实心球,半径为R ,如果从球中挖去一个直径为R 的小球放在相距为2d R =的地方,则挖去部分与剩余部分的万有引力为( )A .227256GM RB .2217144GM RC .227288GM RD .2223800GM R2.均匀带电球体在球的外部产生的电场与一个位于球心的、电荷量相等的点电荷产生的电场相同。
如图所示,半径为R 的球体上均匀分布着正电荷,在过球心O 的直线上有A 、B 、C 三个点,OB BA R ==,2CO R =。
若以OB 为直径在球内挖一球形空腔,球的体积公式为343V r π=,则A 、C 两点的电场强度大小之比为( )A .9:25B .25:9C .175:207D .207:1753.已知均匀带电球壳内部电场强度处处为零,电势处处相等.如图所示,正电荷均匀分布在半球面上,Ox 为通过半球顶点与球心O 的轴线.A 、B 为轴上的点,且OA=OB .则下列判断正确的是( )A.A点的电场强度与B点的电场强度相同B.A点的电势等于B点的电势C.在A点由静止开始释放重力不计的带正电粒子,该粒子将做匀加速直线运动D.带正电的粒子在O点的电势能为零二、微元法4.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的力F总是与圆周轨迹的切线共线,运动的半径为R,则驴拉磨转动一周所做的功为()A.0B.FR C.2πFR D.无法判断5.半径为R的绝缘细圆环固定在图示位置,圆心位于O点,环上均匀分布着电量为Q的正电荷。
点A、B、C将圆环三等分,取走A、B处两段弧长均为ΔL的小圆弧上的电荷。
将一点电荷q置于OC延长线上距C 点为2R的D点,O点的电场强度刚好为零。
圆环上剩余电荷分布不变,则q为()A .正电荷,2Q Lq R π∆= B .正电荷,9Δ2Q Lq R π= C .负电荷,2Q Lq Rπ∆=D .负电荷,9Δ2Q Lq Rπ=6.2006年9月,中国第一座太空娱乐风洞在四川省绵阳市建成并投入运营。
13.降维法

十三、降维法方法简介降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。
由于三维问题不好想像,选取适当的角度,可用降维法求解。
降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。
赛题精讲例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。
现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何?解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。
但这四个力不在同一平面内,不容易看出它们之间的关系。
我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。
将重力沿斜面、垂直于斜面分解。
我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。
如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为:G G F F 22212=+=' F ′的方向沿斜面向下与推力成α角, 则 ︒=∴==451tan 1ααFG这就是物体做匀速运动的方向物体受到的滑动摩擦力与F ′平衡,即 2/2G F f ='=所以摩擦因数:3630cos 2/2=︒==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子?解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n 周时,外侧面上一共移动的水平距离为22122at n D =π①圆弧槽内小球下降的高度为221gt nh =② 解①、②两式,可得,为使螺旋形槽内小球能自由下落,圆柱体侧面绳子拉动的加速度应为hDga π=例3:如图13—3所示,表面光滑的实心圆球B 的半径R=20cm ,质量M=20kg ,悬线长L=30cm 。
13.降维法

十三、降维法方法简介降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解,由于三维问题不好想像,选取适当的角度,可用降维法求解,降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题,赛题精讲例1:如图13—1所示,倾角θ=30°的粗糙斜面上放 一物体,物体重为G,静止在斜面上,现用与斜面底边平 行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运 动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速 运动的方向如何?解析:物体在重力、推力、斜面给的支持力和摩擦力 四个力的作用下做匀速直线运动,所以受力平衡,但这四 个力不在同一平面内,不容易看出它们之间的关系,我们 把这些力分解在两个平面内,就可以将空间问题变为平面 问题,使问题得到解决,将重力沿斜面、垂直于斜面分解,我们从上面、侧面 观察,图13—1—甲、图13—1—乙所示,如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为:G G F F 22212=+=' F ′的方向沿斜面向下与推力成α角, 则 ︒=∴==451tan 1ααFG这就是物体做匀速运动的方向物体受到的滑动摩擦力与F ′平衡,即 2/2G F f ='=所以摩擦因数:3630cos 2/2=︒==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子?解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h,当圆柱转n 周时,外侧面上一共移动的水平距离为22122at n D =π① 圆弧槽内小球下降的高度为221gt nh =② 解①、②两式,可得,为使螺旋形槽内小球能自由下落,圆柱体侧面绳子拉动的加速度应为hDga π=例3:如图13—3所示,表面光滑的实心圆球B 的半径 R=20cm,质量M=20kg,悬线长L=30cm ,正方形物块A 的 厚度△h=10cm,质量m=2kg,物体A 与墙之间的动摩擦因 数μ=0.2,取g=10m/s 2,求:(1)墙对物块A 的摩擦力为多大?