12数轴知识点

合集下载

数轴的知识点归纳几句话

数轴的知识点归纳几句话

数轴的知识点归纳几句话数轴是一个直线上的一个有序集合,用于表示数的相对大小和位置关系。

数轴上的每一个点都对应着一个实数。

以下是数轴的一些主要知识点:1. 数轴上的正数和负数:数轴上的原点表示0,向右方向表示正数,向左方向表示负数。

正数和负数在数轴上相互对称。

2. 数轴上的整数:整数是没有小数部分和分数部分的数字,包括正整数、负整数和0。

整数在数轴上以点表示,点的位置与整数的大小相对应。

3. 数轴上的分数:分数是由整数除法产生的数,分子表示被除数,分母表示除数。

分数在数轴上以点表示,点的位置与分数的大小相对应。

4. 数轴上的小数:小数是有小数点的数,可以是有限的,也可以是无限循环的。

小数在数轴上以点表示,点的位置与小数的大小相对应。

5. 数轴上的实数:实数包括整数、分数和无理数,是数学中最常用的数。

实数在数轴上以点表示,点的位置与实数的大小相对应。

6. 数轴上的绝对值:绝对值是一个数与0之间的距离,可以用来表示一个数的大小。

绝对值为正数或0,不会为负数。

7. 数轴上的相反数:一个数与它的相反数的和等于0,它们在数轴上关于原点对称。

8. 数轴上的距离:数轴上两个点的距离是这两个点之间的间隔长度。

可以通过计算这两个点的坐标差来求得距离。

9. 数轴上的坐标:数轴上的每一个点都有一个唯一的坐标,表示这个点在数轴上的位置。

坐标可以是整数、分数或小数。

10. 数轴上的刻度:数轴通常会有刻度线来表示不同数值之间的间隔。

刻度线上的标记可以是整数、分数或小数,用来帮助确定点的坐标。

11. 数轴上的平移:在数轴上进行平移操作是将数轴上的所有点同时沿着数轴方向移动一定距离,不改变点的相对位置。

总结起来,数轴是一个直线上的有序集合,用于表示数的相对大小和位置关系。

数轴上的点对应着实数,可以表示正数、负数、整数、分数和小数。

在数轴上可以进行绝对值、相反数、距离、坐标、刻度和平移等操作。

数轴的概念和应用在数学中有着广泛的应用。

数轴的知识点

数轴的知识点

数轴的知识点数轴,简称轴,是表示数值关系的一种图形化方式,它通常是一条直线,它可以作为一种数学工具来帮助我们更好地理解数字、算术和代数等数学领域的基本概念。

一、数轴的基本构成数轴由三部分组成,分别是原点、正方向和负方向。

原点是轴的起点,正方向是轴上右侧的方向(即向正数方向),负方向是轴上左侧的方向(即向负数方向)。

通常情况下,我们可以用箭头表示正方向。

二、数轴的正数和负数数轴上的每个点代表了一个实数,从原点向右的部分表示正数,从原点向左的部分表示负数。

例如,数轴上的点2表示正数2,数轴上的点-2表示负数2,它们在数轴上的位置是相对的。

三、数轴上的距离在数轴上,两个点之间的距离可以用它们在数轴上的位置表示,这个距离也可以用绝对值在数轴上表示。

例如,距离0点5个单位的点可以表示为5,距离0点-5个单位的点可以表示为-5。

四、数轴上的加减法运算数轴上的加减法运算是使用数轴上的距离来计算的。

当两个数在数轴上相加时,我们可以将它们在数轴上的位置相加,然后在数轴上表示它们的和。

例如,在数轴上将-2和4相加,我们可以通过从-2的位置向右移动4个单位来得到和6的位置。

