线性代数
线性代数

第1章 矩阵与行列式
>> AB=A*B 运行结果: AB = 6 2 6 1 8 -1 >> D=6*A 运行结果: D= 18 6 12 6 6 12
-2 0 2
6 12 18
第1章 矩阵与行列式
>> sym c; >> cA=c*A 运行结果: cA = [ 3*c, c, c] [ 2*c, c, 2*c] [ c, 2*c, 3*c] >> F=A' 运行结果: F= 3 2 1 1 1 2
第1章 矩阵与行列式
【矩阵与行列式简介】
在计算机日益发展的今天,线性代数起着越 来越重要的作用。线性代数起源于解线性方程组 的问题,而利用矩阵来求解线性方程组的Gauss消 元法至今仍是十分有效的计算机求解线性方程组 的方法。矩阵是数学研究和应用的一个重要工具 ,利用矩阵的运算及初等变换可以解决求解线性 方程组等问题。特殊的矩阵方阵的数字特征之一 是方阵的行列式,使用行列式可以描述方阵的一 些重要的性质。通过计算行列式可求逆矩阵,n个
第1章 矩阵与行列式
>>C=A(2:end,[1,4]) 运行结果: C= 5 8 9 12 13 16 3.>> A=[0 1 2;1 1 4;2 -1 0]; >>E=eye(3); >>B=[A,E] 运行结果: B= 0 1 2 1 1 1 4 0 2 -1 0 0
0 1 0
0 0 1
第1章 矩阵与行列式
;
2 x1 4 x 2 x3 x 4 5 (2) x1 2 x2 2 x3 x 4 4 . x 2x x 2x 1 2 3 4 1
线性代数课件PPT

目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
线性代数

系数行列式
二阶行列式. 二阶行列式.
13
二. 三阶行列式 类似地, 类似地 为讨论三元线性方程组
a11 x 1 + a 12 x 2 + a13 x 3 = b1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b2 a x + a x + a x = b 32 2 33 3 3 31 1
经 济 数 学 基 础
1
课程的作用
线性代数( 线性代数(Linear Algebra)是代数学的一个分 这一词在我国出现较晚, 支,“Algebra”这一词在我国出现较晚,清代著名的数 学家、翻译家李善兰将它翻译成代数学,一直沿用至今。 学家、翻译家李善兰将它翻译成代数学,一直沿用至今。 线性代数是一门非常重要的基础课。 线性代数是一门非常重要的基础课。线性代数主要 处理线性关系的问题,其含义不断扩大, 处理线性关系的问题,其含义不断扩大,它的理论不仅 渗透到了数学的许多分支中,而且还在国民经济、工程 渗透到了数学的许多分支中,而且还在国民经济、 技术、理论物理、理论化学、航天、 技术、理论物理、理论化学、航天、航海等领域中都有 广泛的应用。 广泛的应用。 该课程对于培养学生的逻辑推理和抽象思维能力, 该课程对于培养学生的逻辑推理和抽象思维能力,空 间想象能力具有重要作用。通过线性代数的学习, 间想象能力具有重要作用。通过线性代数的学习,能使 学生获得应用学科中常用的矩阵、线性方程组等理论, 学生获得应用学科中常用的矩阵、线性方程组等理论, 具有熟练的矩阵运算能力和用矩阵方法解决实际问题的 能力。 能力。
a11 D = a21 a31 a12 a22 a32 a13 a23 a33
记
a11 b1 a13 D2 = a21 b2 a23 a31 b3 a33
线性代数简介

序 言1.什么是线性代数:线性代数名曰代数,是代数学乃至整个数学的一个非常重要的学科,顾名思义,它是研究线性问题的代数理论,具体来说是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
1.1 那么什么是代数呢?代数英文是Algebra ,源于阿拉伯语,其本意是“结合在一起”的意思。
也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。
抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便,为了提高效率,把许多看似不相关的问题化归为一类问题。
比如线性代数中的一个重要的抽象概念是线性空间(对所谓的要满足“加法”和“数乘”等八条公理的元素的集合),而其元素被称为向量。
也就是说,只要某个集合里的元素满足那么几条公理,元素之间的变化满足这些规律,我们就可以对这个集合(现在可以改名为线性空间了)进行一系列线性化处理和分析,这个陌生的集合的性质和结构特点我们一下子就全知道了,因为宇宙间的所有的线性空间类的集合的性质都一样,地球人都知道(如果地球人都学了线性代数的话)。
多么深刻而美妙的结论!这就是代数的一个抽象特性。
