福建省泉州市南安市自主招生数学试卷
福建省泉州市 自主招生数学模拟试卷(含答案)

20. 先化简再求值:2������������−−26÷(������−52-x-2),其中 x=√2-3.
四、解答题(本大题共 8 小题,共 66.0 分)
21. 如图,在平行四边形 ABCD 中,∠ABC 的平分线交 CD 于点 E,∠ADC 的平分线交
AB 于点 F.试判断 AF 与 CE 是否相等,并说明理由.
A.
1 4
B.
������ 4
C.
������−1 4
D.
1 4������
二、填空题(本大题共 8 小题,共 32.0 分) 11. 将 5 张画着圆、平行四边形、等边三角形、等腰梯形和菱形的卡片在任意摆放(卡
片质地、大小完全一样),把有图形的一面朝下,从中任意翻开一张,如果翻开的
图形既是轴对称图形,又是中心对称图形的概率是______ . 12. 如图,△ABC 中,边 AB 的中垂线分别交 BC、AB 于点
A. 5
B. 6
C. 7
D. 8
6. 如果一个定值电阻 R 两端所加电压为 5 伏时,通过它的电流为 1 安培,那么通过这
一电阻的电流 I 随它的两端电压 U 变化的图象是( )
A.
B.
C.
D.
7. 下列事件是必然事件的是( )
A. 直线 y=3x+b 经过第一象限
B.
方程 2
������−2
+
������ 2−������
福建省泉州市自主招生数学模拟试卷
副标题
题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 40.0 分) 1. 下列计算正确的是( )
A. a•a2=a3
福建省泉州市南安2021年自主招生考试数学试卷(含答案)

PBAON福建省泉州市南安一中2021年自主招生考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1、在“百度”搜索引擎中输入“三明”二字,能搜索到与之相关的结果个数约为61600000,61600000用科学记数法表示正确的为( )(A )761.610⨯ (B )86.1610⨯ (C )76.1610⨯ (D )80.61610⨯ 2、下列运算正确的是( )(A )32a a a ÷= (B )325a a a += (C )()235aa = (D )236a a a ⋅=3、一元二次方程2440x x -+=根的情况是( )(A )只有一个实数根 (B )有两个相等的实数根 (C )有两个不相等的实数根 (D )没有实数根 4、若双曲线1k y x-=分布在二、四象限,则k 的值可为( ) (A )0 (B )1 (C )2 (D )3 5、在正方形网格中,ABC ∆的位置如图,则cos B ∠的值为( ) (A )22 (B )34 (C )35 (D )456、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个 7、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个 8、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内, 则a 的取值范围是( )(A )5a >或2a <-;(B )25a -≤≤;(C )25a -<<;(D )5a ≥或2a ≤- 9、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点, 点P 是半径ON 上的动点。
福建省南安市侨光中学2020届九年级6月(高中自主招生)考试数学试题及参考答案

九年级数学科试卷一、选择题:(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,无理数是( )A .0.010010001B .0)3(C .030cos D .31 2.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是( )A .B .C .D .3.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )A .B .C .D .4.下列成语中描述的事件是随机事件的是( )A .守株待兔B .瓮中捉鳖C .拔苗助长D .水中捞月 5.若,05>+x 则( )A .03<+xB . 03<-xC .15-<xD .162<-x 6.如图,直线y =ax +b 与x 轴交于A 点(4,0),与直线y =mx 交于B 点(2,n),则关于x 的一元一次方程mx b ax =-的解为( )A .2=xB .2-=xC .4=xD .4-=x第6题图 第7题图7.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和8.在平面直角坐标系中,已知a ≠b ,设函数y =(x +a )(x +b )的图象与x 轴有M 个交点,函数y =(ax +1)(bx +1)的图象与x 轴有N 个交点,则( )A .M =1-N 或M =1+NB .M =1-N 或M =2+NC .M =N 或M =1-ND .M =N 或M =1+N 二、填空题:(本题共6小题,每小题3分,共18分.) 9.小明用])5()5()5()5[(1012102322212-+-+-+-=x x x x S 计算一组数据的方差,则 10321x x x x ++++ 的值是______.10.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头, 要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC与阻力臂BC 之比为6:1,要使这块石头滚动,至少要将杠杆的A 端向下压______cm . 11.若2021)2019)(2020(=--a a ,则22)2019()2020(-+-a a =_______.12.如图,在□ABCD 中,已知B ∠=70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,则劣弧DE ︵的长为_______.13.如图所示,△ABC 中,已知AD 和BE 分别是边BC ,AC 上的中线,且AD ⊥BE ,垂足为G ,若GD =2,GE =3,则线段CG 为_______.14.如图,在直角坐标系中,点A ,B 分别在x 轴和y 轴,43=OB OA ,∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数x k y =的图象过点C ,当以CD 为边的正方形的面积为74时,k 的值为_______.第12题图 第13题图 第14题图二、 解答题:(本题共7小题,共58分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值234(1)11x x x --÷++,其中x 是方程2560x x -+=的根.16.(6分)如图,已知AB//CF ,D 是AB 上一点,DF 交AC 于点E ,若AB =BD +CF ,求证:△ADE ≌△CFE .17.(8分)已知△ABC 中,∠A =22.5°,∠B =45°.(1)求作:⊙O ,使得圆心O 落在AB 边上,且⊙O 经过A 、C 两点.(尺规作图,保留作图痕迹,不必写作法)(2)若⊙O 的半径为2,⊙求证:BC 是⊙O 的切线;⊙求A ∠tan 的值. (3)仿照以上求A ∠tan 的过程,可得:015tan =_______.ABCEDOGAECBD18.(8分)甲乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成3元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元. 假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并记录其100天的送餐单数,得到如下频数表.甲公司送餐员送餐单数频数表 乙公司送餐员送餐单数频数表(2)(1)求甲公司送餐员的日平均工资;(3)某人拟到甲乙两家公司中的一家应聘送餐员,如果仅从日平均工资的角度考虑,那么他应该选择去哪家公司应聘?请说明理由.19.(8分)为落实“精准扶贫”精神,我市农科院专家指导李大爷利用坡前空地种植优质草莓.根据市场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足⎩⎨⎧≤<+-≤≤+=)3015(75)151(153x x x x m (x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图: 如果李大爷的草莓在上市销售期间每天的维护费用为80元. (1)求销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求前十天日销售利润y的最大值及相应的x.20.(10分)模型规律如图1,延长CO交AB于点D,则⊙BOC=⊙1+⊙B=⊙A+⊙C+⊙B.因为凹四边形ABOC形似箭头,其四角具有“⊙BOC=⊙A+⊙B+⊙C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:⊙如图2,⊙A+⊙B+⊙C+⊙D+⊙E+⊙F=.⊙如图3,⊙ABE、⊙ACE的2等分线(即角平分线)BF、CF交于点F,已知⊙BEC=120°,⊙BAC=50°,则⊙BFC=.⊙如图4,BO i、CO i分别为⊙ABO、⊙ACO的2020等分线(i=1,2,3,…,2018,2019).它们的交点从上到下依次为O1、O2、O3、…、O2019.已知⊙BOC=m°,⊙BAC=n°,则⊙BO1000C=度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,⊙BCD=2⊙BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.21.(12分)已知抛物线C 1:和C 2:y =x 2 (1)如何将抛物线C 1平移得到抛物线C 2?