(2)如果要物体A 上施加一个与墙平行的外力,使物体A 在未脱离圆球前贴着墙沿水平方向做加速度a =5m/s 2 匀加速直线运动,那么这个外力大小方向如何?解析:这里物体A 、B 所受的力也不在一个平面内,混起来考虑比较复杂,可以在垂直于墙的竖直平面内分析A 、B 间压力和A 对墙的压力;在与墙面平行的平面内分析A 物体沿墙水平运动时的受力情况,(1)通过受力分析可知墙对物块A 的静摩擦力大小等于物块A 的重力,(2)由于物体A 贴着墙沿水平方向做匀加速直线运动,所以摩擦力沿水平方向,合力也沿水平方向且与摩擦力方向相反,又因为物体受竖直向下的重力,所以推力F 方向应斜向上,设物体A 对墙的压力为N,则沿垂直于墙的方向,物体B 受到物体A 的支持力大小也为N,有θμtan ,Mg N N f ==而又因为43tan 53sin ==++∆=θθ所以R L R h 在与墙面平行的平面内,对物体A 沿竖直方向 做受力分析,如图13—3—甲所示有mg F =αsin沿水平方向做受力分析,有 ma f F =-αcos 由以上各式,解得 )5/5arcsin(,520)()(22==++=a N ma f mg F因此,对物体A 施加的外力F 的大小为205N,方向沿墙面斜向上且与物体A 水平运动方向的夹角为).5/5arcsin(例4:一质量m=20kg 的钢件,架在两根完全相同的平 行长直圆柱上,如图13—4所示,钢件的重心与两柱等距, 两柱的轴线在同一水平面内,圆柱的半径r=0.025m,钢件 与圆柱间的动摩擦因数μ=0.20,两圆柱各绕自己的轴线做 转向相反的转动,角速度./40s rad =ω若沿平行于柱轴的 方向施力推着钢件做速度为s m /050.00=υ的匀速运动, 求推力是多大?(设钢件不发生横向运动)解析:本题关键是搞清滑动摩擦力的方向,滑动摩擦力 的方向与相对运动的方向相反,由于钢件和圆柱都相对地面 在运动,直接不易观察到相对地面在运动,直接不易观察到 相对运动的方向,而且钢件的受力不在同一平面内,所以考 虑“降维”,即选一个合适的角度观察,我们从上往上看,画 出俯视图,如图13—4—甲所示,我们选考虑左边圆柱与钢件之间的摩擦力,先分析相对运动的方向,钢件有向前的速度0υ,左边圆住有向右的速度ωr ,则钢件相对于圆柱的速度是0υ与ωr 的矢量差,如图中△v ,即为钢件相对于圆柱的速度,所以滑动摩擦力f 的方向与△v ,的方向相反,如图13—4—甲所示,以钢件为研究对象,在水平面上受到推力F 和两个摩擦力f 的作用,设f 与圆柱轴线的夹角为θ,当推钢件沿圆柱轴线匀速运动时,应有22000)(22cos 2ωθr v v f vv ff F +=∆== ①再从正面看钢件在竖直平面内的受力可以求出F N , 如图13—4—乙所示,钢件受重力G 和两个向上的支 持力F N ,且G=2F N ,所以把N N F f GF μ==,2代入①式,得 推力N r v v mgr v v F F N 2)(22)(222002200=+⋅=+⋅=ωμωμ例5:如图13—5所示,将质量为M 的匀质链条套在一个表面光滑的圆锥上,圆锥顶角为α,设圆锥底面水平,链条静止时也水平,求链条内的张力,解析:要求张力,应在链条上取一段质量元m ∆进行研究,因为该问题是三维问题,各力不在同一平面内,所以用“降维法”作出不同角度的平面图进行研究,作出俯视图13—5—甲,设质量元m ∆两端所受张力为T,其合力为F,因为它所对的圆心角θ很小,所以2sin 2θT F =,即F=T θ,再作出正视图13—5—乙,质量元受重力m ∆g 、支持力N 和张力的合力F 而处于平衡状态,由几何知识可得:2cot 22cotαπθα⋅=⋅∆=Mg mg F 所以链条内的张力2cot 22απ⋅==MgF T例6:杂技演员在圆筒形建筑物内表演飞车走壁,演员骑摩托车从底部开始运动,随着速度增加,圈子越兜越大,最后在竖直圆筒壁上匀速率行驶,如图13—6所示,如果演员和摩托车的总质量为M,直壁半径为R,匀速率行驶的速率为v ,每绕一周上升的距离为h,求摩托车匀速走壁时的向心力,解析:摩托车的运动速度v ,可分解为水平速度v 1和竖直分速度为v 2,则向心力速度为Rv a 21=,处理这个问题的关键是将螺旋线展开为一个斜面,其倾角的余弦为22)2(2cos hR R a +=ππ,如图13—6—甲所示,所以有v hR R v v 221)2(2cos +==ππα向心加速度为:222221))2(2(h R R R v R v a +==ππ向心力 )4(422222h R RMv Ma F +==ππ 例7:A 、B 、C 为三个完全相同的表面光滑的小球,B 、C 两球各被一长为L=2.00m 的不可伸和的轻线悬挂于天花板上,两球刚好接触,以接触点O 为原点作一直角坐标系z Oxyz ,轴竖直向上,O x 与两球的连心线重合,如图13—7所示,今让A 球射向B 、C 两球,并与两球同时发生碰撞,碰撞前,A 球速度方向沿y 轴正方向,速率为s m v A /00.40=,相碰后,A 球沿y 轴负方向反弹,速率A v =0.40m/s ,(1)求B 、C 两球被碰后偏离O 点的最大位移量; (2)讨论长时间内B 、C 两球的运动情况,(忽略空气阻力,取g=10m/s 2) 解析:(1)A 、B 、C 三球在碰撞前、后的运动发生 在Oxy 平面内,设刚碰完后,A 的速度大小为A v ,B 、 C 两球的速度分别为B v 与C v ,在x 方向和y 方向的分速 度的大小分别为Bx v ,Cy Cx By v v v ,和,如图13—7—甲所示, 由动量守恒定律,有0=-Bx Cx mv mv ①A Cy By Ax mv mv mv mv -+= ②由于球面是光滑的,在碰撞过程中,A 球对B 球的作用力方向沿A 、B 两球的连心线,A 球对C 球的作用力方向沿A 、C 两球的连心线,由几何关系,得⎪⎪⎭⎪⎪⎬⎫==6tan 6tan ππCy Cx By Bx v v v v ③ 由对称关系可知 Cy Bx v v = ④解①、②、③、④式可得 s m v v Cy Bx /27.1==s m v v Cy Bx /20.2==由此解得 s m v v Cy Bx /54.2==图13—7甲设C 球在x >0, y>0, z >0的空间中的最大位移为,OQ Q 点的z 坐标为z Q ,则由机械能守恒定律可写出Q C mgz mv =221 ⑤ 所以 gv z CQ 22= 代入数值解得 z Q =0.32m而Q 