1.2 那么线性问题又是什么样的问题呢?在大家的科技实践中,从实际中来的数学问题无非分为两类:一类线性问题,一类非线性问题。
线性问题是研究最久、理论最完善的;而非线性问题则可以在一定基础上转化为线性问题求解。
因此遇到一个具体的问题,首先判断是线性还是上非线性的;其次若是线性问题如何处理,若是非线性问题如何转化为线性问题。
下面我们通过介绍一个重要的概念来逐渐的把握线性这个核心意思。
“线性”的意义线性代数里面的线性主要的意思就是线性空间里的线性变换。
线性变换或线性映射是把中学的线性函数概念进行了重新定义,强调了函数的变量之间的变换的意义。
线性函数的概念线性函数的概念在初等数学和高等数学中含义不尽相同(高等数学常常把初等数学的关键概念进行推广或进一步抽象化,初等数学的概念就变成了高等数学概念的一个特例)。
(完整版)线性代数笔记

等行变换,则得到的是 。
对于第二类的可先转化为第一类的 ,即由
两边转置得
按上例的方法求出 进而求出 X
二.初等变换的性质
定理 2.5.1 设线性方程组的增广矩阵 经有限次的初等行变换化为 ,则以 与
为增广矩阵的方程组同解。 定理 2.5.2 任何矩阵都可以经有限次初等行变换化成行最简形式,经有限次初等变换 (包括行及列)化成等价标准形。且其标准形由原矩阵惟一确定,而与所做的初等变换无
3、矩阵的乘法 设 A=(aij)m×n,B=(bjk)n×l,则 A*B=C=(cik)m×l 其中 C=Σaijbjk(j=1,n) 注意;两个矩阵相乘必须第一个矩阵的列数等于第二个矩阵的行数;矩阵乘法不满足交换 律,即 AB 不一定等于 BA;矩阵乘法有零因子,即 A≠0(零矩阵),B≠0(零矩阵),但 有可能 A*B=0(零矩阵) 矩阵的乘法适合以下法则: (1)结合律:(AB)C=A(BC) (2)分配律(A+B)C=AC+BC
hing at a time and All things in their being are good for somethin
此处 0 表示与 A 同型的零矩阵,即 A=(aij)m×n ,0=0m×n (4)矩阵 A=(aij)m×n,规定-A=(-aij)m×n,(称之为 A 的负矩阵),则有 A+(-A)=(A)+A=0
如果 n 个未知数,n 个方程的线性方程组的系数行列式 D≠0,则方程组
定理 1.4.3 如果 n 个未知数 n 个方程的齐次方程组的系数行列式 D≠0,则该方程组只有零 解,没有非零解。 推论 如果齐次方程组有非零解,则必有系数行列式 D=0。
第二章 矩阵
一、矩阵的运算
线性代数知识点归纳,超详细
线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
线性代数
1线性方程组1. 三种行初等变换倍加变换(某一行的倍数加到另一行)对换变换(两行交换)倍乘变换(某一行所有元素乘以同一个非零数)2. 行等价一个矩阵可经过一系列初等行变换成为另一个矩阵。
行变换可逆。
3. 若两个线性方程组的增广矩阵行等价,则它们有相同的解集。
4. 简化行阶梯矩阵a) 非零行的先导元素为0b) 先导元素1是该元素所在列的唯一非零元素一个矩阵的简化行阶梯矩阵唯一。
5. 对应于主元列的变量称基本变量,其他变量称自由变量。
6. 向量的平行四边形法则若R2中的向量u,v用平面上的点表示,则u+v对应于u,v,0为三个顶点的平行四边形的第四个顶点。
[思考:即使u,v不是R2而是R3甚至R n中的向量,上述结论是否仍然成立?]7. 向量方程x1a1+x2a2+...+x n a n=b和增广矩阵如下的线性方程组[a1 a2 ... a n b]和矩阵方程Ax=b有相同的解集。
8. 方程Ax=b有解的条件:b是A的各列的线性组合。
9. 设A为mxn矩阵,以下命题等价:a) 对R m中每个b,Ax=b有解b) R m中的每个b都是A的列的一个线性组合c) A的各列生成R m(R m = Span{A各列})d) A在每一行都有一个主元位置(注意是A的每一行,*不*是A的增广矩阵的每一行)10. 方程Ax=0有非平凡解的条件:至少有一个自由变量。
11. 如果非齐次方程有多个解,其解可表示为一个向量(这个向量也是非齐次方程的特解)加上相应的齐次方程的解。
或者说:非齐次方程解=该方程特解+对应的齐次方程的通解12. 若一组向量v1,v2,...,v n组成的向量方程x1v1+x2v2+...+x n v n = 0仅有平凡解,则这些向量线性无关;否则这些向量线性相关。
同样,仅当矩阵方程Ax=0仅有平凡解,A的各列线性无关。
13. 单个的零向量线性相关,因为0x=0有非平凡解;同理,单个的非零向量线性无关。
线性代数详细知识点