(2)如图1,抛物线C 1与x 轴正半轴交于点A ,直线y =34-x +b 经过点A ,交抛物线C 1于另一点B .请你在线段AB 上取点P ,过点P 作直线PQ ⊙y 轴交抛物线C 1于点Q ,连接AQ .若AP =AQ ,求点P 的横坐标;(3)如图2,⊙MNE 的顶点M 、N 在抛物线C 2上,点M 在点N 右边,两条直线ME 、NE 与抛物线C 2均有唯一公共点,ME 、NE 均与y 轴不平行.若⊙MNE 的面积为2,设M 、N 两点的横坐标分别为m 、n ,求m 与n 的数量关系.4)1(2--=x y九年级数学科试卷 参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题:(本题共8小题,每小题3分,共24分.) 1. C 2. D 3. C 4.A 5. D 6.B 7.C 8.D 三、 填空题:(本题共6小题,每小题3分,共18分.) 9.50; 10. 60; 11.4043; 12.23π; 13.2√13; 14. 14.四、 解答题:(本题共7小题,共58分.) 15.解:原式)2(2112-++⋅+-=x x x x x )( 21+=x…………………2分3(20)3)(2(065212===--=+-x x x x x x 舍去),……………………4分当3=x 时,原式51=………………………6分 16.证明:∵AB =BD +CF ,又∵AB =BD +AD ,∴CF =AD∵AB//CF ,∴∠A =∠ACF ,∠ADF =∠F …………………2分在△ADE 与△CFE 中{∠A =∠ACFCF =AD ∠ADF =∠F,∴△ADE ≌△CFE(ASA). ………………………6分17.解:(1)作图:如图1即为所求作的图 …………………2分(2)①证明:如图2,连接OC , ∵OA =OC ,∠A =22.5° ∴∠BOC =45°,又∵∠B =45°,∴∠BOC +∠B =90° ∴∠OCB =90° ∴OC ⊥BC ,且点C 在⊙O 上∴BC 是⊙O 的切线. …………………………………4分 ⊙过C 作CH ⊥AB 于H 点,由①得:∠OCB =90°,∠OCB =90°,∠B =45°, ∴△OBC 是等腰直角三角形,∵OA =OC =2,CH=BCsin ∠B=2,AH=22+=+OH AO …………………………………6分∴在ACH Rt ∆中,A ∠tan =AH CH=12- …………………7分(3)3215tan 0-= …………………8分 18.解:(1)甲公司送餐员日平均送餐单数为:7.391.0421.0413.0404.0391.038=⨯+⨯+⨯+⨯+⨯ 所以甲公司送餐员日平均工资为:1.1997.39380=⨯+(元) …………………3分 (2)乙公司送餐员日平均工资为:(元)2.2021.0)72540(4.0)71540(2.05402.05391.0538=⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯⨯+⨯⨯…………………6分2.2021.199<所以这个人应该选择去乙公司应聘. …………………8分H19.解:(1)当1≤x ≤10时,设n =kx +b ,将点A ,B 代入,得⎩⎨⎧+=+=b k b k 103012,解得⎩⎨⎧==102b k ⊙n =2x +10同理得,当10<x ≤30时,n =444.1+-x ⊙销售量n与第x天之间的函数关系式:⎩⎨⎧≤<+-≤≤+=)3010(444.1)101(102x x x x n ………………………………4分 (2)⊙y =mn ﹣80整理得,⎪⎩⎪⎨⎧≤≤+-<<++-≤≤++=)3015(32201494.1)1510(5801112.4)101(70606222x x x x x x x x x y ……………7分(3)当1≤x ≤10时,⊙y =6x 2+60x +70的对称轴x =562602-=⨯-=-a b ⊙x =10时,y 取最大值,且10y =1270 ………………………8分所以,前十天中,在草莓销售第10天时,日销售利润y 最大,最大值是1270元.20.解:(1)⊙2α; ………………………1分⊙85°; ………………………3分 ⊙)1015110150(n m +; ………………………6分 (2)如图5,连接OC ,⊙OA =OB =OD ,⊙⊙OAB =⊙OBA ,⊙OAD =⊙ODA ,⊙⊙BOD =⊙BAD +⊙ABO +⊙ADO =2⊙BAD , ⊙⊙BCD =2⊙BAD , ⊙⊙BCD =⊙BOD ,⊙BC =CD ,OA =OB =OD ,OC 是公共边, ⊙⊙OBC ⊙⊙ODC (SSS ),⊙⊙BOC =⊙DOC ,⊙BCO =⊙DCO , ………………………8分 ⊙⊙BOD =⊙BOC +⊙DOC ,⊙BCD =⊙BCO +⊙DCO , ⊙⊙BOC =21⊙BOD ,⊙BCO =21⊙BCD , 又⊙BOD =⊙BCD , ⊙⊙BOC =⊙BCO ,⊙BO =BC , ………………………9分 又OB =OD ,BC =CD , ⊙OB =BC =CD =DO ,⊙四边形OBCD 是菱形. ………………………10分21.解:(1)将抛物线C 1向左平移1个单位长度,再向上平移4个单位长度可得到抛物线C 2;………………………2分(2)与x 轴正半轴的交点A (3,0),⊙直线y =34-x +b 经过点A ,⊙b =4, ⊙y =34-x +4, 4)1(2--=x y⎪⎩⎪⎨⎧--=+-=4)1(4342x y x y 消去y ,得 x =3或x =37-, ⊙B (34-,964), ………………………………4分 设P (t ,434+-t ),且337<<-t , ⊙PQ ⊙y 轴,⊙Q (t ,t 2﹣2t ﹣3), ………………………………5分 当AP =AQ 时,=-P y Q y即﹣4+t 34=t 2﹣2t ﹣3, ⊙t =31, ⊙P 点横坐标为31; ………………………………7分 (3)设直线ME 的解析式为y =k (x ﹣m )+m 2,⎩⎨⎧=+-=22)(x y m m x k y 消去y ,得 x 2﹣kx +km ﹣m 2=0,⊙=k 2﹣4km +4m 2=(k ﹣2m )2=0,⊙k =2m ,⊙直线ME 的解析式为y =2mx ﹣m 2,同理, 直线NE 的解析式为y =2nx ﹣n 2,⊙E (2n m +,mn ), ………………………………10分 ⊙MGE FNE MGFN MNE S S S S ∆∆∆--=梯形 =21[(n 2﹣mn )+(m 2﹣mn )]×(m ﹣n )﹣21(n 2﹣mn )×(2n m +﹣n ) ﹣21(m 2﹣mn )×(m ﹣2n m +)=2, ⊙(m ﹣n )3﹣2)(3n m -=4, ⊙(m ﹣n )3=8,⊙m ﹣n =2; ………………………………12分。
福建省泉州市南安2017年自主招生考试数学试卷

福建省泉州市南安一中2017年自主招生考试数学试卷61600000用科学记数法表示正确的为[_若 O 的半径长为,贝U AP BP 的最小值为(、选择题(本大题共 10小题,每小题4分,共40分)1、 在“百度”搜索引擎中输入“三明”二字 能搜索到与之相关的结果个数约为 61600000,2、 8、 (A ) 61.6 107(B ) 6.16 108 (C ) 6.16 107 (D ) 0.616 108F 列运算正确的是(A ) a 3 a 2=a32 5(B) a a a(C )5 =a(D ) a 2 •a 3 二 a 6兀二次方程 x 2 -4x • 4 = 0根的情况是( (A )只有一个实数根 (C )有两个不相等的实数根k —1若双曲线y :——分布在二x(A ) 0 (B ) 1 (C ) 2(B )有两个相等的实数根 (D )没有实数根 四象限,则 k 的值可为((D ) 3在正方形网格中,'ABC 的位置如图,则cos/ B 的值为F 列函数:①y - -3x , (C ) 3(D )5② y =2x -1,③ y其中y 的值随x 值的增大而增大的函数有( (A ) 4 个(B ) 3 个(C ) 2 个(D ) 1 个1一.x :: 0,④x按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为则满足条件的x 的不同值最多有(2—x 2x 3656,(A ) 2 个 (B ) 3 个(C ) 4 个 (D ) 5 个x _ a ■ _ 1 {的解集中任意一个 x 的值均不 在0兰x 兰4的范围内,x - a 2已知关于x 的不等式组则a 的取值范围是( (A ) a 5 或 a 一2(B ) -2 岂a 乞5(C )—2:::a :::5 (D ) a_5或a 岂一2如图所示,已知点 A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。
福建省南安市2024-2025学年九年级数学第一学期开学质量检测试题【含答案】

