高分子基团反应特点及影响因素

合集下载

聚合物的化学反应分类

聚合物的化学反应分类

Cell OH + HOOCCH 3
浓硫酸
Cell OCOCH 3
+ H2O
• 完全乙酰化和部分乙酰化纤维素都有工业用途。 • 醋酸纤维强度大、透明,可用作录音带、胶卷、 电器部件、眼镜架等; • 二醋酸纤维素的丙酮溶液可纺丝制人造丝,也可 作塑料和绝缘漆等。
③ 纤维素黄原酸钠
Cell OH
NaOH + CS2
⑤ 氰乙基纤维素 在碱存在下, 纤维素与丙烯腈进行醚化反应:
Cell
OH + C
OCH 2CH 2CN
引入适量氰乙基可提高纤维的耐磨性、耐腐蚀性及抗微生物 作用的能力。
(3) 聚醋酸乙烯酯的反应
乙烯醇并不存在,聚乙烯醇系由聚醋酸乙烯酯用甲醇醇解来 制取:
CH 2
CH OCOCH 3
未说明 : i) 分子链上有多少结构单元参与了反应 ; ii) 不能理解为所有酯基都已转化。
2、影响链上官能团反应能力的因素 (1)物理因素 主要反映在反应物质的扩散速度和局部浓度两方面。 结晶和无定形聚合物 线型、支链型及交联聚合物 不同的链构象 反应呈均相还是非均相等 ◎晶态高分子
对 小 分 子 物质 的 扩 散都有着不同的影 响,从而影响到基 团的反应能力。
◇ 研究聚合物反应的目的: i) 利用廉价的聚合物进行改性,提高性能、引入功能; ii) 制备新的聚合物,扩大应用范围; iii) 消除污染,保护环境。
一、聚合物化学反应的特征及影响因素
1、聚合物化学反应特征 ◎聚合物分子量很高 ◎结构具有多分散性、多层次性, ◎聚合物的聚集态结构及溶液行为与小分子物的差异很大,
S Cell O C SNa + H2O 纺丝 H+ , 酸 化 水解

第八章 高分子材料的化学反应2

第八章 高分子材料的化学反应2

聚合物化学反应分类

分类方法: 聚合物的性能取决于其结构和 X 。聚 n 合物化学反应种类很多,根据 和基团(侧基和 Xn 端基)的变化分为:
X 基本不变而仅限于侧基和(或端基)变化的反 n

应—称作相似转变。

的反应—如交联、接枝、嵌段、扩链等。 Xn

—如解聚、降解、分解和老化等。 Xn 的反应
二、聚合物作为链转移剂

原理:将某些聚合物A溶于另一引发剂单体B中加 热,单体均聚的的同时,初级自由基或链自由基 向聚合物链转移,在主链上形成新的活性点,引 发单体B接枝聚合。

接枝效率取决于链转移常数:一般链转移常数很 小,结果产物可能是大量的A均聚物、B均聚物和 少量的AB接枝共聚物。
提高效率的方法:将链转移常数较高的基团(如SH,-NR2,-CH2R)引到原始聚合物中。


邻近基团效应

邻近基团的静电效应:

当涉及酸碱催化过程、有离子态反应物或离子生 成物参与反应时,反应进行到后期,未反应基团的进 一步反应会受到邻近带电荷基团的静电作用而改 变速率

例,聚丙烯酰胺的水解反应 已水解生成的羧基负 离子对邻近未水解酰胺基团上带部分正电荷的羰 基的吸引而容易靠近,有利于羰基上胺基的离去 而完成水解过程。反应式:
8.1 引言
聚合物化学反应:以聚合物为反应物的化学反应。大 分子参加反应的部位可以是分子主链,也可以是侧基 研究目的 改性:对天然或合成的高聚物进行化学改性,赋予其 更优异和特殊的性能,开辟新的用途。 如:将纤维素乙酰化、硝化或醚化,能得到纤维素的醋 酸酯、硝酸酯或纤维素醚,用于生产人造丝、清漆、 薄膜。 合成:合成某些不能直接通过单体聚合而得到的聚合 物。 例如:PVA和维尼纶等的合成。 研究聚合物结构:了解聚合物的破坏的原因及规律。 如,聚合物老化问题,提出防老化的措施。

