《平方根》学案
13.1平方根三课时学案

课题:13.1平方根(第1课时)学案一、教学目标1.经历算术平方根概念的形成过程,了解算术平方根的概念.2.会求某些正数(完全平方数)的算术平方根并会用符号表示.二、教学重点和难点1.重点:算术平方根的概念.2.难点:算术平方根的概念.(本节课需要的各种图表要提前画好)三、教学过程请看下面的例子.学校要举行美术作品比赛,扎西很高兴.他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?(师演示一张面积为25平方分米的纸)(一)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?答:因为52=25(板书:因为52=25),所以这个正方形画布的边长应取5分米(板书:所以边长=5分米).(二)(完成下表)这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,我们就有了算术平方根的概念.正数3的平方等于9,我们把正数3叫做9的算术平方根. 正数4的平方等于16,我们把正数4叫做16的算术平方根. 说说6和36这两个数?……(多让几位同学说,学生说得不正确的地方教师随即纠正) 说说1和1这两个数?同桌之间互相说一说5和25这两个数.(同桌互相说) 说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?还是先在小组里讨论讨论,说说自己的看法. (三)什么是算术平方根呢?如果一个正数的平方等于a ,那么这个正数叫做a 的算术平方根请大家把算术平方根概念默读两遍.(生默读)(师让学生拿出提前准备好这样的10张卡片,一面写1-10,另一面写1-10的平方.生任意抽一张卡片,让其他学生回答平方或算术平方根。
(按以上过程抽完所有卡片)如果一个正数的平方等于a ,那么这个正数叫做a 的算术平方根.为了书写方便,我们把aa 的算.师:(指准上图)看到没有?这根钓鱼杆似的符号叫做根号,a 叫a 的算术平方根.根号被开方数a例 求下列各数的算术平方根: (1)4964; (2)0.0001. (要注意解题格式,解题格式要与课本第68页上的相同) (四)自我检测 1.填空:(1)因为_____2=64,所以64的算术平方根是______,=______;(2)因为_____2=0.25,所以0.25的算术平方根是______,即______;(3)因为_____2=1649,所以1649的算术平方根是______,______.2.求下列各式的值:______;=______;______;______;______;=______.3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:_______,=_______,=_______,=_______,_______,_______,_______,_______,_______. (学生记住没有,教师可以利用卡片进行检查,并要求学生课后记熟)4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?(五)归纳小结,布置作业a a叫做被开方数.(作业:P习题1.要求学生按课本例题的格式做)75课题:13.1平方根(第2课时)学案一、教学目标1.通过由正方形面积求边长,加深对算术平方根概念的理解,感受无理数,初步了解无限不循环小数的特点.2.会用计算器求算术平方根.二、教学重点和难点1.重点:感受无理数.2.难点:感受无理数.(本节课使用计算器,最好每个同学都要有计算器)三、教学过程(一)基本训练,巩固旧知1.填空:如果一个正数的平方等于a,那么这个正数叫做a的_______________,记作_______.2.填空:(1)因为_____2=36,所以36的算术平方根是_______=_____;(2)因为(____)2=964,所以964的算术平方根是_______,即_____;(3)因为_____2=0.81,所以0.81的算术平方根是_______,即_____;(4)因为_____2=0.572,所以0.572的算术平方根是_______,_____.3.师抽卡片生口答.数、小数、a2等形式)(二)(看下图)这个正方形的面积等于4,它的边长等于多少?谁会用算术平方根来说这个正方形边长和面积的关系?这个正方形的面积等于1,它的边长等于多少? 用算术平方根来说这个正方形边长和面积的关系? 师:(指准图)这个正方形的边长等于面积1的算术平方根,也就边长) 生:等于1.(师板书:=1) (看下图)这个正方形的面积等于2,它的边长等于什么?(稍停)因为边边长=.(上面三个图的位置如下所示)面积=4面积=1面积=2边长=4=2边长=2边长=1=1面积=2面积=1面积=421在1和2之间的数有很多,它的平方等于多少?