福建省南安市2024-2025学年九年级数学第一学期开学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各组数中不能作为直角三角形三边长的是()A .7,9,12B .5,12,13C .1,D .3,4,52、(4分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC 、BD 的中点重叠并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是()A .对角线互相平分的四边形是平行四边形B .一组对边平行且相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .两组对边分别平行的四边形是平行四边形3、(4分)如图,CD 是Rt△ABC 斜边AB 上的高,将△BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则∠A 等于()A .25°B .30°C .45°D .60°4、(4分)已知反比例函数y =的图象上有两点A (x 1,y 1),B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是()A .m <0B .m >0C .m <D .m >5、(4分)某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A .平均数B .中位数C .众数D .方差6、(4分)给出下列化简①()2=2=2=;12=,其中正确的是()A .①②③④B .①②③C .①②D .③④7、(4分)如图,E 是正方形ABCD 的边BC 的延长线上一点,若CE=CA ,AE 交CD 于F ,则∠FAC 的度数是()A .22.5°B .30°C .45°D .67.5°8、(4分)下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;②“从一副普通扑克牌中任意抽取一张,点数一定是3”()A .只有①正确B .只有②正确C .①②都正确D .①②都错误二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于_____.10、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.温度/℃22242629天数213111、(4分)如图,已知60XOY ∠=︒,点A 在边OX 上,2OA =.过点A 作AC OY ⊥于点C ,以AC 为一边在XOY ∠内作等边ABC ∆,点P 是ABC ∆围成的区域(包括各边)内的一点,过点P 作//PD OY 交OX 于点D ,作//PE OX 交OY 于点E .设OD a =,OE b =,则2+a b 最大值是_______.12、(4分)如图,菱形ABCD 的周长为20,对角线AC 与BC 相交于点O ,AC=8,则BD=________.13、(4分)在分式2x x +中,当x=___时分式没有意义.三、解答题(本大题共5个小题,共48分)14、(12分)已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.15、(8分)如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG .ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).16、(8分)为加快城市群的建设与发展,在A 、B 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km 缩短至180km ,平均时速要比现行的平均时速快200km ,运行时间仅是现行时间的29,求建成后的城际铁路在A 、B 两地的运行时间?17、(10分)某学校八年级七班学生要去实验基地进行实践活动,估计乘车人数为10人到40人之间,现在欲租甲、乙两家旅行社的车辆,已知甲、乙两家旅行社的服务质量相同,且报价都是每人120元,经过协商,甲旅行社表示可给予每位学生七五折优惠;乙旅行社表示可先免去一位同学的车费,然后给予其他同学八折优惠.(1)若用x 表示乘车人数,请用x 表示选择甲、乙旅行社的费用y 甲与y 乙;(2)请你帮助学校选择哪一家旅行社费用合算?18、(10分)如图,AB 是⊙O 的直径,AC ⊥AB ,E 为⊙O 上的一点,AC =EC ,延长CE 交AB 的延长线于点D .(1)求证:CE 为⊙O 的切线;(2)若OF ⊥AE ,OF =1,∠OAF =30°,求图中阴影部分的面积.(结果保留π)B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在△ABC 中,BC=a .作BC 边的三等分点C 1,使得CC 1:BC 1=1:2,过点C 1作AC 的平行线交AB 于点A 1,过点A 1作BC 的平行线交AC 于点D 1,作BC 1边的三等分点C 2,使得C 1C 2:BC 2=1:2,过点C 2作AC 的平行线交AB 于点A 2,过点A 2作BC 的平行线交A 1C 1于点D 2;如此进行下去,则线段A n D n 的长度为______________.20、(4分)如图,在平行四边形ABCD 中,AB =4,BC =6,分别以A ,C 为圆心,以大于12A C 的长为半径作弧,两弧相交于MN 两点,作直线MN 交AD 于点E ,则△CDE 的周长是_____.21、(4分)若方程2410x x -+=的两根12,x x ,则122(1)x x x ++的值为__________.22、(4分)已知关于x 的方程2x+m =x ﹣3的根是正数,则m 的取值范围是_____.23、(4分)若代数式1x -有意义,则x 的取值范围为__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠DAE =∠BCF.(1)求证:AE =CF ;(2)求证:AE ∥CF.25、(10分)如图,反比例函数y=k x (k >0)的图象与一次函数y=34x 的图象交于A 、B 两点(点A 在第一象限).(1)当点A 的横坐标为4时.①求k 的值;②根据反比例函数的图象,直接写出当-4<x <1(x≠0)时,y 的取值范围;(2)点C 为y 轴正半轴上一点,∠ACB=90°,且△ACB 的面积为10,求k 的值.26、(12分)在平面直角坐标系中,点A ,B 分别是x 轴正半轴与y 轴正半轴上一点,OA =m ,OB =n ,以AB 为边在第一象限内作正方形ABCD .(1)若m =4,n =3,直接写出点C 与点D 的坐标;(2)点C 在直线y =kx (k >1且k 为常数)上运动.①如图1,若k =2,求直线OD 的解析式;②如图2,连接AC 、BD 交于点E ,连接OE ,若OE =OA ,求k 的值.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据勾股定理逆定理即可求解.【详解】∵72+92≠122,所以A组不能作为直角三角形三边长故选A.此题主要考查勾股定理,解题的关键是熟知勾股定理的逆定理进行判断.2、A【解析】根据对角线互相平分的四边形是平行四边形即可得出结论.【详解】解:∵O是AC、BD的中点,∴OA=OC,OB=OD,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);故选:A.本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.3、B【解析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.4、C【解析】试题分析:根据反比例函数图象上点的坐标特征得到图象只能在一、三象限,故,则1-2m>0,∴m>.故选C.考点:反比例函数图象上点的坐标特征.5、B【解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.6、C【解析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式==④原式2==,故④错误,故选C.本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.7、A【解析】解:∵四边形ABCD是正方形,∴∠ACB=45°,∴∠E+∠∠FAC=∠ACB=45°,∵CE=CA,∴∠E=∠FAC,∴∠FAC=12∠ACB=22.5°.故选A.8、A【解析】根据不可能事件,随机事件,必然事件发生的概率以及概率的意义找到正确选项即可.【详解】掷一枚质地均匀的硬币,朝上一面可能是正面,可能是反面,所以①正确;从一副普通扑克牌中任意抽取一张,点数不一定是3,所以②错误,故选A.本题考查了随机事件与确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件:(1)必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件.(2)不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】连接AW,如图所示:根据旋转的性质得:AD=AB′,∠DAB′=60°,在Rt △ADW 和Rt △AB′W 中,AB AD AW AW ='⎧⎨=⎩,∴Rt △ADW ≌Rt △AB′W (HL ),∴∠B′AW=∠DAW=1302DAB '︒∠=又AD=AB′=1,在RT △ADW 中,tan ∠DAW=WD AD ,即tan30°=WD 解得:WD=3∴126ADW AB W S S WD AD ∆'∆==⋅=,则公共部分的面积为:3ADW AB W S S ∆∆'+=,故答案为3.10、1.【解析】根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.【详解】解:数据1出现了3次,次数最多,所以这组数据的众数是1.故答案为:1.众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.11、5【解析】过P 作PH ⊥OY 于点H ,构建含30°角的直角三角形,先证明四边形EODP 是平行四边形,得EP=OD=a ,在Rt △HEP 中,由∠EPH =30°,可得EH 的长,从而可得a +2b 与OH 的关系,确认OH 取最大值时点H 的位置,可得结论.【详解】解:过P 作PH ⊥OY 于点H ,∵PD ∥OY ,PE ∥OX ,∴四边形EODP 是平行四边形,∠HEP =∠XOY =60°,∴EP=OD=a ,∠EPH =30°,∴EH =12EP =12a ,∴a +2b =2(12a b +)=2(EH +EO )=2OH ,∴当P 在点B 处时,OH 的值最大,此时,OC =12OA =1,AC =BC ,CH =3222BC ==,∴OH =OC +CH =1+32=52,此时a +2b 的最大值=2×52=5.故答案为5.本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a +2b 的最大值就是确定OH 的最大值,即可解决问题.12、1【解析】分析:根据菱形的四条边都相等可得AB =5,根据菱形的两条对角线互相垂直且平分可得AC ⊥BD ,AO=12AC =4,BO =DO ,再利用勾股定理计算出BO 长,进而可得答案.