高分子材料大纲详解

高分子材料大纲详解

高分子材料:1、自由基聚合反应及其特点:属于连锁聚合反应,又称链式聚合反应。

自由基是带有未配对独电子的基团,性质不稳定,可进行多种反应。

聚合机理:过程包括:链引发、链增长、链中止以及可能伴有的链转移反应等基元反应。

特征:1.自由基聚合是一种链式聚合反应。

(满引发,快增长,速终止,有转移)2.引发反应速率最小,是聚合速度的控制步骤;3.只有链增长反应才使聚合度增加;(链增长反应极快,反应体惜仅由单体,相对分子质量高的聚合物及浓度极小的活性链组成)4.在聚合过程中,单体浓度逐步降低,聚合物转化速率随反应时间逐步增加;(聚合度或聚合物的平均相对分子质量与反应时间基本无关)5.少量阻聚物可足以使自由基聚合反应终止,故自由基聚合要求用纯度高的单体。

2、缩合聚合反应及逐步加聚反应:缩聚反应及逐步加聚反应均属于逐步聚合反应缩聚反应 是缩合反应经多次重复形成聚合物的过程。

具有两个或两个以上官能团的单体缩合而生成高分子化合物,同时伴随有小分子化合物(H2O,HX 等)的生成,叫缩合聚合反应,简称缩聚反应反应通式:缩聚反应的特点:(1)缩聚反应的单体往往是具有双官能团(如—OH 、—COOH 、—NH2、—X 及活泼氢原子等)或多官能团的小分子;(2)单体和所涉聚合物链节的化学组成不同;(3)反应除生成聚合物外,还有小分子生成(如H2O 、NH3、HCl 等)逐步加聚反应 单体分子通过反复加成,使分子间形成共价键而生成聚合物的反应。

加聚反应与缩聚反应特点对比3、分子间作用力:次价力:氢键、范德华力(包括取向力、诱导力、色散力) 由于加合效应,高聚物分子间的次价力有时可能超过主价力。

静电力 发生在极性分子之间的相互作用力,是由极性基团的永久偶极之间相互作用引起的。

诱导力 是极性分子永久偶极与它在其它分子上引起的诱导偶极之间的相互作用力。

存在极性-极性分子间,也存在极性-非极性分子间。

反应类型加聚反应 缩聚反应 反应物种类相同或不同单体 相同或不同单体 反应物特征含有不饱和键 含有特征官能团 生成物特征聚合物与单体具有相同的组成,主链上一般只有碳原子 聚合物与单体组成有所不同,主链上除有碳原子外还有其他 产物种类 只有聚合物 有聚合物和小分子色散力色散力是分子瞬时偶极之间的相互作用力,它存在于一切极性和非极性分子中。

第八章聚合物的化学反应

第八章聚合物的化学反应

第八章聚合物的化学反应重点、难点指导一、重要术语和概念概率效应、功能高分子、离子交换树脂、高分子试剂、接枝、嵌段、扩链、遥爪聚合物、老化、降解、解聚、燃烧性能、氧化指数二、难点概率效应、邻近基团效应1、聚合物化学反应的特点及影晌因素聚合物化学反应系指以聚合物为反应的化学反应。

聚合物化学反应可分为三类:聚合度不变的反应(如侧基反应);聚合度增加的反应(如接枝、扩链、嵌段和交联等);聚合度减小的反应(如降解、解聚、分解和文化等)。

(1)特点:反应复杂,产物多样.不均匀。

(2)影响因素①聚合韧聚集态的影响:处于结晶态的聚合物几乎不能参加化学反应,因为结晶区聚合物分子链间作用力强,链段堆砌十分致密,化学试剂不易扩散进去,难于产生化学反应。