点到O z 轴的距离为 )2()(22Q Q Q z L z z L L QD -=--=所以C 球离O 点的最大位移量 Q Q Lz OD z OQ 222=+= ⑥代入数值,得 m OQ 13.1= ⑦由对称性,可得B 球在0,0,0>><z y x 的空间的最大位移量OP 为m OQ OP 13.1== ⑧(2)当B 、C 两球各达到最大位移后,便做回到原点的摆动,并发生两球间的碰撞,两球第一次返回O 点碰撞前速度的大小和方向分别为s m v Bx /27.1= 方向沿正x 轴方向 By v =2.20m/s 方向沿y 轴方向s m v Cx /27.1= 方向沿正x 轴方向 Cy v =2.20m/s 方向沿y 轴方向设碰撞后的速度分别为11C B v v 和,对应的分速度的大小分别为x B v 1、y B v 1、x C v 1和y C v 1,由于两球在碰撞过程中的相互作用力只可能沿x 轴方向,故碰撞后,沿y 轴方向的速度大小和方向均保持不变(因为小球都是光滑的),即y B v 1=By v 方向沿负y 轴方向 ⑨ y C v 1=Cy v 方向沿负y 轴方向 ⑩碰撞过程中,沿x 轴方向的动量守恒,则 Cx Bx x B x C mv mv mv mv -=-11 因为Cx Bx v v = 所以x B x C v v 11=即碰撞后两球在x 方向的分速度大小也相等,方向相反,具体数值取决于碰撞过程中是否机械能损失,在A 球与B 、C 两球同时碰撞的过程中,碰撞前,三者的机械能m mv E AD 82121==碰撞后三者的机械能 12222259.6212121E E m mv mv mv E C B A <=++=表明在碰撞过程中有机械能损失,小球的材料不是完全弹性体,故B 、C 两球在碰撞过程中也有机械能损失,即)(21)(21)(212222221111Y X X X Y XB BC C B B v v m v v m v v m +<+++ ○11 由⑨、⑩和○11三式,和 Cx Bx C B v v v v x X =<=11 ○12或C B C B v v v v =<=11当B 、C 两球第二次返回O 点时,两球发生第二次碰撞,设碰撞后两球的速度分别为22C B v v 和,对应的分速度的大小分别为y C x C B B v v v v y X 22,,22和,则有y y y y C B C B v v v v 1122=== y x x x C B C B v v v v 1122=<= 或 12B B v v < 12C C v v <由此可见,B 、C 两球每经过一次碰撞,沿x 方向的分速度都要变小,即x x x x x x X C B C B C B Cx B v v v v v v v v 332211=>=>=>= ……而y 方向的分速度的大小保持不变,即y t y y y y y C B C B C B Cy B v v v v v v v v 332211======= ……当两球反复碰撞足够多次数后,沿x 方向的分速度为零,只有y 方向的分速度,设足够多的次数为n,则有 0==nx nx C B v v ○13 s m v v v y ny ny B C B /20.2=== ○14 即最后,B 、C 两球一起的Oyz 平面内摆动,经过最低点O 的速度由○14式给出,设最高点的z 轴坐标为Qn z ,则 Qn Cny mgz mv =221 得gv z Cny Qn 22=代入数值,得 m z Qn 24.0= ○15 最高点的y 坐标由下式给出:Qn Qn Qn Qn z z L z L L y )2()(22-±=--±=代入数值,得:m y Qn 95.0±= ○16 例8:一半径R=1.00m 的水平光滑圆桌面,圆心为O,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是 一条凸的平滑的封闭曲线C,如图13—8所示,一根不可伸 长的柔软的细轻绳,一端固定在封闭曲线上某一点,另一端系一质量为m=7.5×10—2kg 的小物块,将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为s m v /0.40=的初速度,物块在桌面上运动时,绳将缠绕在立柱上,已知当绳的张力为T 0=2.0N 时,绳即断开,在绳断开前物块始终在桌面上运动,(1)问绳刚要断开时,绳的伸直部分的长度为多少?(2)若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度H=0.80m,物块在桌面上运动时未与立柱相碰,取重力加速度大小为10m/s 2,解析:(1)这一问题比较简单,绳断开前,绳的张力即为物块所受的向心力,因为初速度与绳垂直,所以绳的张力只改变物块的速度方向,而速度大小不变,绳刚要断开时,绳的伸直部分的长度可求出,设绳的伸直部分长为x ,则由牛顿第二定律得:xv m T 200=代入已知数值得:x =0.60m(2)选取桌面为分析平面,将物块的落地点投影到此分析平面上,然后由平抛运动的知识求解,如图13—8—甲所示,设绳刚要断开时物块位于 桌面上的P 点,并用A 点表示物块离开桌面时的位置, 先取桌面为分析平面,将物块的落地点投影到此分析 平面上,其位置用D 点表示,易知D 点应在直线PA 的延长线上,OD 即等于物块落地点与桌面圆心O 的水平距离,而AD 等于物块离开桌面后做平抛运动的 水平射程,即 gH v AD 20= 故20222)2(g H v x R x OD +-+= 代入已知数值得物块落地点到桌面圆心O 的水平距离 m OD 47.2=例9:如图13—9所示是一种记录地震装置的水平摆,摆球m 固定在边长为L,质量可忽略不计的等边三角形的顶点A 上,它的对边BC 跟竖直线成不大的夹角α,摆球可以绕固定轴图13—8BC 摆动,求摆做微小振动的周期,解析:若m 做微小振动,则其轨迹一定在过A 点,垂直于BC 的平面内的以O 为圆心,OA 为半径的圆弧上,因此我们可以作一个过A 点垂直于BC 的平面M,如图13—9—甲所示,将重力mg 沿M 平面和垂直于M 平面方向分解,则在平面M 内,m 的振动等效于一个只在重力αsin mg g m ='作用下简谐运动,摆长.2360sin L LL =︒='所以周期 αππsin 2322g Lg L T =''=例10:六个相同的电阻(阻值均为R )连成一个电 阻环,六个结点依次为1、2、3、4、5和6,如图13—10 所示,现有五个完全相同的这样的电阻环,分别称为D 1、 D 2、…、D 5,现将D 1的1、3、5三点分别与D 2的2、4、 6三点用导线连接,如图13—10—甲所示,然后将D 2的 1、3、5三点分别与D 3的2、4、6三点用导线连接……依次类推,最后将D 5的1、3、5三点分别连接到D 4的2、4、6三点上,证明:全部接好后,在D 1上的1、3、两点间的等效是电阻为R 627724, 解析:由于连接电阻R 的导线,连接环D 之间的导线均不计电阻,因此,可改变环的半径,使五个环的大小满足:D 1<D 2<…<D 5.