详解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =12,AC =4,BO =DO ,AD =AB =DC =BC ,∵菱形ABCD 的周长为20,∴AB=5,∴BO =3,∴DO =3,∴DB =1,故答案为:1.点睛:此题主要考查了菱形的性质,关键是掌握菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.13、-1.【解析】根据分式无意义,分母等于0得,1+x=0,解得x=﹣1,故答案为﹣1.三、解答题(本大题共5个小题,共48分)14、见解析【解析】解:结论:四边形ABCD 是平行四边形证明:∵DF ∥BE∴∠AFD =∠CEB又∵AF =CE DF =BE ,∴△AFD ≌△CEB (SAS )∴AD =CB ∠DAF =∠BCE∴AD ∥CB ∴四边形ABCD 是平行四边形15、(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)233k k ++.【解析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.理由:∵△ADG ,△ABC 都是等边三角形,∴AG =AD ,AB =AC ,∴∠GAD =∠BAC =60°,∴△GAB ≌△DAC ,∴BG =CD ,∠ABG =∠C ,∵CD =AE ,∠C =∠BAE ,∴BG =AE ,∠ABG =∠BAE ,∴BG ∥AE ,∴四边形AGBE 是平行四边形,ⅱ)如图2中,作AH ⊥BC 于H .∵BH =CH =1(1)2k +∴1111(1),(1)2222DH k k AH k =-+=-==+∴AD ==∴四边形BGAE 的周长=2k +△ABC 的周长=3(k +1),∴四边形AGBE 与△ABC 的周长比=233k k ++本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.16、23h.【解析】设城际铁路现行速度是xkm/h ,则建成后时速是(x+200)xkm/h ;现行路程是210km ,建成后路程是180km ,由时间=路程速度,运行时间=29现行时间,列方程即可求出x 的值,进而可得建成后的城际铁路在A 、B 两地的运行时间.【详解】设城际铁路现行速度是xkm/h ,则建成后时速是(x+200)xkm/h ;根据题意得:210x ×29=180200x +,解得:x=70,经检验:x=70是原方程的解,且符合题意,∴180200x +=18070200+=23(h )答:建成后的城际铁路在A 、B 两地的运行时间为23h.本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.17、(1)y 甲=0.75×120x=90x ,y 乙=0.8×120(x-1)=96x-96;(2)当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.【解析】(1)设共有x 人由题意得:甲旅行社的花费=120×人数×七五折;乙旅行社的花费=120×(人数-1)×八折;(2)分三种情况:①y 甲=y 乙时,②y 甲>y 乙时,③y 甲<y 乙时,分别列出方程或不等式进行计算即可.【详解】(1)设共有x 人,则y 甲=0.75×120x=90x ,y 乙=0.8×120(x-1)=96x-96;(2)由y 甲=y 乙得,90x=96x-96,解得:x=16,y 甲>y 乙得,90x >96x-96,解得:x <16,y 甲<y 乙得,90x <96x-96,解得:x >16,所以,当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.此题考查一元一次不等式和方程的应用,关键是正确理解题意,找出题目中不等关系,再列出不等式.18、(1)见解析;(2)43π【解析】(1)首先连接OE ,由AC ⊥AB ,,可得∠CAD =90°,又由AC=EC,OA=OE ,易证得∠CAE =∠CEA ,∠FAO =∠FEO ,即可证得CD 为⊙O 的切线;(2)根据题意可知∠OAF =30°,OF=1,可求得AE 的长,又由S 阴影=EAO S 扇形-EAO S ∆,即可求得答案.【详解】(1)证明:连接OE ∵AC=EC,OA=OE ∴∠CAE =∠CEA ,∠FAO =∠FEO ∵AC ⊥AB ,∴∠CAD =90°∴∠CAE +∠EAO =90°∴∠CEA +∠AEO =90°即∠CEA =90°∴OE ⊥CD ∴CE 为⊙O 的切线(2)解:∵∠OAF =30°,OF =1∴AO =2∴AF 即AE =∴112EAO S ∆=⨯=∵∠AOE =120°,AO =2∴1204==43603EAO S ππ⨯⨯扇形∴S 阴影=43π此题考查垂径定理及其推论,切线的判定与性质,扇形面积的计算,解题关键在于作辅助线.一、填空题(本大题共5个小题,每小题4分,共20分)19、1 23nna-【解析】根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=13a=11123a-,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=29a=21223a-,……∴线段A n D n=123nna-,故答案为:123nna-.本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.20、1【解析】利用垂直平分线的作法得MN 垂直平分AC ,则EA =EC ,利用等线段代换得到△CDE 的周长=AD +CD ,然后根据平行四边形的性质可确定周长的值.【详解】解:利用作图得MN 垂直平分AC ,∴EA =EC ,∴△CDE 的周长=CE+CD+ED =AE+ED+CD =AD+CD ,∵四边形ABCD 为平行四边形,∴AD =BC =6,CD =AB =4,∴△CDE 的周长=6+4=1.故答案为1.本题考查了作图−基本作图,也考查了平行四边形的性质.解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21、1【解析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=ca =1∴122(1)x x x ++=1122x x x x ++=1212x x x x ++=4+1=1,故答案为:1.此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a 的运用.22、m <﹣1【解析】根据关于x 的方程2x+m =x ﹣1的根是正数,可以求得m 的取值范围.【详解】解:由方程2x+m =x ﹣1,得x =﹣m ﹣1,∵关于x 的方程2x+m =x ﹣1的根是正数,∴﹣m ﹣1>0,解得,m <﹣1,故答案为:m <﹣1.本题考查解一元一次方程和一元一次不等式,解答本题的关键是明确题意,求出m 的取值范围.23、 0x ≥且1x ≠.【解析】根据二次根式和分式有意义的条件进行解答即可.【详解】解:∵代数式1x -有意义,∴x ≥0,x-1≠0,解得x ≥0且x ≠1.故答案为x ≥0且x ≠1.本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析(2)证明见解析【解析】试题分析:(1)根据平行四边形性质得出AB=DC,AD=BC,AB∥CD,AD∥BC,推出∠ABF=∠CDE,∠ADE=∠CBF,根据全等三角形的判定推出△DAE≌△BCF,即可得;(2)由△DAE ≌△BCF ,得出∠DEA =∠BFC ,从而得∠AEF =∠DFC ,继而得AE ∥CF.试题解析:(1)∵四边形ABCD 是平行四边形,∴AB =DC ,AD =BC ,AB ∥CD ,AD ∥BC ,∴∠ABF =∠CDE ,∠ADE =∠CBF ,在△DAE 和△B CF 中,DAE BCF AD BC ADE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DAE ≌△BCF (ASA ),∴AE =CF ;(2)∵△DAE ≌△BCF ,∴∠DEA =∠BFC ,∴∠AEF =∠DFC ,∴AE ∥CF.25、(1)①12,②y <-3或y >12;(2)1【解析】(1)①根据点A 的横坐标是4,可以求得点A 的纵坐标,从而可以求得k 的值;②根据反比例函数的性质,可以写出y 的取值范围;(2)根据点C 为y 轴正半轴上一点,∠ACB=90°,且△ACB 的面积为10,灵活变化,可以求得点A 的坐标,从而可以求得k 的值.【详解】解:(1)①将x=4代入y=34x 得,y=3,∴点A (4,3),∵反比例函数y=k x (k >0)的图象与一次函数y=34x 的图象交于A 点,∴3=k 4,∴k=12;②∵x=-4时,y=124-=-3,x=1时,y=121=12,∴由反比例函数的性质可知,当-4<x <1(x≠0)时,y 的取值范围是y <-3或y >12;(2)设点A 为(a ,3a 4),则OA==5a4,∵点C 为y 轴正半轴上一点,∠ACB=90°,且△ACB 的面积为10,∴OA=OB=OC=5a 4,∴S △ACB =15a 2a 24⨯⨯=10,解得,a=∴点A 为(,2),∴2,解得,k=1,即k 的值是1.本题考查一次函数与反比例函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26、(1)C (3,7),D (7,4);(2)①y =12x ;②43.【解析】(1)根据题意把m=4,n=3代入解答即可;(2)①利用待定系数法确定函数关系式即可;②根据B 、D 坐标表示出E 点坐标,由勾股定理可得到m 、n 之间的关系式,用m 表示出C 点坐标,根据函数关系式解答即可.【详解】解:(1)∵OA =m ,OB =n ,以AB 为边在第一象限内作正方形ABCD ,∴C (n ,m +n ),D (m +n ,m ),把m =4,n =3代入可得:C (3,7),D (7,4),(2)①设C (a ,2a ),由题意可得:2n am n a =⎧⎨+=⎩,解得:m =n =a ,∴D (2a ,a ),∴直线OD 的解析式为:y =12x ,②由B (0,n ),D (m +n ,m ),可得:E (2m n +,2m n +),OE =,∴(2m n +)2+(2m n +)2=8m 2,可得:(m +n )2=16m 2,∴m +n =4m ,n =3n ,∴C (3m ,4m ),∴直线OC 的解析式为:y =43x ,可得:k =43.故答案为(1)C (3,7),D (7,4);(2)①y =12x ;②43.此题是考查一次函数的综合题,关键是根据待定系数法确定函数关系式和勾股定理解答.。