②邻近基团位阻的影响:聚合物分子镊上参加化学反应的基团邻近体积较大的基团时由于位阻效应而使低分子反应物难于接近反应部位,而无法继续进行反应。

③邻近基团的静电效应:当聚合物化学反应涉及酸碱催化过程,或者有离子态反应物参与反应,或者有离子态基团生成时,在化学反应进行到后朗,未反应基团的进一步反应往往会受到邻近带电荷基因的静电作用而改变速率。

④构型的影响:具有不同立构异构体的聚合物参加的化学反应中,反应速率不相同。

⑤基团的隔离作用或“孤立化”:在聚合物化学反应中.如果参加反应的聚合物官能团必须是两个或两个以上.当反应进行到后期,当一个官能团的周围已经没有能够与之协同反应的第二个官能团,则这个官能团就好做“隔离”或“孤立”起来而无法继续进行反应。

⑥相容性的影响。

总之,影响聚合物化学反应的因素多种多样。

研究聚合物肋化学反应需综合考虑。

2、聚合废不变的反应—聚合物侧基反应聚合物侧基反应是大分子链上除端基以外的原子或原子团所进行的化学反应。

侧基反应是对聚合物进行化学改性的重要手段,同时也是制备那些无法由单体直接聚合得到或者对应单体无法稳定存在的聚合物的唯一方法。

3、聚合度增大的化学反应—接枝、扩链、交联(1)接枝:即在聚合物主链上引入一定数量与主链结构相同或不同文链的过程。

高分子材料结构特点及形成原因

高分子材料结构特点及形成原因

高分子材料结构特点及形成原因段星宇123511028高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。

一般有机化合物的相对分子质量只有及时到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。

高分子材料也称为聚合物材料,它是以聚合物为基体组分的材料,除基本组分聚合物之外,为获得具有各种实用性能或改善其成型加工性能,一般还有各种添加剂。

高分子材料之所以成为聚合物材料是由于高分子材料一般是由大量小分子化合物在一定条件下发生聚合反应,当聚合分子量达到一定值时,聚合物的性质显著改变,从而具备单独小分子化合物不可能具有的特殊性质。

因此,高分子材料目前已被广泛应用于各个领域。

影响物质性能的因素有很多,其中最重要的是化学组成和结构特点。

很显然,由不同的小分子聚合而成的聚合物具有不同的结构和性质。

对高分子材料而言,决定其性质的主要是其结构特点,原因是高分子材料由无数小分子通过一定的形式结合在一起的过程中有多种结合方式,而不同的结合方式势必会影响到材料的性质。

大多数高分子材料均具有以下结构特点:高分子材料的链结构,高分子链通常由103到105个结构单元构成;由于高分子链聚集形态的不同导致高分子材料不同的晶体结构;由于各种添加剂的加入,会使得高分子材料的局部结构发生改变,类似于普通晶体的掺杂特性。

高分子材料的结构研究包括两部分:高分子链的结构:指单个高分子化合物分子的结构和形态,可分为近程结构和远程结构。

高分子聚集结构:高聚物材料整体的内部结构,即高聚物中分子的堆积情况,又称为三级结构。

高分子链的结构近程结构:又称为一级结构。

主要指结构单元的化学结构,立体化学构型,它包括分子链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等“构造”情况,以及某些取代基在空间排列所构成的“构型”。