第一条线索是那个数在1和2之间,第二条线索是那个数的平方恰好等于2..我们在1和2之间找一个数,譬如找1.3,(板书:1.32=)1.3的平方等于多少?(师生共同用计算器计算)1.69不到2,说明1.3比我们要找的那个数小.1.3小了,那我们找1.5,1.5的平方等于多少?(师生共同用计算器计算)2.25超过2,说明1.5比我们要找的那个数大.找1.3小了,找1.5又大了,下面怎么找呢?大家用计算器,算一算,找一找,哪个数的平方恰好等于2?1.41421356点点点,可见是一个小数,这个小数与我们以前学过的小数相比有点不同,有什么不同呢?第一,这个小数是无限小数(板书:无限).还有别的无限不循环小数吗?无限不循环小数还有很多).可以利用计算器来求.下面我们就用计算器来求一个数的算术平方根.(师出示例题)例用计算器求下列各式的值:精确到0.001);(按键时,教师要领着学生做;解题格式要与课本上的相同)(四)自我检测4.填空:(1)面积为9=;(2)面积为7≈(利用计算器求值,精确到0.001).5.用计算器求值:=;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:器,直接写出下列各式的值:=,=,=,= .练习1.)(作业:P72课题:13.1平方根(第3课时)一、教学目标1.经历平方根概念的形成过程,了解平方根的概念,会求某些正数(完全平方数)的平方根.2.经历有关平方根结论的归纳过程,知道正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.二、教学重点和难点1.重点:平方根的概念.2.难点:归纳有关平方根的结论.三、教学过程(一)基本训练,巩固旧知1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16=;(2)面积为15≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,≈ .(三)如果一个正数的平方等于9,这个正数是多少?如果一个数的平方等于9,这个数是多少?和算术平方根的概念类似,(指准32=9)我们把3叫做9的平方根,(指准(-3)2=9)把-3也叫做9的平方根,也就是3和-3是9的平方根(板书:3和-3是9的平方根).我们再来看几个例子.(师出示下表)平方根:如果一个数的平方等于a,那么这个数叫做a的平方根. 平方根概念与算术平方根概念只有一点点区别,哪一点点区别?(出示例题)例求下面各数的平方根:(1)100; (2)0.25; (3)0; (4)-4;(1)因为(±10)2=100),所以100的平方根是+10和-100的平方是0,正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于-4.这说明什么?(例题)从这个例题你能得出什么结论?(稍停片刻)正数有几个平方根?0有几个平方根?负数有几个平方根?请学生小组讨论正数有_________________平方根(板书:正数有两个平方根).平方根有什么关系?0的平方根_________________个,平方根是_________________.负数_________________平方根大家把平方根的这三条结论读两遍.(四)自我检测1.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;2.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0 ()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()。
八年级数学上册 平方根(第一课时)学案 北师大版

学习
目标
1、了解算术平方根的概念,开方和乘方是互逆运算。
2、学会用根号表示一个非负数的算术平方根。
3、能运用算术平方根的非负性解决问题。
学习流程:
一.自主学习(相信你能行)
1)自主预习,认真阅读课本P38-39例1以上内容,你有何收获?
2)尝试练习:(细心一定能取胜)
②在实数中,所有的数都有算术平方根吗?说明理由。
课后
反思
1.∵3的平方是9,即 ,∴9的算术平方根为,即 =。
2.∵( = ,∴ 的算术平方根是,即 。
3. 1的算术平方根是,即 。0的算术平方根是,即 。
二.小组合作,讨论交流。
1.先自主学习例题,再在小组内讨论交流,完成下面几个问题。
①在例1中,14的算术平方根是如何表示的?118、19的算术平方根如何表示?
课题
2.2平方根(第一课时)
主备
课时
一课时
个性设计
2.总平方根等于本身的数有。
三、展示反馈:(展示出最精彩的你!)
1.课本P39随堂练习1.
2.计算:① ②
3.若 ,则 。
四、拓展演练(勇敢的亮出成功的你!)
1. 的算术平方根是.
2.已知 。求 的值。
3.当a,b为何值时, 有意义?
