北京市部分区2017届高三上学期考试数学理试题分类汇编:函数
2017年高考北京理科数学试题及答案(word解析版)(K12教育文档)

2017年高考北京理科数学试题及答案(word解析版)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考北京理科数学试题及答案(word解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考北京理科数学试题及答案(word解析版)(word版可编辑修改)的全部内容。
2017年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项. (1)【2017年北京,理1,5分】若集合–21{|}A x x =<<,–1{|}3B x x x =<>或,则A B =( )(A )1|}–2{x x <<- (B )3|}–2{x x << (C )1|}–1{x x << (D)3|}1{x x << 【答案】A【解析】{}21A B x x =-<<-,故选A .(2)【2017年北京,理2,5分】若复数()()1i i a -+在复平面内对应的点在第二象限,则实数a 的取值范围是( )(A )(),1-∞ (B )(),1-∞- (C )()1,+∞ (D )()1,-+∞ 【答案】B【解析】()()()()1i i 11i z a a a =-+=++-,因为对应的点在第二象限,所以1010a a +<⎧⎨->⎩,解得:1a <-,故选B .(3)【2017年北京,理3,5分】执行如图所示的程序框图,输出的s 值为( ) (A )2(B )32 (C )53 (D )85【答案】C【解析】0k =时,03<成立,第一次进入循环111,21k s +===,13<成立,第二次进入循环,2132,22k s +===,23<成立,第三次进入循环31523,332k s +===,33< 否,输出53s =,故选C .(4)【2017年北京,理4,5分】若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则2x y +的最大值为( ) (A )1 (B)3 (C)5 (D )9 【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D .(5)【2017年北京,理5,5分】已知函数1()3()3x x f x =-,则()f x ( )(A )是奇函数,且在R 上是增函数 (B)是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数 【答案】A 【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数故选A .(6)【2017年北京,理6,5分】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( )(A)充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D)既不充分也不必要条件 【答案】A【解析】若0λ∃<,使m n λ=,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<,反过来,若0m n ⋅<,那么两向量的夹角为(0090,180⎤⎦ ,KS5U 并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A .(7)【2017年北京,理7,5分】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )(A )32 (B )23 (C )22 (D)2 【答案】B【解析】几何体是四棱锥,如图,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=,故选B .(8)【2017年北京,理8,5分】根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是( )(参考数据:30.48lg ≈)(A )3310(B )5310 (C )7310 (D )9310 【答案】D【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D .第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分。
北京市东城区2017届高三上学期期末数学试卷(理科)Word版含解析

一、选择题(共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项中,
选出符合题目要求的一项. )
1.已知集合 A={ x| (x﹣1)(x﹣3)< 0} , B={ x| 2<x<4} ,则 A∩B=( )
A.{ x| 1<x<3} B.{ x| 1<x<4} C. { x| 2<x<3} D.{ x| 2<x< 4}
长率 rn 会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量 Q 随时 间的变化规律.那么,对这种细菌在实际条件下日增长率 rn 的规律描述正确的
是( )
A
.
B二、填空题共 6 小题,每小题 5 分,共 30 分. 9.若复数( 2﹣ i)( a+2i)是纯虚数,则实数 a= .
,则 λ= . 14.关于 x 的方程 g(x)=t(t ∈R)的实根个数记为 f(t ).若 g(x)=lnx,则 f
A.(﹣∞,﹣ 1] B.(﹣∞, 1] C.[ ﹣1,+∞) 7.某三棱锥的三视图如图所示,则该三棱锥的体积为(
D. [ 1,+∞) )
A. B. C.2 D. 8.数列 { an} 表示第 n 天午时某种细菌的数量.细菌在理想条件下第
n 天的日增
长率 rn=0.6(rn=
, n∈N*).当这种细菌在实际条件下生长时,其日增
10.若 x,y 满足
,则 x+2y 的最大值为 .
11.若点 P( 2,0)到双曲线
的一条渐近线的距离为 1,则 a= .
12.在△ ABC中,若 AB=2,AC=3,∠A=60°,则 BC= ; 若 AD⊥BC,则 AD= .
数学理卷·2017届北京市东城区高三上学期期末教学统一检测(带答案和解析)

东城区2016-2017学年度第一学期期末统考高三理科数学 第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
)(1)已知集合{|(1)(3)0}A x x x =--<,{|24}B x x =<<,则A B =(A ){|13}x x << (B ){|14}x x << (C ){|23}x x << (D ){|24}x x << (2)抛物线22y x =的准线方程是(A )1y =- (B )12y =- (C )1x =-(D )12x =-(3)“1k =”是“直线0kx y --=与圆229x y +=相切”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(4)执行如图所示的程序框图,输出的k 值为(A )6 (B )8(C )10 (D )12(5)已知,x y ∈R ,且0x y >>,则(A )tan tan 0x y -> (B )sin sin 0x x y y -> (C )ln ln 0x y +> (D )220xy->(6)已知()f x 是定义在R 上的奇函数,且在[0,)+∞上是增函数,则(1)0f x +≥的解集为正(主)视图俯视图侧(左)视图时间(天)(A )(,1]-∞- (B )(,1]-∞ (C )[1,)-+∞ (D )[1,)+∞ (7)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )23 (B )43(C )2(D )83(8)数列{}n a 表示第n 天午时某种细菌的数量.细菌在理想条件下第n 天的日增长率0.6n r =(*1n nn na a r n a +-=∈N ).当这种细菌在实际条件下生长时,其日增长率n r 会发生变化.下图描述了细菌在理想和实际两种状态下细菌数量Q 随时间的变化规律.那么,对这种细菌在实际条件下日增长率n r 的规律描述正确的是10(C )时间10时间(天)(D )0.0.0.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市部分区2017届高三上学期考试数学文试题分类汇编:函数