远程结构:又称为二级结构,是指孤立的高分子链,包括分子的大小和形态、链的柔顺性以及分子在各种环境中所采取的“构象”。

第一章高分子材料的基础知识

第一章高分子材料的基础知识

几种典型的相对分子质量分布曲线
百 分 数
分子量
高分子化合物的平均分 子量及分布宽窄,对高聚物 的物理、机械性能有很大影 响。一般来说,平均分子量 增大,高分子材料的机械强 度提高,但会使其熔融粘度 增大,流动性差,给成型加 工带来困难; 低相对分子量无定形聚 合物适合作胶粘剂和涂料, 橡胶和塑料则要求较高 的平均分子量,但有不能超 过最高限度
2、高分子材料的命名
主要根据大分子链的化学组成和结构而确定。 天然高分子材料,一般按来源或性质命名。如:纤维素、 蛋白质、虫胶等。 合成高分子材料,通常以生成高分子化合物的原料的名称 为前提而命名。 或在原料名称的前面加上个“聚”字;如聚乙烯、聚丙烯、 聚甲基丙烯酸甲酯(有机玻璃)。
或在原料名称后面加上“树脂”一词;如酚醛树脂
2、大分子链的立体构型(同分异构)
构型:是指分子链中由化学键所固定的原子在空间的几何排 列。这种排列是化学稳定的,要改变分子构型必须经过化学 键的断裂和重建。
由构型不同而形成的异构体有两类: ①旋光异构体
②几何异构体
①旋光异构体
正四面体的中心原子(如C、Si、P、N)上四个取代 基或原子如果是不对称的,则可能产生异构体。 结构单元为—CH2C*HR—的高分子,每一链节有两种旋 光异构体。假如高分子全部由一种旋光异构体单元组成,称 为全同立构;由两种旋光异构体交替间接,称为间同立构; 两种旋光异构体完全无规键接时,称为无规立构。 立体异构体之间的性能差别很大。例如:全同立构聚苯 乙烯能结晶,熔点240 ℃,而无规立构聚苯乙烯不能结晶, 软化点仅为80 ℃。 全同立构和间同立构聚合物统称为“等规聚合物”
三、高分子化合物的合成
这属于高分子化学的范畴。最常见的化学反应主要有两类:

高分子聚合物发生分子链基团的脱落,这样会产生热降解,加速管道老化。

高分子聚合物发生分子链基团的脱落,这样会产生热降解,加速管道老化。

高分子聚合物发生分子链基团的脱落,这样会产生热降解,加速管道老化。

1. 引言1.1 概述高分子聚合物是一类具有重要应用价值的材料,广泛应用于工业生产、日常生活和科学研究中。

然而,随着使用时间的增长,高分子聚合物会遭受各种环境因素的影响,如温度、湿度、辐射等。

这些因素可能导致高分子聚合物的分子链基团脱落,从而引发热降解现象。

管道作为高分子聚合物应用的重要领域之一,也不可避免地受到热降解的影响,加速其老化过程。

1.2 研究背景随着经济和社会的快速发展,人们对能源和资源需求不断增长。

管道系统作为能源和物质输送的重要通路,在能源供应链中扮演着至关重要的角色。

然而,由于长期使用以及外界环境因素的限制,管道系统在运行过程中逐渐老化,并面临着安全隐患和性能下降的问题。

因此,研究管道老化机理及其相关影响因素对于确保管道系统安全运行至关重要。

1.3 研究意义管道老化问题在工程实践中引起了广泛关注,并成为科学研究的热门领域。

探索高分子聚合物分子链基团脱落对管道老化过程的影响以及相关机制具有重要的理论和应用价值。

首先,深入了解高分子聚合物的脱落现象有助于我们更好地理解材料的性能变化规律,从而指导材料设计和制备工艺改进。

其次,揭示管道老化加速机制可以提供技术支持和示范应对长输管道系统的老化问题,保障其安全运行与服务寿命。

此外,本研究还可为未来材料科学与工程领域提供借鉴和启示,促进相关领域的学术发展和技术创新。

通过对高分子聚合物发生分子链基团的脱落以及由此引发热降解所致管道老化等问题进行综合研究,将有助于推动相关领域科学认知的进步,并为相应的解决方案提供理论指导和技术支撑。