七年级数学下《平方根》教案

七年级数学下《平方根》教案一、教学目标1.知识与技能:学生能够理解平方根的概念,掌握平方根的基本性质,能够进行简单的平方根运算。
2.过程与方法:通过观察、思考和探究,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的好奇心和探究欲,培养他们认真思考、勇于探索的精神。
二、教学内容与过程1.导入:通过回顾正方形的面积,引出平方根的概念。
教师可提出一些问题,如:“如果一个正方形的面积为8平方米,那么它的边长是多少?”引导学生思考并引出平方根的概念。
2.知识讲解:详细讲解平方根的定义、性质和运算方法。
通过实例进行解释,帮助学生深入理解平方根的概念。
同时,强调平方根与算术平方根的区别与联系。
3.探究活动:设计探究活动,让学生自己动手操作,探索平方根的基本性质和运算方法。
探究活动可以包括求一些数的平方根、比较不同数的平方根的大小等。
4.应用实践:设计实际问题,让学生运用所学知识解决,如求一些实际问题中的平方根等。
同时,可以引导学生探索平方根在实际生活中的应用。
5.总结与提升:总结平方根的主要知识点,强调重点和难点。
通过综合性题目,提升学生运用知识解决实际问题的能力。
同时,可以引导学生思考平方根与其他数学知识的联系,为后续学习打下基础。
三、教学方法与手段1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。
同时,注重实例教学,通过实例帮助学生理解抽象的数学概念。
2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更好地理解平方根的概念和性质。
同时,鼓励学生动手操作,培养他们的实践能力。
四、教学评价与反馈1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整教学策略。
同时,鼓励学生积极参与课堂活动,发表自己的观点和见解。
2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。
同时,关注学生的作业完成情况,对有困难的学生进行个别辅导。
鲁教版五四学制:2024-2025年七年级第一学期上册数学4.2平方根(2)学案和答案

2024--2025学年度七年级数学上册学案4.2平方根(2)【学习目标】1.了解平方根、开平方的概念,理解平方根的性质;2.了解平方根与算术平方根的区别与联系,会求一个数的平方根,进一步明确平方与开平方是互逆的运算关系.【自主学习】1.平方根的定义: 如果一个数x 的平方等于a ,即____________,那么这个数____就叫做 的平方根,记为“__________”,读作“________________”.2.平方根的性质: 一个正数有_____个平方根.0只有_______平方根,它是_______;负数_______平方根. 注意:平方根等于本身的数是(1)a a =2==⎩⎨⎧-a a 00<≥a a (2)()a a =2(0≥a ) 3.开平方的定义:求一个数a 的________的运算,叫做开平方,其中a 叫做________.4.平方根与算术平方根的联系与区别联系:(1)具有包含关系: 包含 .(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根是 ,算术平方根是 .区别:(1)个数不同:一个正数有 平方根,而一个正数的算术平方根 个.(2)表示法不同:正数a 的平方根表示为 ,算术平方根表示为 .(3)取值范围不同:正数平方根一正一负,互为相反数;正数算术平方根只有一个.【典型例题】知识点一 求一个数的平方根1.实数9的平方根为( )A .3 B .3- C .3± D .3±2.下列各式中,正确的是( )A.√25=±5B. (−√4)2=16C. √(−2)2=−2D.±√25=±5知识点二 平方根的性质3.下列结论正确的是( )A .()22-的平方根是2-B .()2π4-的算术平方根是4π-C .一个数的算术平方根一定是正数D .算术平方根等于本身的数是1 4.如果某数的平方根是和,那么这个数是( )A.5B.-5C.169D.-169【巩固训练】1.下列式子错误的是( )A .0.090.3±±B 0.250.5=±C .12111-=-D 911645 2.下列等式成立的是( )A .b a b a +=+2)(B .b a b a -=-2)( C .a a =2 D .24a a = 3.