将图13—10—甲所示的圆柱形网络变成圆台形网络,在沿与底面垂直的方向将此圆台形网络压缩成一个平面,如图13—10—乙所示的平面电路图,现将圆形电阻环变成三角形,1、3、5三点为三角形的顶点,2、4、6三点为三角形三边的中点,图13—10—乙又变为如图13—10—丙所示电路图,不难发现,图13—10—丙所示的电路相对虚直线3、6具有左右对称性,可以用多种解法求,如将电路等效为图13—10—丁, A 1B 1以内的电阻R R B A 5411=A 2B 2以内的电阻R R R R R R R R B A B A B A 1914)2()2(111122=+++=A 3B 3以内的电阻R R R R R R R R B A B A B A 7152)2()2(222233=++⋅+=A 4B 4以内的电阻R R R R R R R R B A B A B A 265194)2()2(333344=++⋅+=A 5B 5以内的电阻R RR R R R R R B A B A B A 627724)2()2(444455=++⋅+=即为D 1环上1、3两点间的等效电阻,例11:如图13—11所示,用12根阻值均为r 的相同的电阻丝构成正立方体框架,试求AG 两点间的等效电阻,解析:该电路是立体电路,我们可以将该立体电路“压扁”,使其变成平面电路,如图13—11—甲所示,考虑到D 、E 、B 三点等势,C 、F 、H 三点等势,则电路图可等效为如图13—11—乙所示的电路图,所以AG 间总电阻为 r r r r R 65363=++=例12:如图13—12所示,倾角为θ的斜面上放一木 制圆制,其质量m=0.2kg,半径为r,长度L=0.1m,圆柱 上顺着轴线OO ′绕有N=10匝的线圈,线圈平面与斜面 平行,斜面处于竖直向上的匀强磁场中,磁感应强度 B=0.5T,当通入多大电流时,圆柱才不致往下滚动?解析:要准确地表达各物理量之间的关系,最好画出正视图,问题就比较容易求解了,如图13—12—甲所示,磁场力F m 对线圈的力矩为M B =NBIL ·2r ·sin θ,重力对D 点的力矩为:M G =mgsin θ,平衡时有:M B =M G 则可解得:A NBL mg I 96.12== 例13:空间由电阻丝组成的无穷网络如图13—13所示,每段电阻丝的电阻均为r,试求A 、B 间的等效电阻R AB ,解析:设想电流A 点流入,从B 点流出,由对称性可知,网络中背面那一根无限长电阻丝中各点等电势,故可撤去这根电阻丝,而把空间网络等效为图13—13—甲所示的电路,(1)其中竖直线电阻r ′分别为两个r 串联和一个r 并联后的电阻值,所以 r r r r r 3232=⋅=' 横线每根电阻仍为r,此时将立体网络变成平面网络,(2)由于此网络具有左右对称性,所以以AB 为轴对折,此时网络变为如图13—13—乙所示的网络,其中横线每根电阻为21r r =竖线每根电阻为32r r r ='='' AB 对应那根的电阻为r r 32=' 此时由左右无限大变为右边无限大, (3)设第二个网络的结点为CD,此后均有相同的网络,去掉AB 时电路为图13—13—丙所示,再设R CD =R n -1(不包含CD 所对应的竖线电阻)则N B A R R =',网络如图13—13—丁所示,此时 1111111333222------++=+⋅+⋅=+''''+=n n n n n n n R r rR r R r R r r R r R r r R当∞→n 时,R n =R n -1 ∴ 上式变为n n n n n R r rR r R r rR r R 3432++=++=由此解得:r r R n 6213+= 即r r R B A 6213+=' 补上AB 竖线对应的电阻r 32,网络变为如图13—13—戊所示的电路, r r r r r r R r R r R B A B A AB 21212)321(21)213(221321)213(262133262133232322=++=++=+++⋅=+⋅='' 例14:设在地面上方的真空室内,存在匀强电场和匀强磁场,已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0V/m,磁感应强度的大小B=0.15T,今有一个带负电的质点以v =20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m 以及磁场的所有可能方向(角度可用反三角函数表),解析:因为带负电的质点做匀速直线运动,说明此质点所受的合外力为零,又因为电场强度和磁感应强度的方向相同,所以该带电质点所受的电场力和洛仑兹力的方向垂直共面,且必受重力作用,否则所受合外力不可能为零,设质点速度方向垂直纸面向里,由此该带电质点的受力图如图13—14所示,由平衡条件有有水平方向:θθsin cos Bqv Eq = ①在竖直方向:mg Bqv Eq =+θθcos sin ②解得:34tan =θ 34arctan =θ q/m=2 同理,当质点速度方向垂直纸面向外时受力情况如图13—14—甲,由平衡条件可解出θ值与上式解出的一样,只是与纸平面的夹角不同,故此带电质点的电量与质量之比为2,磁场的所有可能方向与水平方向的夹角都是 34tan 34arctan ==θθ或针对训练1.如图13—15所示,一个重1000N的物体放在倾角为30°的斜面上,物体与斜面间的摩擦系数μ为1/3,今有一个与斜面最大倾斜线成30°角的力F作用于物体上,使物体在斜面上保持静止,求力F的大小,2.斜面倾角θ=37°,斜面长为0.8m,宽为0.6m,如图13—16所示,质量为2kg的木块与斜面间的动摩擦因数为μ=0.5,在平行于斜面方向的恒力F的作用下,沿斜面对角线从A 点运动到B点(g=10m/s2,sin37°=0.6),求:(1)力F的最小值是多大?(2)力F取最小值时木块的加速度,3.质量为0.8kg的长方形木块静止在倾角为30°的斜面上,若用平行于斜面沿水平方向大小等于3N的力推物体,它仍保持静止,如图13—17所示,则木块所受摩擦力大小为,方向为,4.如图13—18,四面体框架由电阻同为R的6个电阻连接而成,试求任意两个顶点AB间的等效电阻,5.如图13—19所示三棱柱由电阻同为R的电阻线连接而成,试求AB两个顶点间的等效电阻,6.将同种材料粗细均匀的电阻丝连接成立方体的形状,如图13—20所示,每段电阻丝电阻均为r,试求:(1)AB两点间等效电阻R AG;(2)AD两点间等效电阻R AD,。