因此,本文旨在系统地探讨高分子聚合物脱落现象及其对管道老化的影响,为解决管道老化问题提供理论基础和实验依据。

2. 高分子聚合物的分子链基团脱落现象2.1 聚合物分子链结构简介高分子聚合物是由大量单体分子通过化学键连接而成的长链状结构。

这些聚合物链中的每个单体都与相邻单体通过共价键连接在一起,形成了一个稳定的聚合物结构。

高分子化学课件第二章逐步聚合反应

高分子化学课件第二章逐步聚合反应
分类
逐步聚合反应可分为缩聚反应和 加成聚合反应两大类。
逐步聚合反应的特点
聚合度逐步增加
可合成高分子量高聚物
在逐步聚合反应中,单体分子通过反 复的聚合反应逐步增加聚合度,形成 高分子链。
通过逐步聚合反应,可以合成高分子 量、高分子链较长的高聚物。
反应条件温和
逐步聚合反应通常在温和的反应条件 下进行,如常温、常压或较低的温度 和压力。
KEEP VIEW
REPORTING
压力的影响
压力对聚合速率的影响
在聚合过程中,压力的增加通常会提高聚合速率。这是因为压力增加可以增加气 体或液体的密度,从而增加单体分子的碰撞频率,促进聚合反应的进行。
压力对聚合物分子量的影响
在聚合过程中,压力的增加可以抑制支化和链断裂的发生,从而提高聚合物分子 量。因此,在某些聚合反应中,采用高压技术可以获得高分子量的聚合物。
随着聚合反应的进行,体系的 自由能逐渐降低,最终达到平
衡状态。
聚合过程中,自由能的变化决 定了聚合产物的稳定性、分子
量和分子结构等性质。
PART 03
逐步聚合反应的类型
加聚反应
总结词
加聚反应是一种通过加成反应生成高分子化合物的聚合过程 。
详细描述
加聚反应是通过加成反应将小分子单体结合成高分子化合物 的过程。在反应过程中,单体分子通过相互加成的方式连接 成线型或体型的聚合物。加聚反应的特点是反应速度快,副 产物少,聚合物链中不存在其它基团。
缩聚反应
总结词
缩聚反应是一种通过缩合反应生成高分子化合物的聚合过程。
详细描述
缩聚反应是通过两个或多个单体分子相互缩合,同时脱去小分子副产物(如水、氯化氢等)生成高分子化合物的 过程。缩聚反应可以生成高分子量的聚合物,常见的缩聚反应包括聚酯、聚酰胺、聚氨酯等。缩聚反应的特点是 聚合过程中有副产物生成,聚合物的链结构与单体的结构有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有特殊性: 1. 反应产物的不均匀性 高分子链上的基团很难全部起反应
一个高分子链上含有未反应和反应后的多种不同 基团,类似共聚产物。如聚丙烯腈的水解:
反应不能用小分子的“产率”一词来描述
只能用基团转化率来表征:即指起始基团生成各种 基团的百分数。
基团转化率不能达到百分之百,是由高分子反应的 不均匀性和复杂性造成的。
有利于形成五元或六元环状中间体,均有促进效应
邻基效应还与高分子的构型有关,如:全同 PMMA比无规、间同水解快,原因是全同基结构的团 位置易于形成环酐中间体。
物理因素
聚集态的影响
晶态 高分子
低分子很难扩散入晶区,晶区 不能反应 基团反应通常仅限于非晶区
无定形 高分子
玻璃态,链段运动冻结,难以反应 高弹态:链段活动增大,反应加快 粘流态:可顺利进行
聚醋酸乙烯酯的反应