北京市部分区2017届高三上学期考试数学文试题分类汇编函数一、选择题1、(昌平区2017届高三上学期期末)下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是(A )xy e = (B )2log y x = (C )sin y x = (D )3y x =2、(朝阳区2017届高三上学期期中)下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A .1y x =-B .tan y x =C .3y x =D .2yx=- 3、(朝阳区2017届高三上学期期中)已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数()1()()2g x f f x =-的零点个数是A .4B .3C .2D .14、(丰台区2017届高三上学期期末)已知函数()ln()sin f x x a x =+-.给出下列命题: ①当0a =时,(0e),x ∀∈,都有()0f x <; ②当e a ≥时,(0+),x ∀∈∞,都有()0f x >; ③当1a =时,0(2+),x ∃∈∞,使得0()=0f x . 其中真命题的个数是(A) 0 (B) 1 (C) 2 (D) 35、(海淀区2017届高三上学期期末)下列函数中,既是偶函数又在区间(0+)∞,上单调递增的是 A .1()2x y =B .2y x =-C .2log y x =D .||1y x =+6、(海淀区2017届高三上学期期中)已知函数,log a b y x y x ==的图象如图所示,则A.1b a >>B.1b a >>C.1a b >>D.1a b >>7、(海淀区2017届高三上学期期中)已知定义在R 上的函数若方程1()2f x =有两个不相等的实数根,则a 的取值范围是 A.1122a -≤≤ B.102a ≤< C.01a ≤< D.102a -<≤8、(石景山区2017届高三上学期期末)下列函数中既是奇函数又在区间(0,)+∞上单调递减的是( ) A .x y e -=B .ln()y x =-C .3y x =D .1y x=9、(通州区2017届高三上学期期末)下列函数中,既是偶函数又在区间()0,1内单调递减的是A .2y x = B .2xy =C .cos y x =D .ln y x =10、(通州区2017届高三上学期期末)已知函数()())20,0,x x f x x x ⎧≤⎪=⎨>⎪⎩若函数()()()1g x f x k x =--有且只有一个零点,则实数k 的取值范围是A .(1)-∞,-B .(0)∞,+C .(10)-,D .(1)0-∞∞,-(,+)11、(西城区2017届高三上学期期末)下列函数中,定义域为R 的奇函数是 (A )21y x =+ (B )tan y x = (C )2xy = (D )sin y x x =+ 12、(北京市第四中学2017届高三上学期期中)设3log 2a =,21log 8b =,2c = A .a b c >> B .c b a >> C .a c b >> D .c a b >>参考答案1、D2、C3、B4、B5、D6、A7、B8、D9、C 10、D 11、D 12、D二、填空题1、(昌平区2017届高三上学期期末)12,2,ln 2ee -三个数中最大的数是_________ .2、(朝阳区2017届高三上学期期中)已知 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 .3、(朝阳区2017届高三上学期期中)已知函数221,0,()(1)2,0,xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上具有单调性,则实数m 的取值范围是 .4、(东城区2017届高三上学期期末)已知函数1)(||)(+-=a x x x f .当0=a 时,函数)(x f 的单调递增区间为;若函数a x f x g -=)()(有3个不同的零点,则a 的取值范围为.5、(海淀区2017届高三上学期期中)计算1lg2lg 3lg54-+=___. 6、(石景山区2017届高三上学期期末)函数2()(3)1xf x x x =≥-的最大值为_______________. 7、(西城区2017届高三上学期期末)设函数30,()log ,,x a f x x x a =>⎪⎩≤≤其中0a >.① 若3a =,则[(9)]f f =____;② 若函数()2y f x =-有两个零点,则a 的取值范围是____.8、(北京市第四中学2017届高三上学期期中)设函数21()4()(2)1x a x f x x a x a x ⎧-<=⎨--≥⎩,①若1a =,则()f x 的最小值为______;②若()f x 恰有2个零点,则实数a 的取值范围是______ .9、(昌平区2017届高三上学期期末)若函数2,11,()ln ,1.x x f x x x a -⎧-≤<=⎨≤≤⎩①当2a =时,若()1f x =,则x =___________;②若()f x 的值域为[0,2],则a 的取值范围是________ .10、(北京市第四中学2017届高三上学期期中)已知:()f x 是定义在[1,1]-上的奇函数,且(1)1f =,若,[1,1]a b ∈-,且0a b +≠时,有()()0f a f b a b+>+恒成立.(Ⅰ)用定义证明函数()f x 在[1,1]-上是增函数;(Ⅱ)解不等式:1()(1)2f x f x +<-;(Ⅲ)若2()21f x m m ≤-+对所有[1,1]x ∈-恒成立,求:实数m 的取值范围.参考答案1、12e2、b c a >> 3、 4、(),-∞+∞,{}21aa << 5、3 6、37[4,9)8、 1-;11[2)2,,⎡⎫+∞⎪⎢⎣⎭; 9、0;122,e e ⎡⎤⎢⎥⎣⎦10、解:(Ⅰ)证明:设任意12,[1,1]x x ∈-且12x x <,由于()f x 是定义在[1,1]-上的奇函数,∴2121()()()()f x f x f x f x -=+- 因为12x x <,所以21()0x x +-≠,由已知有2121()()0()f x f x x x +->+-,∵2121()0x x x x +-=->,∴21()()0f x f x +->,即21()()f x f x >,所以函数()f x 在[1,1]-上是增函数. ………5分(Ⅱ)由不等式1()(1)2f x f x +<-得1112111112x x x x⎧-≤+≤⎪⎪-≤-≤⎨⎪⎪+<-⎩,解得104x ≤< ………9分(Ⅲ)由以上知()f x 最大值为(1)1f =,所以要使2()21f x m m ≤-+对所有[1,1]x ∈-,只需2121m m ≤-+恒成立, 得实数m 的取值范围为0m ≤或2m ≥. ………14分。
2017年北京市各区高三理科数学分类汇编----三角函数(学生版)

2017年北京市各区高三理科数学分类汇编----三角函数(学生版)(2017丰台期末)6.如果函数()sin f x x x ωω=的两个相邻零点间的距离为2,那么(1)(2)(3)(9)f f f f ++++L 的值为( )(A )1(B )-1(C(D)(2017通州期末)6.在△ABC 中,2a =,3B π=,△ABCb 等于( ) AB .1CD .2(2017昌平期末)(6) 已知函数()2sin()(0,)f x x πωϕωϕ=+><的图象如图所示,则函数()f x 的解析式的值为( ) (A) ()2sin(2)6f x x π=+(B ) ()2sin(2)3f x x π=+(C) ()2sin()6f x x π=+(D) ()2sin()3f x x π=+(2017年平谷期末)6.若将函数()sin()26πf x x =+的图像向右平移个单位,所得图像关于轴对称,则的最小正值是( ) A .3π B .43π C .32π D .125π(2017年东城一模)(7)将函数sin(2)6y x π=+的图象向左平移(0)m m >个单位长度,得到函数()y f x =图象在区间[,]1212π5π-上单调递减,则m 的最小值为( ) (A )12π (B )6π (C )4π (D )3π(2017年西城一模)3.函数22()sin cos f x x x =-的最小正周期是( )(A )2π (B )π (C )32π (D )2π(2017年石景山一模)4.设∈R θ,“sin cos θθ=”是“cos20θ=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2017年平谷一模)6.若将函数()sin()26πf x x =+的图像向右平移个单位,所得图像关于轴对称,则的最小正值是( ) A .3π B .43π C .32π D .125π(2017年朝阳二模)4.已知函数π()sin()(0)6f x x >=+ωω的最小正周期为4π,则( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线π3x =对称 C .函数()f x 图象上的所有点向右平移π3个单位长度后,所得的图象关于原点对称 D .