巧用“降维”思想解决物理立体图难题

数理出 解题研究2019年第13期总第434期第(1)个问题是在步骤④中可以减小对下落时间/测量的误差的类型是什么?时间测量自然属于人为操作 快慢和读数问题带来的误差,因此属于偶然误差.第(2)个问题是在本实验要求小钩码的质量m 远远小于重锤的质量M,其目的是什么?给出了四个选项,是 一种判断性的问题,可以通过对自由落体的特征进行分析,因为重力加速度较大,造成下落〃高度的时间较短, 测量时间越短实验误差自然就越大,要使重锤下落的时 间变得更长,就必须采取减小系统下降的加速度,因此小 钩码的质量m 远远小于重锤的质量M.第(3)个问题是探究轮的摩擦阻力会引起实验误差 问题.是一种开放性的问题,本问较为巧妙,也代表着命题的趋势,考生需要弄清减小摩擦阻力变化的原理方法, 橡皮泥粘在什么物体上,其作用的原理是什么,这都需要学生在平时从实验操作中用心体会的,这也是在高考备考中必须具备的物理实验素养.第(4)个问题是根据测量数据(在题干中已经给出)进一步处理,目的是让学生能够通过牛顿第二定律进行思考,通过公式简单的变形和分析得出相应的答案,分析 简单而基础.在2018年江苏的高考物理试卷中类似例3的试题还有许多,如第10题,该题是对测量某干电池的电动势和 内阻的物理实验的考查,属于电学的基本实验,其目的在于考查学生的实验数据处理能力和误差分析能力,在这里就不再一一细说了.通过上述实验案例就可以对今天的备考有清晰的脉络.在注意“双基”的同时,应该去发展学生的物理思维的 方法,比如去分析实验数据、比较不同实验结果、抽象出 实验蕴含的物理规律等等,其中在物理备考过程中,通过 基本实验的提炼让抽象的物理概念形象化,让学生在备考中掌握对物理规律以演绎、归纳与概括的方法,从而达成提升学生物理学科的核心素养.总之,高考备考过程是将物理基本概念、基本规律重新打磨的过程,只有在这个过程中要求学生的勤于思考,通过学生在备考中积极的思考的过程,才能务实的挖掘出物 理概念和原理的内涵与夕卜延,才能在高考中蟾宫折桂.参考文献:[1] 朱亚军.2017年江苏高考物理试卷评析与2018 年高三物理复习建议[J ].中学教学参考,2017 (23): 34 - 37.[2] 金溢.近五年江苏高考物理实验题的特点分析与复习策略[J ].中学物理教学参考,2017(23) :47 -49.[3] 张丹彤.高考物理实验试题的创意思想对高中物 理实验教学的启示——以江苏省高考物理试题为例[J ]. 物理教师,2015,36(11) :84 -88.[责任编辑:闫久毅]巧用“降维”思想 解决物理立体图难题钱启明(江苏省启东市第一中学226200)摘要:在高中物理当中,很多题目组成都要用到三维立体图,这就给很多同学理解,分析以及解题造成 了很大的困难,为了让立体图变得更加“亲切”,同学们应该掌握如何将三维图简化的方法,让三维图不再是同 学们解题路上的“拦路虎”.关键词:立体图;降维思想中图分类号:G632 文献标识码:a 文章编号:1008 -0333(2019)13 -0074 -02三维视图问题对学生空间思维能力和综合处理问题 能力要求高,多数同学会觉得问题所描述的情况无法想象,无法熟练的运用知识来解决这类问题.学生在数学中已经了解了三视图的方法,所以需要做的就是引导学生 运用这个方法解决物理问题.一、运动方向一分为二,化繁为简在很多力学问题当中,物体运动除了直线外,会遇到某些特殊的运动轨迹,这样的运动方式让受力分析成为难点,我们不妨换一个思路,将复杂运动分解为若干简单收稿日期:2019-02 -05作者简介:钱启明(1982. 4 -),男,江苏省启东人,本科,中学一级教师,从事高中物理教学研究.—74—2019年第13期总第434期数理化解题研究运动,化繁为简,让复杂运动不再复杂.例1某人骑电动车车在圆筒形内沿着筒壁骑行.电动车加速行驶直到可以在筒壁上以匀速骑行,如图1所示.如果电动车(包括人)的总质量为M,筒壁半径为R,匀速率行驶的速率为”,每行驶一圈上升爪求电动车匀速行驶时的向心力.解析电动车的速度",可分解为水平分速度v,和垂2直分速度为”2,则向心加速度为a=乍.问题的关键是将运动轨迹展开为一个面,如图2所示,其倾角为a,倾角的余弦为沁=7^帶+产向心加速度为心知~2"*-),向心力F=Ma=Mv2 V(2tt R)2+h24tt2R (4tt2/?2+/i2)点拨从本题我们可以了解,运动不仅包括直线运动还包括各种复杂运动,而我们要做的就是删繁就简,将复杂问题简单化,在分析当中抽丝剥茧,这就需要同学们掌握数学知识和物理知识,以便从容应对此类问题.二、立体电阻分解,一目了然物理的电磁学当中少不了与电阻打交道,平面的电阻电路图是非常常见的,但是如果遇到立方形的电阻是不是还能从容应对呢,这就需要我们用一定的技巧进行简化,让立体变平面.例2如图3所示,某立方形是用12根阻值均为r的电阻丝构成.求立方形当中4点和G点之间的等效电阻.解析我们看到电路是由立方形组成,现将该立体电路“压平”成平面电路图,如图4所示.D图4由于到D、E、B三点等势,C、F、H三点等势,则立体电路可等效为如图5所示的电路图,所以A点和G点之间总电阻为点拨电磁学问题是物理学的重中之重,掌握电磁学的各种解题方法是非常必要的,但是同学又不能拘泥于物理学当中,这里就非常典型的运用了数学当中的几何知识,是立体变平面的典型问题.三、斜面变平面,信手拈来此问题的图形是三维的,不容易掌握物体的加速度,难度增加•如果我们能通过三视图将三维变成二维,问题就会容易得多.我们可以将立体图用三视图法,将分解成由两个运动轨迹的合体,这样解决起来可谓信手拈来.例3如图6(1)所示光滑带有斜度的平面长为a,宽为b,斜度为a,现有一个圆球在斜面上方P点水平抛出,要想使圆球从Q点离开,则需要圆球的初速度%是解析此题可以分解为两个方向,水平方向(如图6 (3))为匀速直线运动,速度为%.沿斜面向下方向(如图6(2))为初速度为0的匀加速运动,加速度为a=gsina,则a=*gt2sina, b=v o t,联立两个式子解得:%=b点拨三维运动分解为两个或者若干个平面运动,是解决此类问题的关键所在,也是让复杂问题简单化的“黄金钥匙”,深刻理解题意是前提,熟练掌握数学、物理知识是基础,灵活的思维是途径,正确分解图形是“钥匙”.以上三个例题分别介绍了三种“降维”方法,在以后的学习当中还需要同学自己摸索,自己探究,把数学几何思维和物理结合起来,不再让立体图成为难点,化繁为简,数形结合,以发散的思维看问题,这是学习的正确路径之所在.参考文献:[1]王正青.高中物理中解题方法归纳探究[J].数理化解题研究,2017(22).[2]周杨.关于新课改高中物理解题方法探究[J].商,2015(5):277,[责任编辑:闫久毅]—75—。