南安一中初中招生试卷数学

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001…(无限循环小数)2. 已知a,b是实数,且a + b = 5,ab = 6,则a² + b²的值为()A. 29B. 25C. 21D. 113. 在直角坐标系中,点P(-2,3)关于原点的对称点为()A. (2,-3)B. (-2,-3)C. (3,-2)D. (-3,2)4. 下列各图中,图形的面积最小的是()A.B.C.D.5. 已知一元二次方程x² - 3x + 2 = 0,下列说法正确的是()A. 方程有两个实数根B. 方程有两个复数根C. 方程有一个实数根和一个复数根D. 无法确定6. 下列各式中,与(-2)³相等的是()A. -8B. 8C. -1/8D. 1/87. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 105°C. 135°D. 150°8. 已知函数y = 2x - 3,若x的取值范围是[1, 4],则y的取值范围是()A. [-5, -1]B. [-1, 5]C. [-1, 9]D. [-5, 9]9. 下列各数中,能被3整除的是()A. 12.3B. 9.6C. 18.9D. 21.210. 已知等差数列{an}的前n项和为Sn,若S10 = 50,a1 = 2,则公差d的值为()A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)1. (-3)² + (-2)³ = __________2. 在直角坐标系中,点A(-4,2),点B(3,-1),则线段AB的长度为__________3. 下列函数中,奇函数是__________4. 已知等比数列{an}的第一项为a₁,公比为q,若a₁ = 3,q = 2,则a₃ =_________5. 在△ABC中,若∠A = 90°,∠B = 30°,则△ABC的周长为__________三、解答题(每题20分,共80分)1. 解一元二次方程:x² - 5x + 6 = 02. 已知函数y = x² - 4x + 3,求函数的图像与x轴的交点坐标。
福建省泉州市南安市2024届中考数学模拟精编试卷含解析

福建省泉州市南安市2024届中考数学模拟精编试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.a3•a2=a6B.(a2)3=a5C.9=3 D.2+5=252.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)3.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60°B.65°C.70°D.75°4.sin60°的值为()A.3B.32C.22D.125.运用乘法公式计算(4+x)(4﹣x)的结果是()A.x2﹣16 B.16﹣x2C.16﹣8x+x2D.8﹣x26.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为()A.9.5×106B.9.5×107C.9.5×108D.9.5×1097.在△ABC中,∠C=90°,tan A=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.1208.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是2=0.4S 甲,2=0.6S 乙,则甲的射击成绩较稳定C .“明天降雨的概率为12”,表示明天有半天都在降雨 D .了解一批电视机的使用寿命,适合用普查的方式9.如图是二次函数y =ax 2+bx+c 的图象,对于下列说法:①ac >0,②2a+b >0,③4ac <b 2,④a+b+c <0,⑤当x >0时,y 随x 的增大而减小,其中正确的是( )A .①②③B .①②④C .②③④D .③④⑤10.下列计算正确的是( ) A .3a 2﹣6a 2=﹣3 B .(﹣2a )•(﹣a )=2a 2 C .10a 10÷2a 2=5a 5 D .﹣(a 3)2=a 6二、填空题(本大题共6个小题,每小题3分,共18分)11.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.12.如图,AB 为⊙O 的弦,C 为弦AB 上一点,设AC =m ,BC =n(m >n),将弦AB 绕圆心O 旋转一周,若线段BC 扫过的面积为(m 2﹣n 2)π,则mn=______13.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23AB BC ,DE=6,则EF= .14.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.15.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为______.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.三、解答题(共8题,共72分)17.(8分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:20 21 19 16 27 18 31 29 21 2225 20 19 22 35 33 19 17 18 2918 35 22 15 18 18 31 31 19 22整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23 m 21根据以上信息,解答下列问题:上表中众数m的值为;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.18.(8分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).(1)求抛物线L的顶点坐标和A点坐标.(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.19.(8分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到万人次,比2017年春节假日增加万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量7.56 82.83 119.51 84.38 103.2 151.55(万人次)这组数据的中位数是万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是.(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;(2)“非常了解”的4人有A 1,A 2两名男生,B 1,B 2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(8分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为,BE=CA=50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)22.(10分)已知抛物线,2:3L y ax bx =+-与x 轴交于()1,0A B -、两点,与y 轴交于点C ,且抛物线L 的对称轴为直线1x =. (1)抛物线的表达式;(2)若抛物线'L 与抛物线L 关于直线x m =对称,抛物线'L 与x 轴交于点','A B 两点(点'A 在点'B 左侧),要使'2ABC A BC S S ∆∆=,求所有满足条件的抛物线'L 的表达式.23.(12分)如图,直线y=x+2与抛物线y=ax 2+bx+6(a≠0)相交于A (15,22)和B (4,m ),点P 是线段AB 上异于A 、B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C . (1)B 点坐标为 ,并求抛物线的解析式; (2)求线段PC 长的最大值;(3)若△PAC 为直角三角形,直接写出此时点P 的坐标.24.某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项.【题目详解】解:A. a3 a2=a5,原式计算错误,故本选项错误;B. (a2)3=a6,原式计算错误,故本选项错误;C. 9,原式计算正确,故本选项正确;D. 2故选C.【题目点拨】本题考查了幂的乘方与积的乘方,实数的运算,同底数幂的乘法,解题的关键是幂的运算法则.2、C【解题分析】根据题意知小李所对应的坐标是(7,4).故选C.3、C【解题分析】由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.【题目详解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故选:C.【题目点拨】本题考查了等腰三角形的性质,平行线的性质,是基础题.4、B【解题分析】解:sin60°B.5、B【解题分析】根据平方差公式计算即可得解.【题目详解】222+-=-=-,(4)(4)416x x x x故选:B.