当两个数在数轴上相减时,我们可以将它们在数轴上的位置相减,然后在数轴上表示它们的差。

例如,在数轴上将4减去-2,我们可以通过从4的位置向左移动2个单位来得到差6的位置。

五、数轴上的乘除法运算不像加减法,数轴上的乘除法不是直接的图形化表示,但是我们可以应用乘法和除法法则,通过数轴上的距离来计算这些计算。

当两个数在数轴上相乘时,我们可以用它们在数轴上的位置长度来计算它们的乘积。

例如,两个数的位置分别为2和3,在数轴上,它们的长度分别为2和3,因此它们的乘积为6。

当两个数在数轴上相除时,我们可以用它们在数轴上的位置长度来计算它们的商。

例如,两个数的位置分别为6和2,在数轴上,它们的长度分别为6和2,因此它们的商为3。

六、总结数轴是数学中一种常见的图形表示形式,它可以用来表示数值的大小、位置和关系,以及计算加减乘除等数学运算。

1.2数轴知识点

1.2数轴知识点

1.2 数轴一、知识点归纳总结(一)数轴的概念1. 定义:规定了原点,正方向和单位长度的直线叫数轴。

2. 数轴的定义包含三层含义:A. 数轴是一条直线,可以向两边无线延伸B. 数轴有三个要素:原点、正方向、单位长度,三者缺一不可C. 原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的3. 数轴三要素:1)原点:在直线上取一点表示0 ,叫做原点2)正方向:正数所在方向,一般规定直线上向右的方向为正方向3)单位长度:选取某一长度作为单位长度(二、)数轴的画法1. 步骤:第一步:画一条水平直线(画竖直的直线行不行呢?也行,现在为了读画方便,通常把数轴画成水平的)。

第二步:在直线上选取一点为原点,原点表示0(在原点下边标上“0 ”)。

第三步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向。

(用箭头表示出来)第四步:选择适当的长度为单位长度。

2. 注意:01 画数轴时一定要牢固地把握数周的三个要素,缺一不可02 常见的错误有: a. 没有方向; b. 没有原点; c. 单位长度不统一; d. 负数排列错误03 原点的位置、正方向的取向、单位长度大小的确定,都是根据实际需要选取的(三、)用数轴表示数1. 数轴上的点都能表示数,正半轴上的点表示的数都是正数;负半轴上的点表示的数都是负数,原点表示02. 在数轴的正半轴和负半轴上都有无数个点,每一个点都只表示一个数。

3. 任何一个实数都可以用数轴上的一个点来表示。

4. 任何一个有理数都能用数轴表示,但数轴上的点不一定表示有理数(四、)用数轴比大小1. 在数轴上表示的两个数,右边的数总比左边的数大。

2. 正数都大于0,负数都小于0 ,正数大于一切负数。

(五)相反数的概念1. 定义:一般地,数 a 的相反数是-a 。

这里 a 表示任意一个数,它可以是正数、负数和0.2. 数轴上的意义:两个相反的数在数轴上到原点的距离是相等的。

3:0 的相反数是0(六)绝对值1. 定义:在数轴上,表示数 a 的点到原点的距离,叫做数 a 的绝对值,记作│a│2 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是它本身。