高中物理竞赛解题方法之微元法例题

三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。
设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。
解析:该题不能用速度分解求解,考虑采用“微元法”。
设某一时间人经过AB 处,再经过一微小过程Δt (Δt →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于ΔS AA ′= v Δt 则人影顶端的移动速度:v C =C C t 0S limt'∆→∆∆=AA t 0HS H h lim t'∆→∆-∆=H H h-v可见v c 与所取时间Δt 的长短无关,所以人影的顶端C 点做匀速直线运动。
例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ 。
试求铁链A 端受的拉力T 。
解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况。
在铁链上任取长为ΔL 的一小段(微元)为研究对象,其受力分析如图3—2—甲所示。
由于该元处于静止状态,所以受力平衡,在切线方向上应满足:T θ + ΔT θ = ΔGcos θ + T θ ,ΔT θ = ΔGcos θ = ρg ΔLcos θ由于每段铁链沿切线向上的拉力比沿切线向下的拉力大ΔT θ ,所以整个铁链对A 端的拉力是各段上ΔT θ的和,即:T = ΣΔT θ = Σρg ΔLcos θ = ρg ΣΔLcos θ观察ΔLcos θ的意义,见图3—2—乙,由于Δθ很小,所以CD ⊥OC ,∠OCE = θΔLcosθ表示ΔL 在竖直方向上的投影ΔR ,所以ΣΔLcos θ = R ,可得铁链A 端受的拉力:T = ρg ΣΔLcos θ = ρgR例3:某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为v A ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度v B 的大小。
降维思维法

第六讲降维思维法一、降维思维含义降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,优点是把不易观察的空间物理量的关系在二维图中表示出来,从而容易找到各物理量之间的关系正确解决问题。
(实质:划立体为平面-------高中只有平面规律)二、降维思维分类1、“力”的降维:分解定律---平行四边形例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G,静止在斜面上。
现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何?2、“运动”的降维:分解定律---平行四边形例2:杂技演员在圆筒形建筑物内表演飞车走壁。
演员骑摩托车从底部开始运动,随着速度增加,圈子越兜越大,最后在竖直圆筒壁上匀速率行驶,如图13—6所示。
如果演员和摩托车的总质量为M,直壁半径为R,匀速率行驶的速率为v,每绕一周上升的距离为h,求摩托车匀速走壁时的向心力。
课后作业 姓名______________1、如图所示,表面光滑的实心圆球B 的半径R=20cm ,质量M=20kg ,悬线长L=30cm 。
正方形物块A 的厚度△h=10cm ,质量m=2kg ,物体A 与墙之间的动摩擦因数μ=0.2,取g=10m/s 2。
求:(1)墙对物块A 的摩擦力为多大?(2)如果要物体A 上施加一个与墙平行的外力,使物体A 在未脱离圆球前贴着墙沿水平方向做加速度a =5m/s 2 匀加速直线运动,那么这个外力大小方向如何?2、一质量m=20kg 的钢件,架在两根完全相同的平行长直圆柱上,如图所示,钢件的重心与两柱等距,两柱的轴线在同一水平面内,圆柱的半径r=0.025m ,钢件与圆柱间的动摩擦因数μ=0.20。
两圆柱各绕自己的轴线做转向相反的转动,角速度./40s rad =ω若沿平行于柱轴的方向施力推着钢件做速度为s m /050.00=υ的匀速运动,求推力是多大?3、如图所示,将质量为M 的匀质链条套在一个表面光滑的圆锥上,圆锥顶角为α,设圆锥底面水平,链条静止时也水平,求链条内的张力。
高中物理竞赛试题解题方法整体法3.doc

高中物理竞赛试题解题方法整体法3.doc高中物理竞赛试题解题方法:整体法针对训练1.质量为m 的小猫,静止于很长的质量为M 的吊杆上,如图1—17 所示。
在吊杆上端悬线断开的同时,小猫往上爬,若猫的高度不变,求吊杆的加速度。
(设吊杆下端离地面足够高)2.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中,若把在空中下落的过程称为过程 I,进入泥潭直到停止的过程称为过程II,则()A、过程 I 中钢珠动量的改变量等于它重力的冲量B、过程 II 中阻力的冲量的大小等于全过程中重力冲量的大小C、过程 II 中钢珠克服阻力所做的功等于过程I 与过程 II 中钢珠所减少的重力势能之和D、过程 II 中损失的机械能等于过程I 中钢珠所增加的动能3.质量为 m 的运动员站在质量为m的均匀长板AB的中点,板位于水平面上,可绕通过2B 点的水平轴转动,板的A 端系有轻绳,轻绳的另一端绕过两个定滑轮后,握在运动员手中。
当运动员用力拉绳时,滑轮两侧的绳子都保持在竖直方向,如图所示。
要使板的 A 端离开地面,运动员作用于绳子的最小拉力是。
4.如图1—19,一质量为M 的长木板静止在光滑水平桌面上。
一质量为m 的小滑块以v0。
若把该木板固定在水平桌面上,其他条件相同,求滑决离开木板时的速度v。