【题目点拨】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.6、B【解题分析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数7、D【解题分析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.【题目详解】如图所示,由tan A=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D.【题目点拨】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.8、B【解题分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【题目详解】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为12”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B.【题目点拨】本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.9、C【解题分析】根据二次函数的图象与性质即可求出答案.【题目详解】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:b2a-<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>b2a-时,y随着x的增大而增大,故⑤错误;故选:C.【题目点拨】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.10、B【解题分析】根据整式的运算法则分别计算可得出结论.【题目详解】选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.故答案选B.考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.二、填空题(本大题共6个小题,每小题3分,共18分)11、10%【解题分析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案.【题目详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1.答:这两年平均每年绿地面积的增长率为10%.故答案为10%【题目点拨】此题考查增长率的问题,一般公式为:原来的量×(1±x)1=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.12、152【解题分析】先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.【题目详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=12AB=2m n+,CD=AC-AD=m-2m n+=2m n-,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=52n n ±,∵m>0,n>0,∴m=52n n +,∴152mn+=,故答案为152+.【题目点拨】此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.13、1.【解题分析】试题分析:∵AD∥BE∥CF,∴AB DEBC EF=,即263EF=,∴EF=1.故答案为1.考点:平行线分线段成比例.14、104π-.【解题分析】作DH⊥AE于H, 根据勾股定理求出AB, 根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.【题目详解】解:如图作DH⊥AE于H,∠AOB=90o, OA=2, OB=1,∴由旋转的性质可知可得△DHE≌△BOA,∴DH=OB=1,∴阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积=211902905311222360360ππ⋅⋅⋅⋅⨯⨯+⨯⨯+-=104π-,故答案:104π-.【题目点拨】本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键.15、113y x=-+【解题分析】过C作CD⊥x轴于点D,则可证得△AOB≌△CDA,可求得CD和OD的长,可求得C点坐标,利用待定系数法可求得直线BC的解析式.【题目详解】如图,过C作CD⊥x轴于点D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵ABO CADAOB CDAAB AC∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),设直线BC解析式为y=kx+b,∴321k bb-+=⎧⎨=⎩,解得:131kb⎧=-⎪⎨⎪=⎩,∴直线BC解析式为y13=-x+1.故答案为y13=-x+1.【题目点拨】本题考查了待定系数法及全等三角形的判定和性质,构造全等三角形求得C点坐标是解题的关键.16、1.【解题分析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).故答案为1.考点:平面展开最短路径问题三、解答题(共8题,共72分)17、(1)18;(2)中位数;(3)100名.【解题分析】【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【题目详解】(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×11231230+++++=100(名), 答:该部门生产能手有100名工人.【题目点拨】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x 2-103x+3, 2239y x x =++,y=x 2-4x+3, 2833y x x =++. 【解题分析】(1)将点B 和点C 代入求出抛物线L 即可求解.(2)将抛物线L 化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得△PAC 为等腰直角三角形,作出所有点P 的可能性,求出代入23y x dx =++即可求解.【题目详解】(1)将点B (-3,0),C (0,3)代入抛物线得: {0=9-3b+cc=3,解得{b=4c=3,则抛物线243y x x =++. 抛物线与x 轴交于点A,∴ 2043x x =++,12x =-3x =-1,,A (-1,0),抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1).(2)抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1)抛物线L 1的顶点与抛物线L 的顶点关于原点对称, 1L ∴对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得△PAC 为等腰直角三角形,作出所有点P 的可能性.1P AC ∆是等腰直角三角形1P A CA ∴=,190,90CAO ACO CAO P AE ∠+∠=︒∠+∠=︒,1CAO P AE ∴∠=,190PEA COA =∠=︒, ()1CAO APE AAS ∴∆≅∆,∴求得()14,1P -.,同理得()22,1P -,()33,4P -,()43,2P ,由题意知抛物线23y x dx =++并将点代入得:222228103,43,3,3933y x x y x x y x x y x x =++=-+=++=-+. 【题目点拨】本题主要考查抛物线综合题,讨论出P 点的所有可能性是解题关键.19、(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4)12【解题分析】(1)由图1可得答案;(2)根据中位数的定义求解可得;(3)由近3年平均涨幅在30%左右即可做出估计;(4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【题目详解】(1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45﹣951.05=414.4万人次.故答案为:1365.45、414.4;(2)这组数据的中位数是84.38+103.22=93.79万人次,故答案为:93.79;(3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,故答案为:30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%.(4)画树状图如下:则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为12.【题目点拨】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.20、(1)50,360;(2)23.【解题分析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种. ∴ 考点:1、扇形统计图,2、条形统计图,3、概率21、29033cm 【解题分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF .【题目详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒, ∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,)32903tan 3029033EF EH cm =︒=⨯=. 答:支角钢CD 的长为45cm ,EF 的长为29033cm .考点:三角函数的应用22、(1)()214y x =--;(2)()()2234;74y x y x =--=--. 