线性代数 第一章 行列式§1 二阶和三阶行列式一、二元一次线性方程组与二阶行列式结论:如果112212210a a a a -≠,则二元线性方程组 11112212112222a x a xb a x a x b +=⎧⎨+=⎩的解为122122*********b a a b x a a a a -=-,1121212112121a b b a x a b b a -=-。
定义:设11122122,,,a a a a ,记11221221a a a a -为11122122a a a a 。
称11122122a a a a 为二阶行列式有了行列式的符号,二元线性方程组的求解公式可以改写为112222111122122b a b a x a a a a =,111122211122122a b a b x a a a a =二、三阶行列式与三元一次线性方程组定义:111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++---定理:如果1112132122233132330a a a D a a a a a a =≠,则***123(,,)x x x 是下面的三元线性方程组的解111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩当且仅当*1x =112132222333233/b a a b a a D b a a ,*2x =111132122331333/a b a a b a D a b a ,*3x =111212122231323/a a b a a b D a a b 其中111213212223313233a a a a a a a a a 为系数行列式。
线性代数目录
线性代数目录前言
第1章行列式
1 二阶与三阶行列式
2 全排列和对换
3 n 阶行列式的定义
4 行列式的性质
5 行列式按行(列)展开
习题一
第2章矩阵及其运算
1 线性方程组和矩阵
2 矩阵的运算
3 逆矩阵
4 克拉默法则
5 矩阵分块法
习题二
第3章矩阵的初等变换与线性方程组
1 矩阵的初等变换
2 矩阵的秩
3 线性方程组的解
习题三
第4章向量组的线性相关性
1 向量组及其线性组合
2 向量组的线性相关性
3 向量组的秩
4 线性方程组的解的结构
5 向量空间
习题四
第5章相似矩阵及二次型
1 向量的内积、长度及正交性
2 方阵的特征值与特征向量
3 相似矩阵
4 对称矩阵的对角化
5 二次型及其标准形
6 用配方法化二次型成标准形
7 正定二次型
习题五
∗第6章线性空间与线性变换
1 线性空间的定义与性质
2 维数、基与坐标
3 基变换与坐标变换
4 线性变换
5 线性变换的矩阵表示式
习题六
部分习题答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数线性代数计算库使用BLAS、LAPACK、ATLAS1和cpplapack2库。
BLAS和LAPACK这两个库有很多函数,满足通常对线性代数的需求。
常见参数:trans: 转置标志m: 行数n: 列数alpha: 系数beta: 系数A、B:矩阵(数组)lda、ldb: leading dimension of A、B。
incx、incy: 增量x、y: 向量work, lwork, ipiv: 计算过程中需要的临时空间info: 返回信息:向量与矩阵相乘dgemv(trans,m,n,alpha,A,lda,x,incx,beta,y,incy)计算y:=alpha*A*x+beta*y,或者y:=alpha*A’*x+beta*y矩阵与矩阵相乘dgemm(transa,transb,m,n,k,alpha,A,lda,B,ldb,beta,C,ldc)计算 C:=alpha*op(A)*op(B)+beta*C,其中 op(X)表示 x 和x’ 中的一个LU 分解dgetrf(m,n,A,lda,ipiv,info)对矩阵A进行LU分解,A=P*L*U其中 P 是置换矩阵,L 是对角线为1的下三角矩阵U是上三角矩阵QR 分解dgeqr2(m,n,A,lda,tau,work,info)对矩阵 A 进行 QR 分解, A=Q*R Q 是正交矩阵,R 是上三角矩阵矩阵求逆先dgetrf(m,n,A,lda,ipiv,info) LU分解再dgetri(n,A,lda,iniv,work,lwork,info)通过 inv(A)*L=inv(U) 解出 inv(A) ;还可通过解方程组 A*X=I,I为单位阵,来求A的逆参见“求解线性方程”特征值与特征向量dgeev(jobvl,jobvr,n,A,lda,wr,wi,vl,ldvl,vr,ldvr,work,lwork,info)右特征向量 v(j) 满足: A*v(j)=lambda(j)*v(j)其中 lambda(j) 是特征值左特征向量 u(j) 满足: u(j)**H*A=lambda(j)*u(j)**H其中 u(j)**H 是 u(j) 的共轭变换SVD 分解dgesvd(jobu,jobvt,m,n,A,lda,S,U,ldu,vt,ldvt,work,lwork,info)其中 A=U*SIGMA*transpose(V)U,V是矩阵 A 的左右奇异值向量,SIGMA是主对角线元素不为0,其余为0的矩阵其对角线元素是A的奇异值。