35.如图1—20 所示为一个横截面为半圆,半径为R 的光滑圆柱,一根不可伸长的细绳两端分别系着小球A、 B,且 m A = 2m B,由图示位置从静止开始释放 A 球,当小球 B 达到半圆的顶点时,求线的张力对小球 A 所做的功。
6.如图 1—21 所示, AB 和 CD 为两个斜面,其上部足够长,下部分别与一光滑圆弧面相切,EH 为整个轨道的对称轴,圆弧所对圆心角为120°,半径为2m,某物体在离弧底H 高h=4m 处以V0=6m/s 沿斜面运动,物体与斜面的摩擦系数μ=0.04,求物体在AB 与 CD 两斜面上(圆弧除外)运动的总路程。
高中物理竞赛方法集锦降维法132

高中物理竞赛方法集锦降维法132例10:六个相同的电阻〔阻值均为R 〕连成一个电阻环,六个结点依次为1、2、3、4、5和6,如图13—10所示。
现有五个完全相同的如此的电阻环,分不称为D 1、D 2、…、D 5。
现将D 1的1、3、5三点分不与D 2的2、4、6三点用导线连接,如图13—10—甲所示。
然后将D 2的1、3、5三点分不与D 3的2、4、6三点用导线连接……依次类推,最后将D 5的1、3、5三点分不连接到D 4的2、4、6三点上。
证明:全部接好后,在D 1上的1、3、两点间的等效是电阻为R 627724。
解析:由于连接电阻R的导线,连接环D 之间的导线均不计电阻,因此,可改变环的半径,使五个环的大小满足:D 1<D 2<…<D 5.将图13—10—甲所示的圆柱形网络变成圆台形网络,在沿与底面垂直的方向将此圆台形网络压缩成一个平面,如图13—10—乙所示的平面电路图。
现将圆形电阻环变成三角形,1、3、5三点为三角形的顶点,2、4、6三点为三角形三边的中点,图13—10—乙又变为如图13—10—丙所示电路图。
不难发觉,图13—10—丙所示的电路相对虚直线3、6具有左右对称性。
能够用多种解法求。
如将电路等效为图13—10—丁。
A 1B 1以内的电阻R R B A 5411= A 2B 2以内的电阻 R RR R RR R R B A B A B A 1914)2()2(111122=+++= A 3B 3以内的电阻R RR R R R R R B A B A B A 7152)2()2(222233=++⋅+= A 4B 4以内的电阻R R R R RR R R B A B A B A 265194)2()2(333344=++⋅+=A 5B 5以内的电阻R R R R R R R R B A B A B A 627724)2()2(444455=++⋅+= 即为D 1环上1、3两点间的等效电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十三、降维法方法简介降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。
由于三维问题不好想像,选取适当的角度,可用降维法求解。
降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。
赛题精讲例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。
现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何?解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。
但这四个力不在同一平面内,不容易看出它们之间的关系。
我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。
将重力沿斜面、垂直于斜面分解。
我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。
如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为:G G F F 22212=+=' F ′的方向沿斜面向下与推力成α角, 则 ︒=∴==451tan 1ααFG这就是物体做匀速运动的方向物体受到的滑动摩擦力与F ′平衡,即 2/2G F f ='=所以摩擦因数:3630cos 2/2=︒==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子?解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n 周时,外侧面上一共移动的水平距离为22122at n D =π① 圆弧槽内小球下降的高度为221gt nh = ②解①、②两式,可得,为使螺旋形槽内小球能自由下落,圆柱体侧面绳子拉动的加速度应为hDga π=例3:如图13—3所示,表面光滑的实心圆球B 的半径R=20cm ,质量M=20kg ,悬线长L=30cm 。
正方形物块A 的厚度△h=10cm ,质量m=2kg ,物体A 与墙之间的动摩擦因数μ=0.2,取g=10m/s 2。
求:(1)墙对物块A 的摩擦力为多大?(2)如果要物体A 上施加一个与墙平行的外力,使物体A 在未脱离圆球前贴着墙沿水平方向做加速度a =5m/s 2 匀加速直线运动,那么这个外力大小方向如何?解析:这里物体A 、B 所受的力也不在一个平面内,混起来考虑比较复杂,可以在垂直于墙的竖直平面内分析A 、B 间压力和A 对墙的压力;在与墙面平行的平面内分析A 物体沿墙水平运动时的受力情况。
(1)通过受力分析可知墙对物块A 的静摩擦力大小等于物块A 的重力。
(2)由于物体A 贴着墙沿水平方向做匀加速直线运动,所以摩擦力沿水平方向,合力也沿水平方向且与摩擦力方向相反。
又因为物体受竖直向下的重力,所以推力F 方向应斜向上。
设物体A 对墙的压力为N ,则沿垂直于墙的方向,物体B 受到物体A 的支持力大小也为N ,有θμtan ,Mg N N f ==而又因为43tan 53sin ==++∆=θθ所以R L R h 在与墙面平行的平面内,对物体A 沿竖直方向做受力分析,如图13—3—甲所示有mg F =αsin沿水平方向做受力分析,有 ma f F =-αcos 由以上各式,解得)5/5arcsin(,520)()(22==++=a N ma f mg F因此,对物体A 施加的外力F 的大小为205N ,方向沿墙面斜向上且与物体A 水平运动方向的夹角为).5/5arcsin(例4:一质量m=20kg 的钢件,架在两根完全相同的平行长直圆柱上,如图13—4所示,钢件的重心与两柱等距,两柱的轴线在同一水平面内,圆柱的半径r=0.025m ,钢件与圆柱间的动摩擦因数μ=0.20。