数轴的认识与运算知识点总结

数轴的认识与运算知识点总结

数轴的认识与运算知识点总结数轴是一种用于表示和比较数值大小的图形工具。

它可以帮助我们直观地理解和应用数学中的一些基本概念和运算规则。

本文将对数轴的认识与运算知识点进行总结,帮助读者全面了解和掌握数轴的使用方法。

一、数轴的基本概念数轴是一条直线上的点,每个点代表一个实数。

数轴上有一个原点,通常表示为0,它把数轴分成两部分,左边是负数,右边是正数。

任意一点的位置可以用它到原点的距离来表示,距离是非负实数。

二、数轴的表示和标记为了方便使用数轴,我们需要将它进行适当地表示和标记。

通常,我们用一条带有箭头的直线来表示数轴,箭头指向正方向。

数轴上的每个点都对应着一个实数,我们可以在数轴上标记出关键的实数,例如整数、分数和根号等。

三、数轴上的点与实数的关系数轴上的每个点都与一个实数相对应,它们之间存在一一对应的关系。

由于数轴上的点可以表示实数的大小关系,我们可以通过数轴来比较实数的大小,并判断实数之间的相对位置。

四、数轴上的运算1. 加法:在数轴上表示加法运算时,我们可以把两个实数在数轴上的位置相加,得到它们的和的位置。

例如,在数轴上表示2+3的运算时,我们可以从2出发向右移动3个单位,得到5的位置。

2. 减法:在数轴上表示减法运算时,我们可以把被减数在数轴上的位置减去减数在数轴上的位置,得到它们的差的位置。

例如,在数轴上表示5-2的运算时,我们可以从5的位置向左移动2个单位,得到3的位置。

3. 乘法:在数轴上表示乘法运算时,我们可以先在数轴上表示被乘数的位置,然后按照乘数的大小进行长度的改变,得到乘积的位置。

例如,在数轴上表示2×3的运算时,我们可以从2的位置出发,按照3的倍数进行长度的改变,得到6的位置。

4. 除法:在数轴上表示除法运算时,我们可以先在数轴上表示被除数的位置,然后按照除数的大小进行长度的改变,得到商的位置。

例如,在数轴上表示6÷2的运算时,我们可以从6的位置出发,按照2的倍数进行长度的改变,得到3的位置。

《数轴》知识点解读

《数轴》知识点解读

1.2.1 数轴1.数轴(1)定义:规定了原点、正方向和单位长度的直线叫做数轴,如图.①数轴有三要素:原点、正方向、单位长度,三者缺一不可;②原点的选定,单位长度大小的确定,都是根据实际需要“规定”的.通常取向右的方向为正方向.(2)数轴的画法画一条数轴的步骤可概括为:一画、二定、三选、四标.①画直线:就是先画一条直线,一般画成水平的直线;②定原点:通常原点选在你所画直线居中的位置,若问题中负数的个数较多时,原点选得靠右些;正数的个数较多时,原点选得靠左些.③选正方向:通常取原点向右的方向为正方向,并选取适当的长度为单位长度,将表示刻度的点用短竖线表示.④标数:在数轴上依次标出1,2,3,4,0,-1,-2,-3,-4等各点,相应的数0,±1,±2,…写在数轴的下方;将需要在数轴上表示出的数或字母写在数轴的上方,相应的点表示为实心小圆点.要是在数轴上用到30,那得标多少单位啊!适当的长度有两层含义:①可取实际1 cm作为一个单位长度,也可以取2 cm或其他实际数据作为一个单位长度;②一个单位长度可表示1,也可表示10或更多!如图所示就能做到啦!【例1】下列图形表示的数轴正确的是( ).解析:答案:C2.有理数与数轴上的点的关系任何一个有理数都可以用数轴上的一个点来表示,即每个有理数都对应数轴上的一个点.(1)表示正数的点都在原点的右侧;(2)表示负数的点都在原点的左侧;(3)表示0的点就是原点.【例2】(1)画出数轴,并用数轴上的点表示下列各数:-2,0,1,-0.5,-3 2,212.(2)指出如图所示的A,B,C,D,E各点分别表示什么数?分析:(1)(2)解:(1)(2)点A表示3;点B表示-1;点C表示-1.5;点D表示1.5;点E表示0.5.点技巧“数形结合”思想(1)根据已知数在数轴上标出对应点,分三步:①画数轴;②确定点,并用实心小圆点描出;③标数,即在实心小圆点的上方标出所表示的数.(2)根据数轴上的点读数,原点表示0,原点向右为正数,原点向左为负数.都体现了“数形结合”的思想.。

数轴知识点总结归纳

数轴知识点总结归纳

数轴知识点总结归纳数轴是数学中的一个重要概念,它用于表示和比较实数,是解决各种数学问题的重要工具。

在数轴上,实数通过点的位置来表示,这使得实数之间的大小关系和运算关系更加直观和清晰。

下面将对数轴的基本概念、性质、运算、应用等进行总结和归纳。

一、数轴的定义和基本概念1. 数轴的定义:数轴是用来表示实数的直线,直线上的一个点对应着一个实数。

2. 数轴的基本概念:数轴可以看作是一个无限长的直线,在直线上取一个固定点O,作为原点,再取一个固定的单位长度,作为1的长度,然后在数轴上规定正向和负向,将数轴分成了正半轴和负半轴。