函数()f x 在区间(0,π)上单调递增 (2017年顺义二模)7.将函数sin(2)6y x π=+图象上的点(M θ(0)4πθ<<向右平移(0)t t >个单位长度得到点'M .若'M 位于函数sin 2y x =的图象上,则( ) A.,12t πθ=的最小值为12πB. ,12t πθ=的最小值为6πC. ,6t πθ=的最小值为6πD. ,6t πθ=的最小值为12π填空题:(2017朝阳期末)12.在△ABC 中,已知45,B AC ∠=︒=,则C ∠= .(2017东城期末)(12)在△ABC 中,若2AB =,3AC =,60A ∠=,则BC =_______;若AD BC ⊥,则AD =_______.(2017西城期末)12.在△ABC 中,角,,A B C 的对边分别为,,a b c .若3c =,3C π=,sin 2sin B A =,则a =____.(2017海淀期末)13.已知函数π2sin()(0,)2y x ωϕωϕ=+><①若(0)1f =,则ϕ=__________;②若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是____(2017石景山期末)11.在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .a 15 ,b10 , A60o ,则cos B . (2017房山期末)10.函数f (x )=sinxcosx 的最小正周期是 .(2017昌平期末)(12) 已知角α终边经过点(3,4)P ,则cos2α=___________ .DCBA(2017年朝阳一模)(10)在△ABC 中,3A π∠=,3BC =,AB =,则C ∠=____. (2017年海淀一模)11.在∆ABC 中,cos c a B =. ①A =__90°___;②若1sin 3C =,则cos(π)B +=____. (2017年丰台一模)11. 在△ABC 中,若2b ac =,3π∠=B ,则A ∠= .(2017年石景山一模)12.如果将函数()sin(3)(π0)f x x ϕϕ=+-<<的图象向左平移π12个单位所得到的图象关于原点对称,那么ϕ=.(2017年东城二模)(12)如图,在四边形ABCD 中,45ABD ∠=,30ADB ∠=,1BC =,2DC =,1cos 4BCD ∠=,则BD = ;三角形ABD 的面积为___________.(2017年海淀二模)11.在ABC ∆中,2A B =,23a b =,则cos B _______.(2017年西城二模)11.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c .若π3A =,a =,1b =,则c =____.(2017年丰台二模)11. 点A 从(10),出发,沿单位圆按逆时针方向运动到点B ,若点B 的坐标是34()55,-,记AOB α∠=,则sin 2α= . 解答题:(2017朝阳期末)15.(本小题满分13分)已知函数2()cos 2cos 1f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.(2017丰台期末)15.(本小题共13分)如图,在△ABC 中,D 是BC 上的点,3AC =,2CD =,AD =sin B =(Ⅰ)求角C 的大小; (Ⅱ)求边AB 的长.B(2017海淀期末)15.(本小题满分13分) 在ABC ∆中,2c a =,120B =︒,且ABC ∆(Ⅰ)求b 的值; (Ⅱ)求tan A 的值.(2017西城期末)15.(本小题满分13分)已知函数2π()sin(22cos 16f x x x ωω=-+-(0)ω>的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间7π[0,]12上的最大值和最小值.(2017东城期末)(16)(本小题13分)已知函数()2sin(2)(||)2f x x ϕϕπ=+<部分图象如图所示. (Ⅰ)求的最小正周期及图中0x 的值;(Ⅱ)求在区间上的最大值和最小值.15.(2017石景山期末)15.(本小题共 13 分)已知函数 f (x )2 3 sin x cos x2sin 2 x ,x R .(Ⅰ)求函数f (x ) 的最小正周期与单调增区间; (Ⅱ)求函数 f (x ) 在 π04⎡⎤⎢⎥⎣⎦,上的最大值与最小值.()f x ()f x [0,]2πDCB A(2017通州期末)15.(本小题满分13分) 已知函数()()22sin cos 2cos f x x x x =++. (Ⅰ)求)(x f 最小正周期;(Ⅱ)求)(x f 在区间π02[,]上的最大值和最小值.(2017房山期末)15.在△ABC 中,cosA=,c=,a=3.(Ⅰ)求sinC 的值; (Ⅱ)求△ABC 的面积.(2017昌平期末)(15)(本小题满分13分)已知∆ABC 是等边三角形,D 在BC 的延长线上,且2CD =,ABD S ∆=.(Ⅰ)求AB 的长; (Ⅱ)求sin CAD ∠的值.(2017年平谷期末) 15.(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是,,a b c,=asinC =.(Ⅰ)求边c 的值; (Ⅱ) 若42cos =C ,求ABC ∆的面积.(2017年朝阳一模)已知函数()sin (cos )0)2f x x x x ωωωω=+>的最小正周期为π2. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 的单调递减区间.(15)(本小题共13分)在△中,2π3C?. (Ⅰ)若225c a ab =+,求sin sin BA; (Ⅱ)求的最大值.(2017年海淀一模)已知π3是函数2()2cos sin 21f x x a x =++的一个零点.(Ⅰ)求实数a 的值; (Ⅱ)求()f x 单调递增区间.(2017年西城一模)在△ABC 中,角,,A B C 的对边分别为,,a b c ,且tan 2sin a C c A =.(Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的取值范围.(2017年丰台一模)已知函数()sin()f x A x ω=(0)ω>的图象如图所示. (Ⅰ)求()f x 的解析式;(Ⅱ)若()()cos(2)6g x f x x π=⋅+,求()g x 在[0]2,π上的单调递减区间.ABC sin sin A B⋅已知c b a ,,分别是△ABC 的三个内角,,A B C 的三条对边,且222c a b ab =+-. (Ⅰ)求角C 的大小;(Ⅱ)求B A cos cos +的最大值.(2017年平谷一模) 15.(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是,,a b c,=asinC =.(Ⅰ)求边c 的值; (Ⅱ) 若42cos =C ,求ABC ∆的面积.(2017年朝阳二模) 15.(本小题满分13分)在△ABC 中, 角,,A B C 的对边分别为,,a b c ,且b c =,2sin B A =.(Ⅰ)求cos B 的值;(Ⅱ)若2a =,求△ABC 的面积.(2017年东城二模) (15)(本小题共13分)已知函数()2cos 2f x x a x =+⋅(a ÎR ).(Ⅰ)若π()26f =,求a 的值;(Ⅱ)若在7[,]1212ππ上单调递减,求的最大值.()f x ()f x(2017年海淀二模)已知函数3π3π()sin 2coscos2sin 55f x x x =-. (Ⅰ)求()f x 的最小正周期和对称轴的方程; (Ⅱ)求()f x 在区间π[0,]2上的最小值.(2017年西城二模)已知函数π()tan()4f x x =+. (Ⅰ)求()f x 的定义域;(Ⅱ)设(0,π)β∈,且π()2cos()4f ββ=-,求β的值.(2017年丰台二模)在锐角ABC △中,2sin a B b =. (Ⅰ)求∠A 的大小;cos()6B C π-+的最大值.(2017年顺义二模)在ABC △中,角A ,B ,C 的对边分别为,,a b c ,已知cos cos .2cos a b B+A c c C= (I )求C ∠的大小;(II )求sin B A 的最小值.。
(完整版)2017年高考北京理科数学试题及答案(解析版),推荐文档