【解题分析】(1)根据待定系数法即可求解;(2)根据题意知()20A m '-,,根据三角形面积公式列方程即可求解. 【题目详解】(1)根据题意得:1230b a a b ⎧-=⎪⎨⎪--=⎩, 解得:12a b =⎧⎨=-⎩, 抛物线的表达式为:()222314y x x x =--=--;(2)∵抛物线'L 与抛物线L 关于直线x m =对称,抛物线L 的对称轴为直线1x =∴抛物线'L 的对称轴为直线1x m =+,∵抛物线'L 与x 轴交于点','A B 两点且点'A 在点'B 左侧,∴A '的横坐标为:121m m +-=- ∴()10A m '-,, 令0y =,则2230x x --=,解得:1213x x =-=,,令0x =,则3y =,∴点A B 、的坐标分别为()10A -,,()30B ,,点C 的坐标为()03,, ∴1143622ABC C S AB y =⨯⨯=⨯⨯=,∵132A BC ABC S S '==, ∴132A BC C S A B y '=⨯⨯'=,即113332m --⨯=, 解得:2m =或6m =,∵抛物线'L 与抛物线L 关于直线x m =对称,抛物线'L 的对称轴为直线1x m =+,∴抛物线'L 的表达式为()234y x =--或()274y x =--. 【题目点拨】本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线'L 的对称轴为直线1x m =+.23、(1)(4,6);y=1x 1﹣8x+6(1)498;(3)点P 的坐标为(3,5)或(711,22). 【解题分析】(1)已知B (4,m )在直线y=x+1上,可求得m 的值,抛物线图象上的A 、B 两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(1)要弄清PC 的长,实际是直线AB 与抛物线函数值的差.可设出P 点横坐标,根据直线AB 和抛物线的解析式表示出P 、C 的纵坐标,进而得到关于PC 与P 点横坐标的函数关系式,根据函数的性质即可求出PC 的最大值.(3)根据顶点问题分情况讨论,若点P 为直角顶点,此图形不存在,若点A 为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C 点的坐标;若点C 为直角顶点,可根据点的对称性求出结论.【题目详解】解:(1)∵B (4,m )在直线y=x+1上,∴m=4+1=6,∴B (4,6),故答案为(4,6);∵A (,),B (4,6)在抛物线y=ax 1+bx+6上, ∴,解得,∴抛物线的解析式为y=1x 1﹣8x+6;(1)设动点P 的坐标为(n ,n+1),则C 点的坐标为(n ,1n 1﹣8n+6),∴PC=(n+1)﹣(1n 1﹣8n+6),=﹣1n 1+9n ﹣4,=﹣1(n ﹣)1+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=1x1﹣8x+6 ②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+1=5,∴P1(3,5);iii )若点C 为直角顶点,则∠ACP=90°.∵y=1x 1﹣8x+6=1(x ﹣1)1﹣1,∴抛物线的对称轴为直线x=1.如图1,作点A (,)关于对称轴x=1的对称点C ,则点C 在抛物线上,且C (,).当x=时,y=x+1=. ∴P 1(,).∵点P 1(3,5)、P 1(,)均在线段AB 上,∴综上所述,△PAC 为直角三角形时,点P 的坐标为(3,5)或(,). 【题目点拨】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.24、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解题分析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人,骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人;(2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.。
2023年福建省泉州市南安实验中学中考模拟数学试题(含答案解析)

2023年福建省泉州市南安实验中学中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________A .15.7B .31.42.如图,1,2BC AB BC AB ⊥=A .0.118B .50.5-3.若实数,,a b c 满足条件1111a b c a b c++=++A .必有两个数相等C .必有两个数互为倒数4.2211x x y x x -+=++最大值与最小值之和为(A .1B .105.某大学毕业生为自主创业于2021年8月初向银行贷款额本金还款法”分10年进行还款,从2021年月利率为0.5%,现因经营状况良好,准备向银行申请提前还款,计划于将剩余贷款全部一次还清,则该大学毕业生按现计划的所有还款数额比按原约定所有还款数额少()(注:“等额本金还款法”是将本金平均分配到每一期进行偿还,每一期所还款金额由两部分组成.一部分为每期本金,即贷款本金除以还款期数;另一部分是利息,即贷款本金与已还本金总额的差乘以利率.1年按12个月计算)A .18300元B .22450元C .27450元D .28300元6.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是()A .3122m -+B .0C .1D .27.若方程220x x t --=在-1<x ≤4范围内有实数根,则t 的取值范围为()A .3t 8<≤B .-1t 3≤≤C .-1t 8<≤D .-1t 8≤≤8.已知C 为线段AB 外一点.假设尺规作图作四边形ABCD ,使得CD AB ∥,且2CD AB =,四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,则M ,P ,N 三点间关系为()A .共圆B .共线C .重合D .相离9.若x 、y 、z 是三个连续的正整数,若x 2=44944,z 2=45796,则y 2=()A .45369B .45371C .45465D .4648910.函数()20y ax bx a =+<的图象如图所示,下列说法错误的是()A .531a b +<B .432a b +<C .20a b +<D .20a b +<二、填空题11.如图,直线()0y kx b k =+≠经过点()12P ,,当()20k x b -+<时,则x 的取值范围为________________.13.甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4)k -张,乙每次取了15次,乙共取了17次,并且乙至少取了一次相等,那么纸牌最少有_________14.在Rt ABC △中,ABC ∠度α得到DEC ,点A 、B 的对应点分别是当60α=︒时,点F 是边AC 15.如图,矩形OABC 的顶点中点,反比例函数(ky x x=<若ODE 的面积为6,则k 的值为()DEF BE BC < ,AC 与DE 相交于点O ,连接AD ,AE ,DC ,得到四边形AECD ,10BC =,6DE =,在ABC 平移过程中,则四边形AECD 的面积为________________.三、解答题18.已知两个或多个整数的公因数只有0.737373nm⋯⋯=(m ,n 是互质自然数)19.由浅入深是学习数学的重要方法.已知权方和不等式为当a b x y =时,等号成立.那么:若正整数数的最小值.20.如图1是武威某动车站出口处的自动扶梯,图倾斜角为31︒,在自动扶梯下方地面距离为6m ,求自动扶梯距离地面的高度sin 310.52,cos310.86,tan ︒≈︒≈(1)请在BC上标出点D,连接AD(2)试证明上述结论:△ABD∽△CBA22.已知关于x的一元二次方程x(1)请判断这个方程的根的情况,并说明理由;(2)若这个方程的一个实根大于23.为打赢疫情防控阻击战,配餐公司为某校提供价分别是:8元、10元、15元.为了做好下阶段的经营与销售,配餐公司根据该校上周A、B、C三种午餐购买情况的数据制成统计表如下,又根据过去平均每份的利润与销售量之间的关系绘制成统计图如下:种类数量(份)A1800B2400C800请你根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的中位数是元;(2)为了提倡均衡饮食,假如学校要求师生每人选择两种不同午餐交替使用,试通过列表或画树状图分析,求该校学生小明选择“AB”组合的概率;(3)经分析与预测,师生购买午餐种类与数量相对稳定.根据上级规定,配餐公司平均每份午餐的利润不得超过3元,否则应调低午餐的单价.25.如图,已知抛物线()()248ky x x =+-(交于A ,B 两点,与y 轴交于点C ,经过点B 为D .(1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)在(1)条件下,设F 为线段BD 上一点(不含端点),连接发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少参考答案:由图可知,当133y≤≤时,∴当133y≤≤时,0∆≥,∵CD AB ∥,∴ABP CDP BAP DCP ∠=∠∠=∠,,∴ABP CDP ∽△△,∴AB AP CD CP=,∵AB CD ,的中点分别为M N ,,∴22AB AM CD CN ==,,∴=AM AP CN CP,连接MP NP ,,∵BAP DCP ∠=∠,∴APM CPN ∽△△,∴∠=∠APM CPN ,∵点P 在AC 上,∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM ,∴M P N ,,三点在同一条直线上.