求解线性方程先dgetrf(m,n,A,lda,ipiv,info) LU分解A=P*L*U再dgesv(n,nrhs,A,lda,ipiv,B,ldb,info)计算 A*X=B最小二乘算法1.一般最小二乘dgels(trans,m,n,nrhs,A,lda,B,ldb,work,lwork,info)如果trans=’N’,m>=n:解 minimize||B-A*X||;如果trans=’N’,m<n:解 A*X=B;如果trans=’T’,m>=n:解 A**T*X=B;如果trans=’T’,m<n:解 minimize||B-A**T*X||;2.极小化范数最小二乘dgelsd(m,n,nrhs,A,lda,B,ldb,S,rcond,rank,work,lwork,iwork,info) minimize 2-norm(| b - A*x |)3.dgelss(m,n,nrhs,A,lda,B,ldb,S,rcond,rank,work,lwork,info)minimize 2-norm(| b - A*x |)4.dgelsx(m,n,nrhs,A,lda,B,ldb,jpvt,rcond,rank,work,info) minimize||A*X-B|5.dgelsy(m,n,nrhs,A,lda,B,ldb,jpvt,rcond,rank,work,lwork,info) minimize||A*X-B||条件数dgecon(norm,n,A,lda,anrom,rcond,work,iwork,info) rcond=1/(norm(A)*norm(inv(A)))cpplapack由于BLAS和LAPACK的每个函数的参数都很多,传递起来比较麻烦,有很多包都实现了对LAPACK和BLAS的封装,cpplapack是其中一个,编译的时候需要BLAS和LAPACK库支持。
开发组使用cpplapack并对其进行了补充。
cpplapack库模型中常用的类dgematrix(矩阵),dcovector(列向量)和drovector(行向量)类名:dgematrixdgematrix成员变量变量名变量类型变量描述m public long const矩阵行数n public long const矩阵列数array public double *const一维数组储存矩阵数据(列优先原则)darray public double**const 二维数组储存矩阵数据M private long矩阵行数N private long矩阵列数Array private double*一维数组储存矩阵数据(列优先原则)Darray private double**二维数组储存矩阵数据函数函数名函数返回类型函数描述dgematrix ()构造函数dgematrix (const dgematrix &)复制构造函数dgematrix(const long &, constlong &)带参数的构造函数clear ()void清空矩阵中所有的数据,并且收回矩阵所占的内存空间zero ()void将矩阵中的所有元素都赋值为0.0 identity ()void将矩阵变成一个单位阵chsign ()void将矩阵中的数据全变为它的相反数copy (const dgematrix &)void将参数矩阵赋值给原矩阵resize (const long &, const long &)void重新为矩阵在内存中开辟空间dgesv (dcovector &)long解决A*x=ydgels (dcovector &)long普通最小二乘dgeev(std::vector< double > &, std::vector< double > &, std::vector< dcovector> &, std::vector< dcovector > &)long求右特征值和右特征向量dgesvd(dcovector&, dgematrix long SVD分解&, dgematrix &)operator= (const dgematrix &)dgematrix & 赋值运算符operator+= (const dgematrix &)dgematrix & 矩阵与矩阵加法运算符operator-= (const dgematrix &)dgematrix & 矩阵与矩阵减法运算符operator *= (const dgematrix &)dgematrix & 矩阵与矩阵乘法运算符operator *= (const double &)dgematrix & 矩阵与单个值点乘运算符operator/= (const double &)dgematrix & 矩阵与单个值点除运算符t (const dgematrix &)_dgematrix矩阵转置i (const dgematrix &)_dgematrix矩阵求逆idamax(long &, long &, const dgematrix &)void返回矩阵的数值中绝对值最大的元素所在的行和列damax (const dgematrix &)double返回矩阵中数值绝对值的最大值operator+(const dgematrix&, const dgematrix &)_dgematrix矩阵与矩阵加法运算符operator-(const dgematrix&, const dgematrix &)_dgematrix矩阵与矩阵减法运算符operator *(const dgematrix&, const dgematrix &)_dgematrix矩阵与矩阵乘法运算符operator *(const dgematrix&, const dcovector &)_dcovector矩阵与列向量乘法运算符operator *(const drovector&, const dgematrix &)_drovector行向量与矩阵乘法运算符operator *(const dgematrix&, const double &)_dgematrix矩阵与单个值点乘运算符operator *(const double &, const dgematrix &)_dgematrix单个值与矩阵点乘运算符operator/(const dgematrix&, const double &)_dgematrix矩阵与单个值点除运算符operator()(const long &, constlong &)double&矩阵的()运算符operator()(const long &, constlong &) constdouble矩阵的()运算符operator+ (const dgematrix &)const dgematrix& 矩阵与矩阵的加法运算符operator- (const dgematrix &)_dgematrix矩阵与矩阵的减法运算符set(const long &, const long &, const double &) const void将矩阵的第几行第几列的元素赋值为几swap (dgematrix &, dgematrix &)void两个矩阵互换_ (dgematrix &)_dgematrix将参数矩阵的值赋值给原矩阵,将参数矩阵所占空间清空~dgematrix ()析构函数,释放空间dgematrix新开发添加的方法函数名函数返回类型函数描述dgematrix(const long&, const long&, const double*)将一维数组赋值给矩阵的构造函数dgematrix(const long& _m, const long& _n, const double x)将矩阵的每个元素都赋值为x的构造函数dgematrix& operator=(const dgematrix将矩阵的每个元素double &t)都赋值为tvoid set_range(const long& _mbegin, const long& _mend, const double& d)void将矩阵一维数组下标从_mbegin到_mend全赋值为dvoid set(const long& _mbegin, const long& _mend, const double* array)void将数组元素(从0开始)赋值给矩阵一维数组从_mbegin到_mendset(const long& _mbegin, const long& _mend, const long& step, const double* array)void将数组元素(从0开始)赋值给矩阵一维数组从_mbegin到_mend,步长为stepsub_mat(long n, long m, dgematrix &x, std::vector<int> rows, std::vector<int> cols, dgematrix &y)void根据提供的行数,列数取出子矩阵diag_mat(int k, int *array, dgematrix &q)void将整型数组中的元素变换成一个对角阵(数组元素在对角线上)diag_mat(int k, double *array, dgematrix &q)void将实型数组中的元素变换成一个对角阵(数组元素在对角线上类名:dcovector(注:drovector 成员变量和成员方法跟dcovector一样)dcovector成员变量变量名变量类型变量描述l