2017 年普通高等学校招生全国统一考试(北京卷) 数学(理科)第一部分(选择题 共 40 分)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的一项.(1)【2017 年北京,理 1,5 分】若集合 A {x | –2 x 1} , B {x | x –1或x 3},则 A B =( )(A) {x | –2 x 1}(B) {x | –2 x 3}(C) {x | –1 x 1}(D) {x |1 x 3}【答案】A【解析】 A B x 2 x 1,故选 A.() 【2017 年北京,理 2,5 分】若复数 1 ia i 在复平面内对应的点在第二象限,则实数 a 的取值范围是()(A) ,1(B) , 1(C)1, (D)1, 【答案】B【解析】z1iaia11ai,因为对应的点在第二象限,所以a1 0,解得: a 1 ,故选1 a 0B.() 【2017 年北京,理 3,5 分】执行如图所示的程序框图,输出的 s 值为( )(A)23 (B)2(C) 5 3(D)8 5【答案】C【解析】k 0 时,0 3 成立,第一次进入循环11k 1, s 2 ,1 3 成立,第二次进入循环,1k2, s2 13,23成立,第三次进入循环k3,s3 21 5,33否,输出22332s5,3故选 C.x 3,() 【2017 年北京,理 4,5 分】若 x y 满足 x y 2,则 x 2 y 的最大值为( ),y x,(A)1(B)3(C)5(D)9【答案】D【解析】如图,画出可行域, z x 2 y 表示斜率为 1 的一组平行线,当过点 C 3, 3时,2目标函数取得最大值zmax323 f(9x),故3x选 (1D.() 【2017 年北京,理 5,5 分】已知函 数)x ,则 f (x) ( ) 3 (B)是偶函数,且在 R 上是增函数(A)是奇函数,且在 R 上是增函数(D)是偶函数,且在 R 上是减函数(C)是奇函数,且在 R 上是减函数【答案】A1【解析】 f x 3x 1x 1 x 3x f x,所以函数是奇函数,并且 3x 是增函数, 1x 是减函数,根 3 3 3 据增函数-减函数=增函数,所以函数是增函数故选 A.() 【2017 年北京,理 6,5 分】设 m,n 为非零向量,则“存在负数 ,使得 m n”是“ m n < 0 ”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】A【解析】若 0 ,使m n,即两向量反向,夹角是1800,那么m n m n cos1800 m n0,反过来, 若 m n0,那么两向量的夹角为900,1800,KS5U 并不一定反向,即不一定存在负数 ,使得m n,所以是充分不必要条件,故选 A.() 【2017 年北京,理 7,5 分】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 ()(A) 3 2(B) 2 3(C) 2 2(D)2【答案】B【解析】几何体是四棱锥,如图,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线, l 22 22 22 2 3 ,故选 B.() 【2017 年北京,理 8,5 分】根据有关资料,围棋状态空间复杂度的上限 M 约为 3361 , 而可M观 (测参宇考宙数中据普:通lg物3质 0的.4原8 子)总数 N 约为1080 .则下列各数中与 N 最接近的是( )(A) 1033【答案】D【解析】设 M x 3361N1080(B) 1053(C) 1073(D) 109333613618093.28,两边取对数,lgxlg 1080lg 3 lg10 361 lg 3 80 93.28 ,所以 x 10,即 M 最接近1093 ,故选 D. N第二部分(非选择题 共 110 分)二、填空题:共 6 小题,每小题 5 分,共 30 分。
北京市东城区2017届高三(上)期末数学试卷(理科)(解析版)

2016-2017学年北京市东城区高三(上)期末数学试卷(理科)一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.)1.已知集合A={x|(x﹣1)(x﹣3)<0},B={x|2<x<4},则A∩B=()A.{x|1<x<3}B.{x|1<x<4}C.{x|2<x<3}D.{x|2<x<4}2.抛物线y2=2x的准线方程是()A.y=﹣1 B.C.x=﹣1 D.3.“k=1”是“直线与圆x2+y2=9相切”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的k值为()A.6 B.8 C.10 D.125.已知x,y∈R,且x>y>0,则()A.tanx﹣tany>0 B.xsinx﹣ysiny>0C.lnx+lny>0 D.2x﹣2y>06.已知f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,则f(x+1)≥0的解集为()A.(﹣∞,﹣1]B.(﹣∞,1]C.[﹣1,+∞)D.[1,+∞)7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2 D.8.数列{a n}表示第n天午时某种细菌的数量.细菌在理想条件下第n天的日增长率r n=0.6(r n=,n∈N*).当这种细菌在实际条件下生长时,其日增长率r n会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量Q随时间的变化规律.那么,对这种细菌在实际条件下日增长率r n的规律描述正确的是()A.B.C.D.二、填空题共6小题,每小题5分,共30分.9.若复数(2﹣i)(a+2i)是纯虚数,则实数a=.10.若x,y满足,则x+2y的最大值为.11.若点P(2,0)到双曲线的一条渐近线的距离为1,则a=.12.在△ABC中,若AB=2,AC=3,∠A=60°,则BC=;若AD⊥BC,则AD=.13.在△ABC所在平面内一点P,满足,延长BP交AC于点D,若,则λ=.14.关于x的方程g(x)=t(t∈R)的实根个数记为f(t).若g(x)=lnx,则f(t)=;若g(x)=(a∈R),存在t使得f(t+2)>f (t)成立,则a的取值范围是.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.)15.已知{a n}是等比数列,满足a1=3,a4=24,数列{a n+b n}是首项为4,公差为1的等差数列.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和.16.已知函数部分图象如图所示.(Ⅰ)求f(x)的最小正周期及图中x0的值;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.17.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PCD⊥平面ABCD,BC=1,AB=2,,E为PA中点.(Ⅰ)求证:PC∥平面BED;(Ⅱ)求二面角A﹣PC﹣D的余弦值;(Ⅲ)在棱PC上是否存在点M,使得BM⊥AC?若存在,求的值;若不存在,说明理由.18.设函数.(Ⅰ)若f(0)为f(x)的极小值,求a的值;(Ⅱ)若f(x)>0对x∈(0,+∞)恒成立,求a的最大值.19.已知椭圆C:=1(a>b>0)经过点M(2,0),离心率为.A,B是椭圆C上两点,且直线OA,OB的斜率之积为﹣,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)若射线OA上的点P满足|PO|=3|OA|,且PB与椭圆交于点Q,求的值.20.已知集合A n={(x1,x2,…,x n)|x i∈{﹣1,1}(i=1,2,…,n)}.x,y∈A n,x=(x1,x2,…,x n),y=(y1,y2,…,y n),其中x i,y i∈{﹣1,1}(i=1,2,…,n).定义x⊙y=x1y1+x2y2+…+x n y n.若x⊙y=0,则称x与y正交.(Ⅰ)若x=(1,1,1,1),写出A4中与x正交的所有元素;(Ⅱ)令B={x⊙y|x,y∈A n}.若m∈B,证明:m+n为偶数;(Ⅲ)若A⊆A n,且A中任意两个元素均正交,分别求出n=8,14时,A中最多可以有多少个元素.2016-2017学年北京市东城区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.)1.已知集合A={x|(x﹣1)(x﹣3)<0},B={x|2<x<4},则A∩B=()A.{x|1<x<3}B.{x|1<x<4}C.{x|2<x<3}D.{x|2<x<4}【考点】交集及其运算.【分析】化简集合A,由集合交集的定义,即可得到所求.【解答】解:集合A={x|(x﹣1)(x﹣3)<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}.故选:C.2.抛物线y2=2x的准线方程是()A.y=﹣1 B.C.x=﹣1 D.【考点】抛物线的简单性质.【分析】直接利用抛物线方程写出准线方程即可.【解答】解:抛物线y2=2x的准线方程是:x=﹣.故选:D.3.