∵BD是ABC∠的平分线,∠∴PE PF=,30CBD∠=︒,∴12PE PB=,12PF PB=,∴12=22 CP BP CP PB⎛⎫++⎪⎝⎭∵PF PC CF+≥(当且仅当点∴2CP BP+的最小值为2CF∵当CF AB⊥时,CF的值最小,则∴2CP BP+的最小值为3,故答案为:3【点睛】本题考查角平分线的性质、直角三角形的性质、垂线段最短,把()2CP PF+是解题的关键.13.108【分析】设甲a次取(4)k-张,乙∵点F 是边AC 中点,∴12CF AC =,∵30ACB ∠=︒,∴12AB AC =,∴CF AB =,∵ABC 绕点C 逆时针旋转一定的角度∵AX 是ABC 的中线,∴BX CX =,∵XE XD =,∴四边形BDCE 是平行四边形,∴BE CD ∥,BD CE ∥,∵CZ 是ABC 的中线,∴点Z 为AB 中点,BD CE∥∴12AE AZ AD AB ==,∴ZE 为ABD △中位线,即点∵BY 是ABC 的中线,∴点Y 为AC 中点,BE CD∥∴12AE AY AD AC ==,∴EY 为ABD △中位线,∴EY CD ∥,(2)证明:22,BC125AB=+=根据树状图能够得到共有其中“AB”组合共有2∴21 ()63 P AB==;(3)①根据条形统计图得知,平均利润为:21800⨯3.12>3,因此应调低午餐单价;②假设调低A单价一元,平均每份午餐的利润为:调低B单价一元,平均每份午餐的利润为:调低C单价一元,平均每份午餐的利润为:当A,B,C调的越低,利润就越低,因此距离元,此时,当调低ABC【分析】(1)连接AD ,BD ,得090ADB DBC ∠=∠=,结合H 为垂心,//,//AD BH BD AH ,得出四边形ADBH 为平行四边形,得到BD AH =,结合平行,O 为CD 中点,可得M 为BC 中点;(2)过E 作EG BC ⊥,由EGHF ,EGFA 为平行四边形,证明H 为FGC ∆的垂心,从而得到EF FC ⊥;(3)设AM 与OF 交点为I ,得到MH AP ⊥,证明H 是AMQ ∆的垂心,证明AP BC OH 、、三线共点得,,O H Q 三点共线,得到AH HN =.【详解】解:(1)连接,AD BD ,则DA AC ⊥,DB BC⊥又H 为ABC ∆垂心∴BH AC ⊥,AH BC⊥∴//,//AD BH BD AH∴四边形ADBH 为平行四边形∴2DB AH OM ==,又O 为CD 中点∴M 为BC 中点(2)过E 作EG BC⊥连接GH ,由(1)可知四边形EGHF 为平行四边形,四边形EGFA 为平行四边形∵,CH AB AB GF⊥ ∴CH GF⊥∴H 为FGC ∆垂心∴,GH GH CF EF⊥ 而∴EF FC⊥(3)设AM 与OF 交点为I由(1)可知四边形OMFA 为平行四边形∴I 为直径AM 中点而圆I 与圆Γ相交弦为AP∴,OF AP MH OF⊥ 而∴MH AP⊥设,MC AP Q交于则H 为AMQ ∆垂心∴QH AM⊥∵()5,33D -,()4,0B ,∴33DE =,9EB =,63BD =,∴30DBE ∠=︒,过点D 和点F 分别作x 轴的平行线和∴30DBE FDN ∠=∠=︒,∴12NF DF =,∴12AF DF AF NF +=+,过点A 作AH DN ⊥于点H ,此时(AF ∴AH 与直线BD 的交点即为所求点∵()2,0A -,∴当2x =-时,()34233y =-⨯-+∴点F 的坐标为()2,23-时,点M 【点睛】本题考查了二次函数和一次函数图象上点的坐标特征、特殊角的直角三角形三边关系,第2边是斜边的一半”将12DF 进行转化,然后利用垂线段最短求得用时最小时的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省泉州市南安市自主招生数学试卷
一、选择题(本大题共10小题,每小题4分,共40分)
1.(4分)在“百度”搜索引擎中输入“永安”二字,能搜索到与之相关的结果个数约为61600000,数61600000用科学记数法表示正确的为()
A.61.6×107B.6.16×108C.6.16×107D.0.616×108 2.(4分)下列运算正确的是()
A.a3÷a2=a B.a3+a2=a5C.(a3)2=a5D.a2•a3=a6 3.(4分)一元二次方程x2﹣4x+4=0的根的情况为()
A.只有一个实数根B.有两个相等的实数根
C.有两个不相等的实数根D.没有实数根
4.(4分)若双曲线y=分布在二、四象限,则k的值可为()A.0B.1C.2D.3
5.(4分)在正方形网格中,△ABC的位置如图,则cos∠B的值为()
A.B.C.D.
6.(4分)下列函数:①y=﹣3x;②y=2x﹣1;③;④y=﹣x2+2x+3.其中y的值随x值的增大而增大的函数有()
A.4个B.3个C.2个D.1个
7.(4分)按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()
A.2个B.3个C.4个D.5个
8.(4分)已知关于x的不等式组的解集中任意一个x的值均不在0≤
x≤4的范围内,则a的取值范围是()
A.a>5或a<﹣2B.﹣2≤a≤5C.﹣2<a<5D.a≥5或a≤﹣2 9.(4分)如图,已知点A是以MN为直径的半圆上一个三等分点,点B是的中点,点P是半径ON上的点.若⊙O的半径为l,则AP+BP的最小值为()
A.2B.C.D.1
10.(4分)如图,直角三角形ABC位于第一象限,AB=3,AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线(k≠0)与△ABC有交点,则k的取值范围是()
A.1≤k≤5B.C.D.
二、填空题(本大题共6小题,每小题4分,共24分)
11.(4分)不透明的口袋中有2个黑球,1个白球,它们除颜色外其它均相同,从中先后两次摸出一个球(第一次摸出后不放回),则两次都摸到黑球的概率是.
12.(4分)若x,y为实数,且满足(x﹣3)2+=0,则()2017的值是.13.(4分)计算:x(x+2)﹣(x+1)(x﹣1)=.
14.(4分)如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=°.
15.(4分)有这么一个数字游戏:
第一步:取一个自然数n1=5,计算n12+1得a1;
第二步:算出a1的各位数字之和,得n2,计算n22+1得a2;
第三步:算出a2的各位数字之和,得n3,再计算n32+1得a3;….
依此类推,则a2017=.
16.(4分)矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD 上的B′处,折痕为AE、在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.
三、解答题(本大题共9小题,共计86分)
17.(7分)计算:|﹣2|﹣(2﹣)0+(﹣)﹣2
18.(7分)先化简,再求值:÷(a﹣),其中a=2,b=1.19.(8分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连结BE、DG.
(1)求证:BE=DG且BE⊥DG;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.
20.(8分)钓鱼岛历来就是我们中国的固有领土,是神圣不可侵犯的!如图是钓鱼岛中某个岛礁上的斜坡AC,我海监船在海面上与点C距离200米的D处,测得岛礁顶端A的仰角为26.6°,以及该斜坡坡度是tanα=,求该岛礁的高AB(结果取整数).
(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)
21.(8分)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区的一个环保组织在2014年4月份随机问卷了一些民众,对垃极分类所持态度进行调查,将调查结果绘成扇形图(如图).
(1)扇形图中,表示持“一般”态度的民众所占比例的扇形的圆心角度数是;
(2)调查中,如果把所持态度中的“很赞同”和“赞同”统称为“支持”,2016年4月,该环保组织又进行了一次同样的调查,发现“垃圾分类支持者”占到了调查人数的84.7%,那么这两年里“垃圾分类支持者”的年平均增长率大约是多少?
22.(10分)如图,Rt△ABC中∠C=90°,AC=4,BC=3;半径为1的⊙P的圆心P 在AC边上移动.
(1)当AP为多长时,⊙P与AB相切?(如有需要,可用图1分析)
(2)如图2,当⊙P运动到与边BC相交时,记交点为E,连结PE,并作PD⊥AC 交AB于点D,问:四边形PDBE可能为平行四边形吗?若可能,求出此时AP 的长;若不可能,说明理由.
23.(10分)如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4).(1)求出图象与x轴的交点A,B(A在B的左边)的坐标;与y轴的交点C坐标,并画出二次函数的草图;
(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
24.(14分)如图,在半径为2的扇形AOB中,∠AOB=120°,点C是弧AB上的一个动点,(不与点A、B重合),OD⊥AC,OE⊥BC,垂足分别为D、E.(1)当点C是弧AB中点时(如图①),求线段OD的长度;
(2)观察图②,点C在弧AB上运动,△DOE的边、角有哪些保持不变?求出不变的量;
(3)设OD=x,△DOE的面积为y,求y关于x的函数关系式,并写出x的取值
范围.
25.(14分)已知二次函数y=ax2﹣2ax+c的图象与x轴交于A(﹣1,0)、B两点,其顶点为M.
(Ⅰ)根据图象,解不等式ax2﹣2ax+c>0;
(Ⅱ)若点D(﹣3,6)在二次函数的图象上,试问:线段OB上是否存在N点,使得∠ADB=∠BMN?若存在,求出N点坐标;若不存在,说明理由.
福建省泉州市南安市自主招生数学试卷
参考答案
一、选择题(本大题共10小题,每小题4分,共40分)
1.C;2.A;3.B;4.A;5.D;6.C;7.C;8.D;9.C;10.B;
二、填空题(本大题共6小题,每小题4分,共24分)
11.;12.﹣1;13.2x+1;14.60;15.26;16.;
三、解答题(本大题共9小题,共计86分)
17.;18.;19.;20.;21.36°;22.;23.;24.;25.;。