两圆柱各绕自己的轴线做转向相反的转动,角速度./40s rad =ω若沿平行于柱轴的方向施力推着钢件做速度为s m /050.00=υ的匀速运动,求推力是多大?(设钢件不发生横向运动)解析:本题关键是搞清滑动摩擦力的方向,滑动摩擦力的方向与相对运动的方向相反,由于钢件和圆柱都相对地面在运动,直接不易观察到相对地面在运动,直接不易观察到相对运动的方向,而且钢件的受力不在同一平面内,所以考虑“降维”,即选一个合适的角度观察。
我们从上往上看,画出俯视图,如图13—4—甲所示。
我们选考虑左边圆柱与钢件之间的摩擦力,先分析相对运动的方向,钢件有向前的速度0υ,左边圆住有向右的速度ωr ,则钢件相对于圆柱的速度是0υ与ωr 的矢量差,如图中△v ,即为钢件相对于圆柱的速度,所以滑动摩擦力f 的方向与△v ,的方向相反,如图13—4—甲所示。
以钢件为研究对象,在水平面上受到推力F 和两个摩擦力f 的作用,设f 与圆柱轴线的夹角为θ,当推钢件沿圆柱轴线匀速运动时,应有22000)(22cos 2ωθr v v f vv ff F +=∆== ①再从正面看钢件在竖直平面内的受力可以求出F N ,如图13—4—乙所示,钢件受重力G 和两个向上的支持力F N ,且G=2F N ,所以把N N F f GF μ==,2代入①式,得 推力N r v v mgr v v F F N 2)(22)(222002200=+⋅=+⋅=ωμωμ例5:如图13—5所示,将质量为M 的匀质链条套在一个表面光滑的圆锥上,圆锥顶角为α,设圆锥底面水平,链条静止时也水平,求链条内的张力。
解析:要求张力,应在链条上取一段质量元m ∆进行研究。
因为该问题是三维问题,图13—4—乙各力不在同一平面内,所以用“降维法”作出不同角度的平面图进行研究。
作出俯视图13—5—甲,设质量元m ∆两端所受张力为T ,其合力为F ,因为它所对的圆心角θ很小,所以2sin 2θT F =,即F=T θ。
再作出正视图13—5—乙,质量元受重力m ∆g 、支持力N 和张力的合力F 而处于平衡状态,由几何知识可得:2cot 22cotαπθα⋅=⋅∆=Mg mg F 所以链条内的张力2cot 22απ⋅==Mg F T 例6:杂技演员在圆筒形建筑物内表演飞车走壁。
演员骑摩托车从底部开始运动,随着速度增加,圈子越兜越大,最后在竖直圆筒壁上匀速率行驶,如图13—6所示。
如果演员和摩托车的总质量为M ,直壁半径为R ,匀速率行驶的速率为v ,每绕一周上升的距离为h ,求摩托车匀速走壁时的向心力。
解析:摩托车的运动速度v ,可分解为水平速度v 1和竖直分速度为v 2,则向心力速度为Rv a 21=。
处理这个问题的关键是将螺旋线展开为一个斜面,其倾角的余弦为22)2(2cos hR R a +=ππ,如图13—6—甲所示。
所以有v hR R v v 221)2(2cos +==ππα向心加速度为:222221))2(2(h R R R v R v a +==ππ 向心力 )4(422222h R RMv Ma F +==ππ例7:A 、B 、C 为三个完全相同的表面光滑的小球,B 、C 两球各被一长为L=2.00m 的不可伸和的轻线悬挂于天花板上,两球刚好接触,以接触点O 为原点作一直角坐标系z Oxyz ,轴竖直向上,O x 与两球的连心线重合,如图13—7所示。
今让A 球射向B 、C 两球,并与两球同时发生碰撞。
碰撞前,A 球速度方向沿y 轴正方向,速率为s m v A /00.40=。
相碰后,A 球沿y 轴负方向反弹,速率A v =0.40m/s 。
(1)求B 、C 两球被碰后偏离O 点的最大位移量;(2)讨论长时间内B 、C 两球的运动情况。
(忽略空气阻力,取g=10m/s 2) 解析:(1)A 、B 、C 三球在碰撞前、后的运动发生在Oxy 平面内,设刚碰完后,A 的速度大小为A v ,B 、C 两球的速度分别为B v 与C v ,在x 方向和y 方向的分速度的大小分别为Bx v ,Cy Cx By v v v ,和,如图13—7—甲所示,由动量守恒定律,有0=-Bx Cx mv mv ①A Cy By Ax mv mv mv mv -+= ②由于球面是光滑的,在碰撞过程中,A 球对B 球的作用力方向沿A 、B 两球的连心线,A 球对C 球的作用力方向沿A 、C 两球的连心线,由几何关系,得⎪⎪⎭⎪⎪⎬⎫==6tan6tan ππCy Cx By Bx v v v v ③ 由对称关系可知 Cy Bx v v = ④解①、②、③、④式可得 s m v v Cy Bx /27.1==s m v v Cy Bx /20.2==由此解得 s m v v Cy Bx /54.2==设C 球在x >0, y>0, z >0的空间中的最大位移为,OQ Q 点的z 坐标为z Q ,则由机械能守恒定律可写出Q C mgz mv =221 ⑤ 所以 gv z CQ 22= 代入数值解得 z Q =0.32m而Q 点到O z 轴的距离为 )2()(22Q Q Q z L z z L L QD -=--=图13—7甲所以C 球离O 点的最大位移量 Q Q Lz OD z OQ 222=+= ⑥代入数值,得 m OQ 13.1= ⑦由对称性,可得B 球在0,0,0>><z y x 的空间的最大位移量OP 为m OQ OP 13.1== ⑧(2)当B 、C 两球各达到最大位移后,便做回到原点的摆动,并发生两球间的碰撞,两球第一次返回O 点碰撞前速度的大小和方向分别为s m v Bx /27.1= 方向沿正x 轴方向 By v =2.20m/s 方向沿y 轴方向s m v Cx /27.1= 方向沿正x 轴方向 Cy v =2.20m/s 方向沿y 轴方向设碰撞后的速度分别为11C B v v 和,对应的分速度的大小分别为x B v 1、y B v 1、x C v 1和y C v 1,由于两球在碰撞过程中的相互作用力只可能沿x 轴方向,故碰撞后,沿y 轴方向的速度大小和方向均保持不变(因为小球都是光滑的),即y B v 1=By v 方向沿负y 轴方向 ⑨ y C v 1=Cy v 方向沿负y 轴方向 ⑩碰撞过程中,沿x 轴方向的动量守恒,则 Cx Bx x B x C mv mv mv mv -=-11 因为Cx Bx v v = 所以x B x C v v 11=即碰撞后两球在x 方向的分速度大小也相等,方向相反,具体数值取决于碰撞过程中是否机械能损失。