若,则的值是( ) A. 2 B. C. 5 D. 4.5.已知192-的整数部分是m ,小数部分是n ,则m = ,n = .6.求下列各数的平方根(1)1.21;(2)0.01;(3)279;(4)(-13)2;(5)-(-4)37.求满足下列未知数的 (1)(2) (3)8.已知的平方根是±3,的算术平方根为2,求与的值;9.已知a ,b 满足等式()21303a b ++-=,20212020a b=4.2平方根(2)【自主学习】1. 2x =a x a ±a正负根号a2. 两 1 0 没有 03. 平方根 被开方数4. 平方根 算术平方根 0 0如果一个数x 的平方等于a ,那么这个数;如果一个正数x 的平方等于a ,那么这个数两 1 ±a a【典型例题】1. B2.D3.C【巩固训练】1. (1)√ (2)√(3)× (4)√2. 6±3. 3; 414. C5.(1)95x ±= (2)2-4x 或=(3)2325-或 6.813、35、0.1、1.1±±±±±、7.a=-1,x=9 8.32±;6±9.x=2,y=±5,原式=33。
平方根学案

平 方 根 (一)学习目标:1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:算术平方根的概念。
教学难点:根据算术平方根的概念正确求出非负数的算术平方根。
学习过程一、自主探究(享受探究的快乐)1、填空:①因为32=9,所以( )是( )的算术平方根;因为52 =25;所以( )是( )的算术平方根。
②9的算术平方根是( );25的算术平方根是( )。
③因为2x =a (x 为正数), 所以( )是( )的算术平方根; 正数a 的算术平方根记为( ),读作( ),a 叫做( )。
④0的算术平方根是( ),记为( )。
2.(口答)说出一个正数让你的同伴回答它的算术平方根吧。
3.请试着用新的运算符号表达一个正数的算术平方根。
4、我思考,我收获:-4的算术平方根是多少? a 中的a 的取值有什么要求?二、自我尝试(相信自己,你一定能行)1、求下列各数的算术平方根。
①100 ②6449 ③0.01 ④322、求下列各式的值 ①25 ②81.0 ③1 ④0 ⑤2516 ⑥2)3(-⑦416三、补偿提高(更上层楼)1.49的算术平方根是( ),7的算术平方根是( )2.16的算术平方根是( ),16的算术平方根是( ) 16的值是( )3.若x =6成立,则x =( )4.3x -4为25的算术平方根,求x 的值。
四、拓展提高(开放思路)1.当x 取何值时,1-x 有意义?2.若a +1-b =0成立,试求a 与b 的值。
五、小结,归纳梳理,整合内化本节课你学习了哪些知识?在探索知识的过程中,你有哪些收获?你还有哪些困惑?和你的同伴交流一下吧.六、学习收获:七、作业布置:同步训练第53页自我尝试部分的第5题和第6题。
(人教版)七年级数学下册第六章第1节《平方根》学案(两份)

第 1 讲平方根知识要点1、平方根( 1)平方根的意义:如果一个数的平方等于 a ,这个数就叫做 a 的平方根。
a 的平方根记作:2a或a 。
(2)平方根的性质①一个正数有两个平方根,它们互为相反数。
比如: 4 的平方根记作“±4”,读作“正负根号4”。
81 的平方根记作“±81”,读作“正负根号81”②0 有一个平方根,它是 0 本身③负数没有平方根。
由此,我们可以知道,被开方数一定要为非负数。
(即 a0 )(3)开平方运算求一个数的平方根的运算,叫作开平方。
注意:①一个正数开平方,它的结果有两个(即 a )② 0 开平方就是 0③负数不能开平方(4)平方和开平方互为逆运算;(5)重要性质:a2a a 2a(a 0)2、算术平方根( 1)算术平方根的意义:非负数 a 的正的平方根。
一个非负数 a 的平方根用符号表示为:“ a ”,读作:“根号a”,其中 a 叫做被开方数( 2)算术平方根的性质①正数 a 的算术平方根是一个正数;②0 的算术平方根是 0;③负数没有算术平方根例 1求下列各数的平方根:(格式)( 1) 25;(2)0.81(3)15;(4)(-2)2(5)16(6)0(7) 21(8)9 814(9 )1022(10)(2 4)例 2填空(1)一个数的平方等于它本身,这个数是。
一个数的平方根等于它本身,这个数是。
( 2)若 3a+1 没有平方根,那么 a 一定。
( 3)若 4a+1 的平方根是± 5,则 a=。
( 4)一个数 x 的平方根等于 m+1和 m-3,则 m=。
x=。