“k=1”是“直线与圆x2+y2=9相切”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线和圆相切得到关于k的方程,解出即可.【解答】解:若直线与圆x2+y2=9相切,则由得:(1+k2)x2﹣6kx+9=0,故△=72k2﹣36(1+k2)=0,解得:k=±1,故“k=1”是“直线与圆x2+y2=9相切”的充分不必要条件,故选:A.4.执行如图所示的程序框图,输出的k值为()A.6 B.8 C.10 D.12【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的k,S的值,可得当S=时不满足条件S≤,退出循环,输出k的值为8,即可得解.【解答】解:模拟程序的运行,可得S=0,k=0满足条件S≤,执行循环体,k=2,S=满足条件S≤,执行循环体,k=4,S=+满足条件S≤,执行循环体,k=6,S=++满足条件S≤,执行循环体,k=8,S=+++=不满足条件S ≤,退出循环,输出k 的值为8.故选:B .5.已知x ,y ∈R ,且x >y >0,则( )A .tanx ﹣tany >0B .xsinx ﹣ysiny >0C .lnx +lny >0D .2x ﹣2y >0【考点】函数单调性的性质.【分析】利用函数单调性和特殊值依次判断选项即可.【解答】解:x ,y ∈R ,且x >y >0,对于A :当x=,y=时,tan =,tan=,显然不成立;对于B :当x=π,y=时,πsinπ=﹣π,﹣sin =﹣1,显然不成立;对于C :lnx +lny >0,即ln (xy )>ln1,可得xy >0,∵x >y >0,那么xy 不一定大于0,显然不成立;对于D :2x ﹣2y >0,即2x >2y ,根据指数函数的性质可知:x >y ,恒成立. 故选D6.已知f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则f (x +1)≥0的解集为( )A .(﹣∞,﹣1]B .(﹣∞,1]C .[﹣1,+∞)D .[1,+∞)【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系进行转化求解即可.【解答】解:∵f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数, ∴函数在(﹣∞,+∞)上是增函数,∵f (0)=0,∴不等式f (x +1)≥0等价为f (x +1)≥f (0),则x +1≥0,得x ≥﹣1,即不等式的解集为[﹣1,+∞),故选:C7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2 D.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个以俯视图中右下角的三角形为底面的三棱锥,代入棱锥体积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图中左上角的三角形为底面的三棱锥,其直观图如下图所示:其底面面积S=×2×2=2,高h=2,故棱锥的体积V==,故选:B.8.数列{a n}表示第n天午时某种细菌的数量.细菌在理想条件下第n天的日增长率r n=0.6(r n=,n∈N*).当这种细菌在实际条件下生长时,其日增长率r n会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量Q随时间的变化规律.那么,对这种细菌在实际条件下日增长率r n的规律描述正确的是()A.B.C.D.【考点】散点图.【分析】由图象可知,第一天到第六天,实际情况与理想情况重合,r1=r2=r6=0.6为定值,而实际情况在第10天后增长率是降低的,并且降低的速度是变小的,即可得出结论.【解答】解:由图象可知,第一天到第六天,实际情况与理想情况重合,r1=r2=r6=0.6为定值,而实际情况在第10天后增长率是降低的,并且降低的速度是变小的,故选B.二、填空题共6小题,每小题5分,共30分.9.若复数(2﹣i)(a+2i)是纯虚数,则实数a=﹣1.【考点】复数的基本概念.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:∵复数(2﹣i)(a+2i)=(2a+2)+(4﹣a)i是纯虚数,∴2a+2=0,4﹣a≠0,解得a=﹣1.故答案为:﹣1.10.若x,y满足,则x+2y的最大值为6.【考点】简单线性规划.【分析】设z=x+2y,作出不等式组对应的平面区域,利用线性规划的知识进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=x+2y,由z=x+2y,得y=,平移直线y=,由图象可知当直线经过点A时,直线y=的截距最大,此时z最大,由,得,即A(2,2)此时z=2+2×2=6.故答案为:611.若点P(2,0)到双曲线的一条渐近线的距离为1,则a=.【考点】直线与双曲线的位置关系;双曲线的简单性质.【分析】求出双曲线的渐近线方程,利用点到直线的距离公式列出方程求解即可.【解答】解:双曲线的一条渐近线方程为:x+ay=0,点P(2,0)到双曲线的一条渐近线的距离为1,可得:=1,解得a=.故答案为:.12.在△ABC中,若AB=2,AC=3,∠A=60°,则BC=;若AD⊥BC,则AD=.【考点】三角形中的几何计算.【分析】利用余弦定理求BC,利用面积公式求出AD.【解答】解:∵AB=2,AC=3,∠A=60°,∴由余弦定理可得BC==,=,∴AD=,故答案为,.13.在△ABC所在平面内一点P,满足,延长BP交AC于点D,若,则λ=.【考点】平面向量的基本定理及其意义.【分析】用特殊值法,不妨设△ABC是等腰直角三角形,腰长AB=AC=1,建立直角坐标系,利用坐标法和向量共线,求出点D的坐标,即可得出λ的值.【解答】解:根据题意,不妨设△ABC是等腰直角三角形,且腰长AB=AC=1,建立直角坐标系,如图所示,则A(0,0),B(1,0),C(0,1),∴=(1,0),=(0,1);∴=+=(,),∴=﹣=(﹣,);设点D(0,y),则=(﹣1,y),由、共线,得y=,∴=(0,),=(0,1),当时,λ=.故答案为:.14.关于x的方程g(x)=t(t∈R)的实根个数记为f(t).若g(x)=lnx,则f(t)=1;若g(x)=(a∈R),存在t使得f(t+2)>f(t)成立,则a的取值范围是a>1.【考点】分段函数的应用.【分析】若g(x)=lnx,则函数的值域为R,且函数为单调函数,故方程g(x)=t有且只有一个根,故f(t)=1,若g(x)=(a∈R),存在t使得f(t+2)>f(t)成立,则x>0时,函数的最大值大于2,且对称轴位于y轴右侧,解得答案.【解答】解:若g(x)=lnx,则函数的值域为R,且函数为单调函数,故方程g(x)=t有且只有一个根,故f(t)=1,g(x)=,当t≤0时,f(t)=1恒成立,若存在t使得f(t+2)>f(t)成立,则x>0时,函数的最大值大于2,且对称轴位于y轴右侧,即,解得:a>1,故答案为:1,a>1三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.)15.已知{a n}是等比数列,满足a1=3,a4=24,数列{a n+b n}是首项为4,公差为1的等差数列.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和.【考点】数列的求和;等差数列与等比数列的综合.【分析】(Ⅰ)利用等差数列、等比数列的通项公式先求得公差和公比,即可求数列的通项公式;(Ⅱ)利用分组求和的方法求解数列的和,由等差数列及等比数列的前n项和公式即可求解数列的和.【解答】解:(Ⅰ)设等比数列{a n}的公比为q.a1=3,a4=24得q3==8,q=2.所以a n=3•2n﹣1.又数列{a n+b n}是首项为4,公差为1的等差数列,所以a n+b n=4+(n﹣1)=n+3.从而b n=n+3﹣3•2n﹣1.(Ⅱ)由(Ⅰ)知b n=n+3﹣3•2n﹣1.数列{n+3}的前n项和为.数列{3•2n﹣1}的前n项和为=3×2n﹣3.所以,数列{b n}的前n项和为为﹣3×2n+3.16.已知函数部分图象如图所示.(Ⅰ)求f(x)的最小正周期及图中x0的值;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.【考点】三角函数的周期性及其求法;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(Ⅰ)根据函数的部分图象得出最小正周期T以及x0的值;(Ⅱ)写出f(x)的解析式,利用正弦函数的图象与性质即可求出f(x)在区间[0,]上的最值.【解答】解:(Ⅰ)∵函数,∴函数的最小正周期为T==π;…因为点(0,1)在f(x)=2sin(2x+φ)的图象上,所以2sin(2×0+φ)=1;又因为|φ|<,所以φ=,…令2x+=,解得x=,所以x0=π+=;…(Ⅱ)由(Ⅰ)知f(x)=2sin(2x+),因为0≤x≤,所以≤2x+≤;当2x+=,即x=时,f(x)取得最大值2;当2x+=,即x=时,f(x)取得最小值﹣1.