二、数轴的性质1. 数轴上的点与实数的对应关系:数轴上的每一个点都与一个实数对应,反之亦然。

2. 数轴上的距离:两个数轴上的点的距离就是它们对应的实数之差的绝对值。

3. 数轴上的有理数和无理数分布:数轴上,有理数和无理数是密集分布的,即在任意两个有理数之间都存在无理数,在任意两个无理数之间都存在有理数。

4. 数轴上点的坐标:数轴上每个点都可以用实数表示它在数轴上的位置,这个实数称为这个点的坐标。

三、数轴上的运算1. 数轴上的加法:数轴上的两个数相加,相当于它们对应的点在数轴上的位置相加。

2. 数轴上的减法:数轴上的两个数相减,相当于它们对应的点在数轴上的位置相减。

3. 数轴上的乘法:数轴上的两个数相乘,相当于它们对应的点在数轴上的位置叠加。

4. 数轴上的除法:数轴上的两个数相除,相当于它们对应的点在数轴上的位置相除。

四、数轴的应用1. 数轴在实数的比较和大小关系中的应用:通过数轴可以直观地看出实数的大小关系,从而解决一些实际生活中的大小比较问题。

2. 数轴在代数表达式的图像中的应用:通过数轴可以画出代数表达式的图像,从而帮助理解和解决代数表达式的问题。

3. 数轴在解决一元一次不等式中的应用:通过数轴可以直观地表示一元一次不等式的解集,从而解决不等式问题。

综上所述,数轴是解决数学问题的重要工具,它可以直观地表示实数的大小关系和运算关系,在数学的各个领域都有着广泛的应用。

1.2 数轴、相反数和绝对值

1.2  数轴、相反数和绝对值

1.2 数轴、相反数和绝对值知识点一 数轴★数轴:规定了原点、正方向和单位长度的直线叫做数轴。

数轴的定义包含三层含义:①数轴是一条向两方无限延伸的直线;②数轴有三要素:原点、正方向、单位长度;③注意“规定”二字,是说原点的位置、正方向的选取、单位长度大小的确定,都是根据实际需要人为规定的。

★数轴的画法画数轴时,通常按以下步骤进行一画:首先画一条直线(通常画成水平方向);二取:在这条直线上任取一点作为原点,用这点表示数0;三定:规定这条直线的一个方向为正方向(一般取从左到右的方向为正方形,并用箭头表示),相反的方向就是负方向;四选:适当地选取某一长度作为单位长度;五标:从原点向右,每隔一个单位长度取一点,依次标上1,2,3,……,从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,……。

例1 下列数轴正确的个数为( )A. 0B. 1C. 2D. 3知识点二 有理数与数轴上点的关系★一般地,任意一个有理数,都可以用数轴上的一个点来表示。

0用原点表示,正有理数用原点右边的点表示,负有理数用原点左边的点表示。

例2 如图,指出数轴上的点A 、B 、C 、D 、E 、O 分别表示什么数。

例3 用数轴上的点表示下列各数:21,4-,0,3,3-,21-知识点三 相反数的意义★代数意义:像2与2-,4与4-,2121-与这样,只有符号不同的两个数互为相反数,这就是说,其中一个数是另一个数的相反数,如44-与互为相反数,即4的相反数是4-,4-的相反数是4。

特别规定:0的相反数是0★几何意义:两个互为相反数的数在数轴上所表示的点在原点的两旁,到原点的距离相等。

例4 分别写出下列各数的相反数:2例5 下列说法正确的是( )A. 符号不同的两个数互为相反数B.互为相反数的两个数必是一个正数,一个负数C.π的相反数是14.3-D. 0.5与21-互为相反数 知识点四 绝对值的定义★在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a|.如:2-的绝对值记作2-,0的绝对值记作0绝对值表示两点之间的距离,它是非负数,即任何一个数的绝对值不可能是负数,它只能是正数或0★由绝对值的定义(代数意义)可知:(1)一个正数的绝对值是它本身;(2)一个负数的绝对值是它的相反数;(3)0的绝对值是0例6 求下列各数的绝对值:(1)83+;(2)5.0-;(3)0;(4)412-例7 若一个数的绝对值是2,则这个数是( )A. 2B. 2-C. 2或2-D.2121-或 知识点五 数轴上两点间的距离在数轴上,点21A A 、表示有理数21x x 、,我们把21x x 、叫做21A A 、的一维坐标。