public long const列向量的行数array public double *const一维数组储存列向量的数据L private long列向量的行数Array private double*一维数组储存列向量的数据dcovector函数函数名函数返回类函数描述型dcovector ()构造函数dcovector (const dcovector &)复制构造函数dcovector (const long &)在内存中开辟空间的构造函数clear ()void清空列向量中所有的数据,并且收回列向量中所占的内存空间zero ()void将列向量中的所有元素都赋值为0.0 chsign ()void将列向量中的数据全变为它的相反数copy (const dcovector &)void将参数列向量赋值给原列向量resize (const long &)void重新为列向量在内存中开辟空间operator= (const dcovector &)dcovector & 赋值运算符operator+= (const dcovector &)dcovector & 列向量与列向量加法运算符operator-= (const dcovector &)dcovector & 列向量与列向量减法运算符operator *= (const double &)dcovector & 列向量与单个数值点乘运算符operator/= (const double &)dcovector & 列向量与单个值点除运算符t (const dcovector &)_drovector列向量转置idamax (const dcovector &)long列向量中绝对值最大的值对应的行数damax (const dcovector &)double返回列向量的数值中绝对值最大的元素swap (dcovector &, dcovector &)void两个列向量互相交换operator+ (const dcovector &)const dcovector&列向量与列向量加法运算符operator- (const dcovector &)_dcovector列向量与列向量减法运算符operator+(const dcovector&, const dcovector &)_dcovector列向量与列向量加法运算符operator-(const dcovector&, const dcovector &)_dcovector列向量与列向量减法运算符operator *(const dgematrix&, const dcovector &)_dcovector矩阵与列向量乘法运算符operator *(const dcovector&, const drovector &)_dgematrix行向量与列向量乘积运算符operator *(const double &, const dcovector &)_dcovector单个值与列向量点乘运算符operator *(const dcovector&, const double &)_dcovector列向量与单个值点乘运算符operator *(const drovector&, const dcovector &)double 行向量与列向量乘积运算符_ (dcovector &)_dcovector将参数列向量赋值给原列向量,将参数列向量在内存中清除operator/(const dcovector&, const double &)double列向量与单个值除法运算符operator() (const long &)double&列向量的()运算符operator() (const long &) const double列向量的()运算符set (const long &, const double &) const void列向量中的每个元素赋值为常数~dcovector ()析构函数,释放空间dcovector新开发添加的方法函数名函数返回类型函数描述dcovector(const long&, const double*)将长度为几的数组赋值给列向量的构造函数dcovector& linspace(const double& a, const double& b, const long& n)dcovector将a,b之间均分成n-1份,n个数据赋值给列向量drovector新开发添加的方法函数名函数返回类型函数描述drovector(const long&, const double*)将长度为几的数组赋值给行向量的构造函数drovector& linspace(const double& a, const double& b, const long& n)drovector将a,b之间均分成n-1份,n个数据赋值给行向量描述[←1][←2]/。