例 3x为何值时,下列代数式有意义。
( 1) 3 2x( 2)x22 x(3)13x1( 4) x23( 5)x1(6)( x 1)2x1练习1、若 |a-9|+(b-4 )2=0,则a的平方根是。
b2、求下列各式中的 x:(1) x2=16(2) x2=25 49(3)x2=15(4)4x2 =813、已知 2a-1 的算术平方根是3, 3a+b-1 的平方根是± 4,求 a+2b 的平方根。
11.1.1平方根学案

11.1 平方根与立方根——平方根学案一、情境引入如果要剪出一块面积为25cm 2的正方形纸片, 其边长为多少呢?这个问题实质上就是要找一个数,这个数的平方等于252=25边长,所以,其边长为5cm 。
又:面积为16 cm 2则其边长为 ;面积为9cm 2则其边长为 ; 那面积为a cm 2则其边长为 ;这时,可设其边长为 x , 得到 x 2 = a .二、算一算探究交流:一对互为相反数的的数的平方有什么关系?探究交流:平方得25的数有几个?分别是什么?这两个数有什么关系?它们的和等于多少呢?三、新课(预习课本P2-4)1、平方根的概念:如果一个数的平方等于 a , 那么这个数 叫做 a 的平方根. 就是说, 当 x 2 =a (a≥0) 时, 称 x 是 a 的平方根.2、在上面的问题中,我们知道因为=25,所以5是25的一个平方根.探究交流:25的平方根只有一个吗?还有没有别的数的平方也等于25?探究交流:如何求一个数的平方根?求一个数的平方根的关键是什么呢?例1、 求100的平方根解:因为102=100, 且(-10)2=100所以10和-10都是100的平方根.所以100的平方根为 ±10.3、探究平方根的性质:(1)16的平方根是什么? (2)0的平方根是什么?(3) 的平方根是什么?(4)-4有没有平方根?为什么?性质:(1) 一个正数有( )个平方根,它们互为( ) 数,它们的和等于( )(2) 0的平方根是( ),是它( )(3) ( )数没有平方根.=25.0=22=-2)2(=⎪⎭⎫⎝⎛231=⎪⎭⎫ ⎝⎛-231=-2)5.0(25914、算术平方根:温馨提示:0的算术平方根还是0求一个非负数的平方根的运算,叫做开平方。
将一个正数开平方,关键是找出它的算术平方根。
开平方就是找正数的平方根。
四、课堂练习:1. 判断题下列叙述正确的打“√”,错误的打“×”:(1)25的平方根是 ±5; ⑵ ±3是9的平方根 ; ⑶ 4的平方根是2;⑷ 9是81的一个平方根; (5) -9的平方根是 -3; (6) 0的平方根是 0;3、直接说出下列各数的平方根(1)25; (2) (3)0;(4)4、填空(1).如果一个正数有一个平方根是 5 ,那么另一个平方根是( )则这个数的值是 ( )(2).一个数的平方根等于它本身,这个数是( )(3).若3a 没有平方根,那么a 一定是 数.(正、负)五、能力提升1、81的算术平方根是( );的算术平方根是( )2、 一个正数的两个平方根为m+1和m -3,则m= 。
人教版数学七下《平方根》word导学案

《6.1平方根》导学案(1)【学习目标】1.了解算术平方根的概念,并会用符号表示。
2)会求一个数的算术平方根。
2.自主、合作、交流3.培养学生的分析能力和归纳能力【重点】算术平方根的概念【难点】算术平方根的概念一复习导入:(2分钟)正方形的面积/m² 1 9 16 25 425正方形的边长/m仔细观察,你会发现,这些问题都是已知一个正数的平方,求这个正数的问题。
一般地,如果一个 x那么这个 x方根记为a,读作“根号规定:0的算术平方根是0)25 81;探究:现有一个面积为1dm²的正方形,试求其对角线的长度深度探究:2、3、5到底是多大呢?(1)8与512-;(2)65与8;)51-与)51-与0的算术平方根是0,1的算术平方根是1,被开方数越大,对应的算术平方根越大。
A .9B .9C .-9D .3已知正方形的边长为a ;②S ;③平方根;④a 是 A .①③ B .②③ C .①④ D .②④如果y 4. 计算22的结果是( )-2 B .2 C .25.2623二、填空题(细心填一填)一个数的算术平方根是,这个数是________2. 算术平方根等于它本身的数有______________。
3. 81的算术平方根是4. 144=_______;4925=________;0.01________;0025.0=_______。