…17.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PCD⊥平面ABCD,BC=1,AB=2,,E为PA中点.(Ⅰ)求证:PC∥平面BED;(Ⅱ)求二面角A﹣PC﹣D的余弦值;(Ⅲ)在棱PC上是否存在点M,使得BM⊥AC?若存在,求的值;若不存在,说明理由.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的性质.【分析】(Ⅰ)设AC与BD的交点为F,连结EF,推导出EF∥PC.由此能证明PC∥平面BED.(Ⅱ)取CD中点O,连结PO.推导出PO⊥CD,取AB中点G,连结OG,建立空间直角坐标系O﹣xyz,利用向量法能求出二面角A﹣PC﹣B的余弦值.(Ⅲ)设M是棱PC上一点,则存在λ∈[0,1]使得.利用向量法能求出在棱PC上存在点M,使得BM⊥AC.此时,=【解答】(共14分)证明:(Ⅰ)设AC与BD的交点为F,连结EF.因为ABCD为矩形,所以F为AC的中点.在△PAC中,由已知E为PA中点,所以EF∥PC.又EF⊂平面BFD,PC⊄平面BFD,所以PC∥平面BED.…(Ⅱ)取CD中点O,连结PO.因为△PCD是等腰三角形,O为CD的中点,所以PO⊥CD.又因为平面PCD⊥平面ABCD,PO⊂平面PCD,所以PO⊥平面ABCD.取AB中点G,连结OG,由题设知四边形ABCD为矩形,所以OF⊥CD.所以PO⊥OG.…如图建立空间直角坐标系O﹣xyz,则A(1,﹣1,0),C(0,1,0),P(0,0,1),D(0,﹣1,0),B(1,1,0),O(0,0,0),G(1,0,0).=(﹣1,2,0),=(0,1,﹣1).设平面PAC的法向量为=(x,y,z),则,令z=1,得=(2,1,1).平面PCD的法向量为=(1,0,0).设的夹角为α,所以cosα==.由图可知二面角A﹣PC﹣D为锐角,所以二面角A﹣PC﹣B的余弦值为.…(Ⅲ)设M是棱PC上一点,则存在λ∈[0,1]使得.因此点M(0,λ,1﹣λ),=(﹣1,λ﹣1,1﹣λ),=(﹣1,2,0).由,得1+2(λ﹣1)=0,解得.因为∈[0,1],所以在棱PC上存在点M,使得BM⊥AC.此时,=.…18.设函数.(Ⅰ)若f(0)为f(x)的极小值,求a的值;(Ⅱ)若f(x)>0对x∈(0,+∞)恒成立,求a的最大值.【考点】利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数f(x)的导数,计算f′(0)=0,求出a的值检验即可;(Ⅱ)通过讨论a的范围判断函数的单调性结合f(x)>0对x∈(0,+∞)恒成立,求出a的具体范围即可.【解答】解:(Ⅰ)f(x)的定义域为(﹣1,+∞),因为,所以f′(x)=﹣,因为f(0)为f(x)的极小值,所以f′(0)=0,即﹣=0,所以a=1,此时,f′(x)=,当x∈(﹣1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)在x=0处取得极小值,所以a=1.…(Ⅱ)由(Ⅰ)知当a=1时,f(x)在[0,+∞)上为单调递增函数,所以f(x)>f(0)=0,所以f(x)>0对x∈(0,+∞)恒成立.因此,当a<1时,f(x)=ln(x+1)﹣>ln(x+1)﹣>0,f(x)>0对x∈(0,+∞)恒成立.当a>1时,f′(x)=,所以,当x∈(0,a﹣1)时,f′(x)<0,因为f(x)在[0,a﹣1)上单调递减,所以f(a﹣1)<f(0)=0,所以当a>1时,f(x)>0并非对x∈(0,+∞)恒成立.综上,a的最大值为1.…19.已知椭圆C:=1(a>b>0)经过点M(2,0),离心率为.A,B是椭圆C上两点,且直线OA,OB的斜率之积为﹣,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)若射线OA上的点P满足|PO|=3|OA|,且PB与椭圆交于点Q,求的值.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)由题意得,求出b,由此能求出椭圆C的方程;(Ⅱ)设A(x1,y1),B(x2,y2),Q(x3,y3),求出p点的坐标,由B,Q,P 三点共线,得,联立方程组求解得x3,y3,再结合已知条件能求出λ值,则的值可求.【解答】解:(Ⅰ)由题意得,解得.∴椭圆C的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),Q(x3,y3),∵点P在直线AO上且满足|PO|=3|OA|,∴P(3x1,3y1).∵B,Q,P三点共线,∴.∴(3x1﹣x2,3y1﹣y2)=λ(x3﹣x2,y3﹣y2),即,解得,∵点Q在椭圆C上,∴.∴.即,∵A,B在椭圆C上,∴,.∵直线OA,OB的斜率之积为,∴,即.∴,解得λ=5.∴=|λ|=5.20.已知集合A n={(x1,x2,…,x n)|x i∈{﹣1,1}(i=1,2,…,n)}.x,y∈A n,x=(x1,x2,…,x n),y=(y1,y2,…,y n),其中x i,y i∈{﹣1,1}(i=1,2,…,n).定义x⊙y=x1y1+x2y2+…+x n y n.若x⊙y=0,则称x与y正交.(Ⅰ)若x=(1,1,1,1),写出A4中与x正交的所有元素;(Ⅱ)令B={x⊙y|x,y∈A n}.若m∈B,证明:m+n为偶数;(Ⅲ)若A⊆A n,且A中任意两个元素均正交,分别求出n=8,14时,A中最多可以有多少个元素.【考点】数列的应用.【分析】(Ⅰ)由子集定义直接写出答案;(Ⅱ)根据题意分别表示出m,n即可;(Ⅲ)根据两个元素均正交的定义,分别求出n=8,14时,A中最多可以有多少个元素即可.【解答】解:(Ⅰ)A4中所有与x正交的元素为(﹣1,﹣1,1,1)(1,1,﹣1,﹣1),(﹣1,1,﹣1,1),(﹣1,1,1,﹣1),(1,﹣1,﹣1,1),(1,﹣1,1,﹣1).…(Ⅱ)对于m∈B,存在x=(x1,x2,…,x n),x i∈{﹣1,1},y=(y1,y2,…,y n),其中x i,y i∈{﹣1,1};使得x⊙y=m.令,;当x i=y i时,x i y i=1,当x i≠y i时,x i y i=﹣1.那么x⊙y=.所以m+n=2k﹣n+n=2k为偶数.…(Ⅲ)8个,2个n=8时,不妨设x1=,x2=(﹣1,﹣1,﹣1,﹣1,1,1,1,1).(1,1,1,1,1,1,1,1)在考虑n=4时,共有四种互相正交的情况即:(1,1,1,1),(﹣1,1,﹣1,1),(﹣1,﹣1,1,1),(1,﹣1,﹣1,1)分别与x1,x2搭配,可形成8种情况.所以n=8时,A中最多可以有8个元素.…N=14时,不妨设y1=(1,1…1,1),(14个1),y2=(﹣1,﹣1…﹣1,1,1…1)(7个1,7个﹣1),则y1与y2正交.令a=(a1,a2,…a14),b=(b1,b2,…b14),c=(c1,c2,…c14)且它们互相正交.设a、b、c相应位置数字都相同的共有k个,除去这k列外a、b相应位置数字都相同的共有m个,c、b相应位置数字都相同的共有n个.则a⊙b=m+k﹣(14﹣m﹣k)=2m+2k﹣14.所以m+k=7,同理n+k=7.可得m=n.由于a⊙c=﹣m﹣m+k+(14﹣k﹣2m)=0,可得2m=7,m=矛盾.所以任意三个元素都不正交.综上,n=14时,A中最多可以有2个元素.…2017年1月21日。
北京市海淀区2017届高三上学期期末考试数学理试题(全Word版,含答案)模板