聚乙烯醇只能从聚醋酸乙烯酯的水解得到:
聚乙烯醇缩醛化反应可得到重要的高分子产品
芳环取代反应
聚苯乙烯几乎可进行芳烃的一切反应。如:以苯乙 烯 -二乙烯苯共聚物为母体制备离子交换树脂。
8.3 高分子试剂与高分子催化剂
高分子试剂
定义:高分子上的基团起着化学试剂的作用。也称反应 性高分子。
接枝反应:通过化学反应,在某一聚合物主链上接 上结构、组成不同的支链。 接枝方法大致分为两类:
聚合法 在高分子主链的引发点上,单体 聚合长出支链
偶联法 将预先制好的支链偶联到高分子 主链上去
引发剂法 链转移法 幅射聚合法 光聚合法 机械法
也可在聚合物主链上形成过氧化物侧基
嵌段共聚
方法:依次进入不同单体的活性聚合,如烷基锂为引
¾¾聚聚合合度度基基本本不不变变的的反反应应,,侧侧 基基和和端端基基变变化化 ¾¾聚聚合合度度变变大大的的反反应应::交交联联、、 接接枝枝、、嵌嵌段段、、扩扩链链 ¾¾聚聚合合度度变变小小的的反反应应::降降解解,, 解解聚聚
8.1 高分子基团反应特点及影响因素
高分子基团可以起各种化学反应 于存在链结构和聚集态结构,高分子基团反应具
碱是聚酯水解活泼催化剂
力化学降解
高分子在机械力和超声波作用下,都可能使大分子
断链而降解
固体聚合物的粉碎
受机械
橡胶塑炼
力的场合
熔融挤出
纺丝聚合物溶液的强力搅拌
力化学降解产生的高分子自由基,在单体存在
时,可生成接枝共聚物,近年来发展的反应性挤出
就是利用这一原理。
热降解
高分子在热的作用下发生降解是一种常见现象
8.5 降解
降解是聚合物分子量变小的化学反应的总称
聚合物 降解的 因素
化学因素:水、醇、酸 物理因素:热、光、幅射、机械力 物理-化学因素:热氧、光氧
水解和化学降解 ¾杂链聚合物容易发生化学降解,化学降解中大量是水解 ¾酸、碱是水解的催化剂 ¾聚缩醛、聚酯、聚酰胺最易发生水解 ¾淀粉、纤维素完全水解可得到相应的单糖 ¾聚酰胺水解生成端氨基和羧基
吸吸附附法法
内内包包藏藏法法
将具有催化作 用的基团以化 学结合形式接 到高分子上。
利用正、负离 子的吸附作 用,将催化基 团吸附在高分 子载体上。
反应基团包在 高分子载体内。
高分子催化剂优点:易储运、低毒且较稳定;分离、 回收、再生较简单。
8.4 聚合度变大的反应
包括:交联、接枝、嵌段、扩链
交联反应: 线型高分子之间进行化学反应,形成网 状高分子
即使均相反应,高分子的溶解情况发生变化时,反 应速率也会发生相应变化。
轻度交联的聚合物,须适当溶剂溶胀,才易进行反 应。如苯乙烯-二乙烯基苯共聚物,用二氯乙烷溶 胀后,才易磺化。
链构象的影响
高分子链在溶液中可呈螺旋形或无规线团状态。 溶剂改变,链构象亦改变,基团的反应性会发生明 显的变化。
8. 2 聚合度相似的化学转变
聚烯烃(聚乙烯、乙丙橡胶)在过氧化物、高能幅
射作用下可发生交联。过氧化物交联如下:
乙丙橡胶的交联(硫化)发生在叔碳原子上
橡胶的硫化
橡胶硫化就是使具有弹性的线型橡胶分子生成交 联的过程 因用硫或硫化物交联,故硫化和交联是同义语 交联可阻止大分子的滑移,消除永久形变,赋予高弹性 其机理还很复杂,基本认为是离子反应机理
高分子的热稳定性与其结构有关
解聚
解聚可看成链增长的逆反应