196;28_________;169256=___________1. 求下列各数的算术平方根:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平方根》学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《6.1 平方根》6.1平方根(1)【学习目标】1.了解数的算术平方根的定义,会用根号表示一个数的算术平方根,并理解算术平方根的双重非负性2.能利用算术平方根的定义求一个非负数的算术平方根【学习重点】了解算术平方根的概念、性质、会用根号表示一个正数的算术平方根【学习难点】理解算术平方根的双重非负性[探究研讨]【活动1】学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm自学教材,回答问题:1. 一般地,如果一个___ 数x的平方等于a,即2x=a,那么这个______叫做a 的_________.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:______的算术平方根是0. 记作0=2.由以上定义可知如果2x=a,那么x就叫a的算术平方根吗判断下列语句是否正确①5是25的算术平方根()②-6是36的算术平方根()③0.01是0.1的算术平方根()④-5是-25的算术平方根()3.3的算术平方根可表示为,4的算术平方根可表示为,你还能表示出那些数的算术平方根?写在下面,和同座交流一下4.试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.【活动2】例:求下列各数的算术平方根: (1)100;(2) 6449;(3) 0.0001 ;⑷ 0;[跟踪训练]1、1.非负数a 的算术平方根表示为___,225的算术平方根是____,0.64-的算术平方根____,0的算术平方根是____2. 41的算术平方根是( ) A .161 B .81 C .21 D .21±3.若x 是49的算术平方根,则x =( )A. 7B. -7C. 49D.-494.小明房间的面积为10.8米2,房间地面恰好由120块相同的正方形地砖铺成,每块地砖的边长是 .[变式训练]想一想:下列式子表示什么意思你能求出它们的值吗⑵[跟踪训练]____,_____===_____,3.7=,则x 的算术平方根是( )【活动3】思考:-4有算术算术平方根吗为什么 总结:1.正数有 的算术平方根 0的算术平方根是 负数 2.对于a :a 00 [跟踪训练]1.下列哪些数有算术平方根?0.03, -161, π, 0, (-3)2,(-1)32.下列各式中无意义的是( )A .7-B .7 C.7- D .()27--3. 下列运算正确的是( ) A .33-= B .33-=-C =D 3=-4.若下列各式有意义,在后面的横线上写出x 的取值范围: ⑵x -55.若20a -=,则a= ,b= ,2a b -= . [提升能力]1.一个自然数的算术平方根为a ,那么与这个自然数相邻的下一个自然数的算术平方根是_______具有双重非负性2.一个正方形的面积扩大为原来的4倍,它的边长变为原来的倍,面积扩大为原来的9倍,它的边长变为原来的倍,面积扩大为原来的n倍,它的边长变为原来的倍.3.如图:那么,ba-有意义吗?4.x的取值范围是()A. 2x≠ B. 2x≥ C. 2x> D. 2x≤5.若()2130x y-++,求,,x y z的值。
[反思归纳]算术平方根的定义、表示方法和性质1.求一个非负数的算术平方根2.a的双重非负性6.1平方根(2)【学习目标】1.理解有些非负数的算术平方根不是一个有理数3.能用逼近法估算a(a不是完全平方数)的算术平方根的大小,增强数感【学习重点】能用逼近法估算a(a不是完全平方数)的算术平方根的大小【学习难点】通过估算能比较类似a(a不是完全平方数)的数的大小[知识回顾]1、算术平方根的意义及表示方法。
2、说出下列各数的算术平方根。
100 0.0049 253642 25 [探究研讨]某同学用一张正方形纸片折小船,但他手头上没有现成的正方形纸片,于是他撕下一张作业本上的纸,按照如图,沿AE 对折使点B 落在点F 的位置上,•再把多余部分FECD 剪下,如果他事先量得矩形ABCD 的面积为90cm 2,又测量剪下的多余的矩形纸片的面积为40cm 2.•请根据上述条件算出剪出的正方形纸片的边长是多少厘米.【活动1】怎样用两个面积为1的正方形拼成一个面积为2的大正方形动手画一画,若确实不会,则学生间进行交流。
问题1:画出拼成的大正方形的草图。