海淀区高三年级第一学期期末练习数学(理科) 2017.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项.1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1 BCD3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A.12y x =- B.12y x =C.2y x =- D.2y x =-6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14B .16C .18D .208.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1] B .13[,]22 C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____________.13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是________.14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.俯视图主视图ABCD1D 1A 1B 1C E F三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B = ,且∆ABC. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周 第二周 第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期 85% 92% 95%96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠= ,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠= ,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.AOBCD1图ODCB2图1A18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-= ,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = ,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);1)y x =+和1)y x =+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==122a a ⨯=解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,b b >∴=. (不写b>0不扣分)(Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:sin sin a A B b == 又120B = ,所以A 是锐角(或:因为12,a c =<=)所以cos A ==所以sin tan cos A A A == 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分. 情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分) 解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1A DC 平面1A OB m = 所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则11,0),(0,2,0),(0,0,2)A B D -,所以1(,2)A D =.设,0)G m ,则由1OG A D ⊥可得10A D OG ⋅=,即(,2),0)30m m ⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则A110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n即20,30,y z y ⎧++=⎪⎨+=⎪⎩令1y =,则1x z =,所以=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,A O n A O n A O n⋅<>==⋅法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D = , 所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠= ,所以160OAG ∠= , 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),((0,0,2)O A B D -(,所以11(2,0,2),(A D A B =-=-设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,30,x z x -+=⎧⎪⎨-=⎪⎩令1x =,则1y z ==,所以n =,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,AO n AO n AO n ⋅<>=⋅18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==, 所以椭圆G的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=②将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A ,所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++ 2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根, 因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即 存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x 0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列,所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=- ,故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤= ,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥= ,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥= . 又因为1110b a a =-=,所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-= , 所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-, 所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+ , 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠ ,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-= ,所以1121()ki k i a a b b b =-≤+++∑ ,(1,2,3,,)k n =即112()k k S ka b b b ≤++++ ,(1,2,3,,)k n = 由1(1,2,3,)n n b b n +≥= 可得(1,2,3,,)k n b b k n ≤= 又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k = ,所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++- ,即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n nS S S a b +-+++≤+ 等号成立的条件是1(1,2,3,,)i i n a a b b i n -=== ,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市部分区2017届高三上学期考试数学理试题分类汇编
函数
1、(昌平区2017届高三上学期期末)下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是
(A )x y e = (B )sin y x = (C )y =
(D )3y x =
2、(朝阳区2017届高三上学期期末)下列函数中,既是偶函数,又在区间[0,1]上单调递增的是
A .cos y x =
B .2y x =-
C . 1()2
x
y = D . |sin |y x =
3、(朝阳区2017届高三上学期期中)下列函数中,在其定义域上既是偶函数又在(0)+∞,
上单调递减的是 A .2y x =
B .1y x =+
C .lg ||y x =-
D .2x y =-
4、(东城区2017届高三上学期期末)已知()f x 是定义在R 上的奇函数,且在[0,)+∞上是
增函数,则(1)0f x +≥的解集为
(A )(,1]-∞- (B )(,1]-∞ (C )[1,)-+∞ (D )[1,)+∞ 5、(丰台区2017届高三上学期期末)已知()f x 为偶函数,且0≥x 时,][)(x x x f -=(][x 表示不超过x 的最大整数).设()()()g x f x kx k k =--∈R ,若1k =,则函数()g x 有____个零点;若函数()g x 三个不同的零点,则k 的取值范围是____.