热裂解一般是自由基反应,先在链端发生断裂, 生成活性较低的自由基,然后按连锁机理迅速脱除 单体,这就是解聚反应
高分子发生解聚的难易与其结构有关 :
¾主链带有季碳原子的高分子易发生解聚
原因:无叔氢原子,难以转移 如PMMA、聚α-甲基苯乙烯、聚异丁烯
1 高分子基团反应特点及影响因素
第八章 2 聚合度相似的化学转变
高分子的 化学反应
3 高分子试剂与高分子催化剂 4 聚合度变大的反应
5 降解
高分子化学是一门研究高分子化合物合成与反应科学
研究高分子化学应的的分分类类::
¾扩大高分子的品种和应用 范围 ¾在理论上研究和验证高分 子的结构 ¾研究高分子的降解,有利 于废聚合物的处理
¾全 C-F 键聚合物可全部解聚成单体
C-F键能大,不易断裂,不能夺取F原子 聚四氟乙烯单体产率达96. 6%
¾链端带有半缩醛结构的聚合物易解聚
如聚甲醛
无规断链
聚合物受热时,主链的任何处都可以断裂,分 子量迅速下降,单体收率很少,这种反应称为无规 断链,也称降解。
如聚乙烯,断链后形成的自由基活性很高,周围又 有许多仲氢原子,易发生链转移反应,几乎无单体 产生。
发剂的阴离子聚合
但要注意链阴离子的活性, pKa大的单体可引发小的 St → MMA → AN → VDCN (乙叉二氰) 如何制备 MMA-St-MMA、St-MMA-St三嵌段共聚物? 可通过多官能团偶联剂,制备星型聚合物
其它 合成方法
特T殊ex引t 发剂法 缩聚中的链交换反应 带活性端基预聚体
扩链反应
力化学法
以适当的方法,将分子量为几千的低聚物连接起
来,使分 子量成倍或几十倍提高
¾先合成端基有反应能力的低聚物(预聚体)
¾活性基团位于分子链的两端,象只爪子,故称遥爪
预聚物
如液体丁二烯橡胶的合成,先合成PB预聚体, 在其两端接上活性的端集-OH,再利用活性端基反 应,扩大分子量。
活性端基不同,相应的扩链剂也不相同
方法:将功能基团接到高分子母体上,作为化学试剂用。
高分子药物(也属于高分子试剂的范畴):将药物共价 结合或络合在聚合物上,或将带有药效基团的单体聚 合,就成了高分子药物。
高分子催化剂
定义:将起催化作用的基团接到高分子母体上,高分子 本身不发生变化,称作高分子催化剂。
高分子催化剂的制备方法:
化化学学结结合合法法
2.影响高分子化学反应的因素
化学因素
几率效应
高分子链上的相邻基团进行无规成对反应时,中间 往往留有孤立基团,最高转化率受到几率的限制, 称为几率效应。
例如,PVC与Zn粉共热脱氯,按几率计算只能 达到86.5%,与实验结果相符。
邻近基团效应
高分子链上的邻近基团,包括反应后的基团都 可以改变高分子链上的邻近基团的活性,这种影响 称为邻基效应。如聚甲基丙烯酸酯类碱性水解时的 自动催化作用。
PS 受热时,同时伴有降解和解聚反应,单体产率占42%
谢 谢!
纤维素的化学反应
纤维素是第一个进行化学改性的天然高分子 纤维素有许多重要衍生物
纤维素的结构如下
¾粘胶纤维 ¾纤维素硝酸酯 ¾纤维素醋酸酯 ¾纤维素醚类: ¾甲基、乙基、羧
甲基纤维素
粘胶纤维的制造
将部分黄酸盐水解成羟基, 成为粘度较大的纺前粘胶液
纤维素黄酸钠 (0.5 个黄酸根/ 3个羟基)
粘胶纤维的制造
相关文档
最新文档