数轴的知识点归纳

数轴的知识点归纳

数轴的知识点归纳
数轴是数学中非常重要的一个概念,它可以帮助我们更好地理解数的大小关系和运算规律。

以下是关于数轴的知识点归纳:
1. 数轴的定义:数轴是规定了原点、正方向和单位长度的直线。

2. 数轴的三要素:原点、正方向和单位长度。

3. 数轴的画法:
- 画一条水平直线,在直线上取一点表示 0(原点)。

- 确定正方向,并用箭头表示。

- 选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;从原点向左,每隔一个单位长度取一点,依次表示-1,-2,-3,…。

4. 数轴上的点与数的关系:数轴上的每一个点都对应一个数,反过来,每一个数也都可以用数轴上的点来表示。

5. 数轴的作用:
- 帮助理解相反数:数轴上位于原点两侧,且到原点距离相等的两个点表示的数互为相反数。

- 比较数的大小:数轴上右边的数总比左边的数大。

- 理解绝对值的意义:一个数的绝对值就是在数轴上表示这个数的点到原点的距离。

6. 数轴的应用:数轴可以应用于许多数学领域,如解方程、不等式、函数等。

总之,数轴是数学中的一个基础工具,它为我们提供了一个直观的图形化表示数的方式,帮助我们更好地理解和处理数学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 51.2 数轴一、知识点归纳总结(一)数轴的概念1. 定义:规定了原点,正方向和单位长度的直线叫数轴。

2. 数轴的定义包含三层含义:A. 数轴是一条直线,可以向两边无线延伸B. 数轴有三个要素:原点、正方向、单位长度,三者缺一不可C. 原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的3. 数轴三要素:1) 原点:在直线上取一点表示0,叫做原点2) 正方向:正数所在方向,一般规定直线上向右的方向为正方向3) 单位长度:选取某一长度作为单位长度(二、)数轴的画法1.步骤:第一步:画一条水平直线(画竖直的直线行不行呢?也行,现在为了读画方便,通常把数轴画成水平的)。

第二步:在直线上选取一点为原点,原点表示0(在原点下边标上“0”)。

第三步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向。

(用箭头表示出来)第四步:选择适当的长度为单位长度。

2.注意:01 画数轴时一定要牢固地把握数周的三个要素,缺一不可02 常见的错误有:a.没有方向;b.没有原点;c.单位长度不统一;d.负数排列错误03 原点的位置、正方向的取向、单位长度大小的确定,都是根据实际需要选取的(三、)用数轴表示数1. 数轴上的点都能表示数,正半轴上的点表示的数都是正数;负半轴上的点表示的数都是负数,原点表示02. 在数轴的正半轴和负半轴上都有无数个点,每一个点都只表示一个数。

3. 任何一个实数都可以用数轴上的一个点来表示。

4. 任何一个有理数都能用数轴表示,但数轴上的点不一定表示有理数(四、)用数轴比大小1. 在数轴上表示的两个数,右边的数总比左边的数大。

2. 正数都大于0,负数都小于0,正数大于一切负数。

(五)相反数的概念1.定义:一般地,数a的相反数是-a。

这里a表示任意一个数,它可以是正数、负数和0.2.数轴上的意义:两个相反的数在数轴上到原点的距离是相等的。

3:0的相反数是0 (六)绝对值1.定义:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值,记作│a│2一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是它本身。