6、(海淀区2017届高三上学期期末)已知函数||()e cos πx f x x -=+,给出下列命题:
①()f x 的最大值为2;
②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.
7、(海淀区2017届高三上学期期中)已知函数,,log x b c y a y x y x ===的图象如图所示,则
A. a b c >>
B. a c b >>
C. c a b >>
D. c b a >> 8、(石景山区2017届高三上学期期末)下列函数中既是奇函数又在区间(0,)+∞上单调递减的是( )
A .x y e -=
B .ln()y x =-
C .3y x =
D .1
y x
=
9、(通州区2017届高三上学期期末)下列函数中,既是偶函数又在区间()0,1内单调递减的是
A .3x y =
B .2x
y =
C .cos y x =
D .x
x y 1
ln -
= 10、(西城区2017届高三上学期期末)下列函数中,定义域为R 的奇函数是 (A )21y x =+ (B )tan y x = (C )2x y = (D )sin y x x =+
11、(昌平区2017届高三上学期期末)设 1
2
1ln ,2,2
e a b c e -===,则
(A) c b a << (B) c a b << (C) a c b << (D) a b c <<
12、(昌平区2017届高三上学期期末)设函数(3)(1),,
()22
,.x x x x a f x x a -+-≤⎧=⎨->⎩
①若1a =,则()f x 的零点个数为 ;
②若()f x 恰有1个零点,则实数a 的取值范围是 .
13、(朝阳区2017届高三上学期期中)若 2.1log 0.6a =,0.6
2.1b =,0.5log 0.6c =,则a ,
b ,
c 的大小关系是
A .a b c >>
B .b c a >>
C .c b a >>
D .b a c >>
14、(朝阳区2017届高三上学期期中)已知函数21,0,
()log ,0,
x x f x x x +≤⎧=⎨
>⎩则函数
1
()(())2
g x f f x =-的零点个数是
A .4
B .3
C .2
D .1
15、(海淀区2017届高三上学期期中)设函数2,1,
()(0log ,1,
x a a x f x a x x ⎧-⎪=>⎨>⎪⎩≤,且1)a ≠.
①若3
2
a =
,则函数()f x 的值域为______; ②若()f x 在R 上是增函数,则a 的取值范围是_____.
16、(石景山区2017届高三上学期期末)将函数2(3)y x =-图象上的点2(,(3))P t t -向左平移m (m >0)个单位长度得到点Q .若Q 位于函数2y x =的图象上,则以下说法正确的是( )
A .当2t =时,m 的最小值为3
B .当3t =时,m 一定为3
C .当4t =时,m 的最大值为3
D .t ∀∈R ,m 一定为3
17、(石景山区2017届高三上学期期末)已知函数1
1,1,
()4ln ,1
x x f x x x ⎧+≤⎪=⎨⎪>⎩,
①方程()f x x =-有________个根;
②若方程()f x ax =恰有两个不同实数根,则实数a 的取值范围是____________.
18、(通州区2017届高三上学期期末)已知函数()()()220,
0,
x
x f x x x ⎧≤⎪=⎨>⎪⎩ 若函数
()()(
)1g x f x k x =--有且只有一个零点,则实数k 的取值范围是_______. 19、(西城区2017
届高三上学期期末)设函数30,()log ,,
x a f x x x a =>⎪⎩≤≤其中0a >.
① 若3a =,则[(9)]f f =____;
② 若函数()2y f x =-有两个零点,则a 的取值范围是____.
20、(北京市2017届高三春季普通高中会考)已知3()log f x x =,()(2)f a f >,那么a 的取值范围是( )
A . {|2}a a >
B .{|12}a a << C. 1
{|}2a a > D .1
{|
1}2a a << 21、(北京市第四中学2017届高三上学期期中考试)为了得到函数3
lg
10
x y +=的图象,只需把函数lg y x =的图象上所有的点
A .向左平移3个单位长度,再向上平移1个单位长度
B .向右平移3个单位长度,再向上平移1个单位长度
C .向左平移3个单位长度,再向下平移1个单位长度
D .向右平移3个单位长度,再向下平移1个单位长度
参考答案
1、D
2、D
3、C
4、C
5、2;1111,,3432⎛⎤⎡⎫
-- ⎪⎥⎢⎝⎦⎣⎭
U 6、①②③
7、详细分析:根据幂函数的性质,由图可知:0<b <1,由指数函数图象的性质,知:1a >,又当x =1时,1y a =<2,所以,12a <<;由对数函数图象的性质,知1c >,又x =2时,由图象可知:log 21c <, 所以,c >2,所以,选C 。
8、D 9、C 10、D 11、C
12、2;(,3)a ∈-∞- 13、B 14、B
15、详细分析:
16、B 17、1,11[,)4e
18、
1或4k k <-=
19[4,9)
20、A
21、C。