问题2:你能求出大正方形的边长吗(动动脑)有多大?F EDCBA思考:你对正数a 的算术平方根a 的结果有怎样的认识呢?[巩固练习]1.你能快速的说出下列各数的算术平方根吗?⑴ 121 ⑵181⑶ 7 ⑷ 8 你能求出7的算术平方根的值吗?它是一个 的数,近似值为 (精确到0.1) 2.估算3 5 10 37的大小(全部精确到0.1),你还能估算出哪些数的大小?根据你估算的结果,用“>”把这些数字连接起来总结:由上可知:两个非负数中较大的,它的算术平方根 (也较大/较小)比较大小:⑶56 65⑷- 【活动2】 例3小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向剪出一块面积为300cm 2的长方形纸片,她可以怎样剪?若用上述正方形纸片剪出面积为300cm 2的长方形纸片,且其长宽之比为3:2她又该怎样剪只要利用面积大的纸片一定能剪出面积小的纸片吗[提升能力]1.与12的大小2.若a是b a、b的值。
3.某人开辟了一块长方形的荒地,新建一个以环保为主题的公园.已知这块荒地的长是宽的2.5倍,它的面积为60000米2.(1)试估算这块荒地的宽约为多少米(误差小于1米)(2)若在公园中建一个圆环喷水池,其面积为80米2,该水池的半径是多少( •精确到0.01)[反思归纳]3.当a不是一个完全平方数时,能用逼近法求a的近似值4.通过求近似值比较大小。
规律:被开方数越大,算术平方根越大5.体会数学来自生活,又用之生活的思想6.1平方根(3)【学习目标】1.理解平方根的概念,了解平方与开平方的关系。
2.学会平方根的表示法和求非负数的平方根。
运用平方根的知识解决实际问题3.体会从一般到特殊的数学思想方法【学习重点】平方根的概念和表示方法【学习难点】求一个非负数的平方根【学习过程】[知识回顾]1.∵()2=81 ∴81的算术平方根是(对算术平方根概念的回忆)2.求下列各数的算术平方根⑴49⑵ 0.25 ⑶ 225 ⑷(-5)2(为例4做准备;体会不同形式的数字的算术平方根的求法;回忆算术平方根的性质)3.求下列各式的值⑴0.09 ⑵121 ⑶ -289(为例5做准备)[探究研讨]【问题1】①如果一个数的平方等于9,这个数是多少(引导学生和上节课的问题作对比,看两者之间有什么区别和联系)②填表总结平方根的概念:例4:根据平方根的概念求下列各数的平方根⑴ 100 ⑵916⑶ 0.25你还能举出其它的例子吗?【问题2】:求一个数的平方根的运算,叫做开平方。
开平方运算和平方运算有什么关系,可以用什么方法求一个数的平方根(认识开平方运算,理解开平方运算和平方运算之间的互逆关系)【问题3】通过对例4的解答,你认为正数的平方根有什么特点0的平方根呢负数呢总结平方根的性质:正数有个平方根,它们0的平方根是负数【问题4】用什么方法来表示正数的两个平方根呢?阅读课本P74“归纳”下面的一段话,回答下列问题:在平方根的表示方法中,根号前面为什么会有两个性质符号?①被开方数a为什么要大于或等于0②在数字下面的横线上,表示该数的平方根400 0.81 2 4 9[巩固练习]⑴ 10的平方根可表示为;算术平方根为;负的平方根可表示为⑵(-4)2的平方根可表示为;算术平方根可表示为;负的平方根克表示为例5:说出下列各式表示的意义,并求值⑴144 ⑵- 0.81 ⑶±122/196[拓展延伸]1、课本P751-3题2、判断下列说法是否正确⑴5是25的算术平方根 ( ) ⑵56是2536的一个平方根 ( ) ⑶()24-的平方根是-4 ( )⑷ 0的平方根与算术平方根都是0 ( )2、____,=⑵____,=⑶____,=⑷____=37=,则_____x =,x 的平方根是_____[能力提升]1. x 为何值时,下列各式有意义?2. 下列各数有平方根吗?如果有,求出它的平方根,如果没有,说明理由.⑴-64 ⑵0 ⑶144 ⑷2581⑸ 2 ⑹ 4 3. 如果一个正数的两个平方根为1a +和27a -,请你求出这个正数4. 解方程 3x 2-27=05.讨论:(1)(01.0)2= ,(5)2= ;(2)216= ,2)16(-= ,2)5(-= ; 通过计算你有什么发现?x x 141x 3x 2x 21+-+-) () () ()([反思归纳]⒈本节课学习内容⑴平方根的概念(注意和算术平方根概念的区别和联系)⑵认识开平方运算(清楚和平方运算互为逆运算)⑶平方根的性质(正数的两个平方根互为相反数:正的平方根即为算术平方根;如果给出其中的一个平方根,另一个平方根即可知)(a≥0)(不能丢符号)⑷平方根的表示方法:a。