二、课后练习2 / 5a0-1b(一、)选择题1.图1中所画的数轴,正确的是()-1210-2A21543B-1210C-1210D2.在数轴上,原点及原点左边的点所表示的数是()A.正数 B.负数 C.非负数 D.非正数3.与原点距离是2.5个单位长度的点所表示的有理数是()A.2.5 B.-2.5 C.±2.5 D.这个数无法确定4.关于-32这个数在数轴上点的位置的描述,正确的是()A.在-3的左边 B.在3的右边 C.在原点与-1之间 D.在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()A.+6 B.-3 C.+3 D.-96.不小于-4的非正整数有()A.5个 B.4个 C.3个 D.2个7.如图所示,是数a,b在数轴上的位置,下列判断正确的是()A.a<0 B.a>1 C.b>-1 D.b<-18、冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是()A.-10℃,-7℃,1℃; B.-7℃,-10℃,1℃C.1℃,-7℃,-10℃; D.1℃,-10℃,-7℃9、如图所示,点M表示的数是()A. 2.5B.C.D. 1.510、下列说法正确的是()A. 有原点、正方向的直线是数轴B. 数轴上两个不同的点可以表示同一个有理数C. 有些有理数不能在数轴上表示出来D. 任何一个有理数都可以用数轴上的点表示11、数轴上点M到原点的距离是5,则点M表示的数是()A. 5B.C. 5或D. 不能确定12、在数轴上表示的点中,在原点右边的点有()A. 0个B. 1个C. 2个D. 3个13、下列各组中互为相反数的是( ).A、–2与21?B、2?和2C、–2.5与2?D、21?与21?14、若a是有理数,则a一定( ).3 / 5b0ac A、是正数B、不是正数C、是负数D、不是负数15、如果a是负有理数,则下列各式中成立的是( )A、aa??B、aa?C、aa?D、aa1?16、-61的绝对值是( ).A、—6B、-61C、61D、617、-│-43│的相反数是( ).18、相反数等于它本身的数一共有( )个;A.0B.1C.2D.319、下列说法错误的是( );A.6是-6的相反数B.-6是-(-6)的相反数C.-(+8)与+(-8)互为相反数D.+(-8)与-(-8)互为相反数21、下列几组数中是互为相反数的是( );A.-17和0.7B.13和-0.333C.-(-6)和6D.-14和0.2522、一个数在数轴上所对应的点向左移6个单位后,得到它的相反数的点,则这个数是( );A.3B.-3C.6D.-623、一个数是7,另一个数比它的相反数大3.则这两个数的和是( );A.-3B.3C.-10D.1124、-34的相反数是( ). A.34B.-34C.43D.43和-43(二、)填空题1.数轴的三要素是_____________..2.数轴上表示的两个数,________边的数总比________边的数大.3.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.4.有理数a,b,c在数轴上的位置如图所示,用“<”将a,b,?c?三个数连接起来________..5.大于-3.5小于4.7的整数有_______个.6.用“>”、“<”或“=”填空.4 / 5(1)-10______0;(2)32________-23;(3)-110_______-19;7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________..8、画一条水平直线,在直线上取一点表示0,叫做_________;?选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.?我们把上述三点称为数轴的三要素.所有的有理数都可以用数轴上的______来表示.9、数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________..10、数轴上表示-2的点离原点的距离是______个单位长度;表示+2?的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________..11、│-1.6│=________..12、计算:12│-(+4.8)│=_________..13、绝对值等于2的数是_________..14、绝对值不大于3的负正数是______..15、如果2???x,则x=______..16、一个数a在数轴上对应的点在原点的左边,且5.3?a,则a=__17、在一个数的前面添上一个“-”后,就表示是原来那个数的________________;18、在一个数的前面添上一个“+”后,就表示是原来那个数的_________________;19、_________的相反数比它的本身大,____________的相反数比它的本身小.20、0的相反数是___________;___________的相反数是负数;______________的相反数是大于0的数;(三).判断.1、互为相反的数一定是两个不同的数. ( )2、互为相反的数符号一定相反. ( )3、-(+2)表示负数,-(-2)也表示负数. ( ) (四)解答题1.如图所示,根据数轴上各点的位置,写出它们所表示的数.5430-1-2-3-421FEDCBA2、初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D 队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A队与B队相差多少分?C队与E队呢?3、超市、书店、?玩具店依次坐落在一条东西走向的大街上,?超市在书店西边5 / 520米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、?玩具店的位置,以及小明最后的位置.4、比较a与-a的大小.5、若向东走8米,记作米,如果一个人从A地出发向东走12米,再走米,又走了米,你能判断此人这时在何处吗?6、一只蚂蚁从原点O出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度到达B点,然后向左爬了9个单位长度到达点C。

(1)写出A、B、C三点的表示数。

(2)根据C点在数轴上的位置回答:蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?。

相关文档
最新文档