工程结构可靠度讲解
工程结构荷载与可靠度设计原理

解决手段:模糊集合理论、模糊随机过程理论。
知识的不完善性:由于(yóuyú)人类认识上的局限性而造成的, 所以又叫主观认识的未确定性,如“人体有多少根头发”等。
解决手段:灰色系统理论。
2022/1/8
在结构(jiégòu)可靠性理论中以随机性为研究重点
第三页,共44页。
结构设计中的不确定性因素(yīn sù)
2022/1/8
第十九页,共44页。
验算(yàn suàn)点法基本原理
正态随机变量的情况
结构(jiégòu) Z gX1, X 2 ,....X n
功能函数
将Z在各变量的验算点X* (X1*, X2*,·····, Xn*)处展开成泰勒级数
Z
g(
X
1
,
X
2 ,,
X
n
)
n
(Xi
i 1
X
可靠度
失效概率
Ps PZ 0
0 f z (Z )dZ
Pf PZ 0
0
f z (Z )dZ
2022/1/8
Ps Pf 1
•结构可靠度满足: Z>0具有相当大的概率或 Z<0 具有相当小的概率; •通常采用失效概率来度量结构的可靠度。
第十页,共44页。
可靠(kěkào)指标
基本概念
i
)
g X i
X*
均值 (jū n
Z
g
(
X
1
,
X
2
,,
X
n
)
0
n
( X i
i 1
X
i
)
g X i
X*
zhí)
2022/1/8
工程结构荷载与结构可靠度设计原理

工程结构荷载与结构可靠度设计原理1、背景介绍在工程领域中,结构可靠度设计是一项非常重要的任务。
结构可靠度设计原理是指在工程结构设计过程中,通过合理的荷载计算和结构分析,确保工程结构在预定使用寿命内能够满足安全可靠的要求。
本文将详细探讨工程结构荷载与结构可靠度设计原理的相关内容。
2、工程结构荷载的分类2.1 永久荷载永久荷载是指不随时间变化的静态荷载,包括结构自重、固定设备和附加设备的重量等。
在结构设计过程中,需要准确计算永久荷载的大小,以便正确评估结构的强度和稳定性。
2.2 变动荷载变动荷载是指随时间变化的荷载,包括活荷载、温度荷载、风荷载等。
这些荷载会对结构产生不同程度的影响,因此在设计中需要合理估计和考虑这些荷载的作用。
2.3 异常荷载异常荷载是指不常见但可能发生的荷载,如地震荷载、爆炸荷载等。
这些荷载通常具有较高的能量,并可能导致结构发生破坏。
在结构可靠度设计中,需要对这些异常荷载进行详细的分析和评估,以确保结构能够承受其作用。
3、工程结构荷载计算方法3.1 荷载标准工程结构荷载的计算需要依据相应的荷载标准。
不同国家和地区的荷载标准可能有所不同,设计者需要根据实际情况选择合适的荷载标准进行计算。
常见的荷载标准包括国家标准、行业标准和国际标准等。
3.2 荷载计算原理荷载计算是工程结构设计的关键步骤之一。
荷载计算的原理是根据结构的力学性质和荷载作用原理,通过建立合适的数学模型和计算方法,确定结构所受荷载的大小和作用方式。
在荷载计算过程中,需要合理选择荷载组合,并考虑荷载的不确定性因素,如荷载的变化范围、荷载作用时间等。
4、结构可靠度设计原理4.1 可靠度概念结构可靠度是指结构在使用寿命内满足安全可靠的要求的能力。
结构可靠度设计的目的是使结构在设计寿命内具有足够的可靠性,能够承受荷载的作用而不发生失效。
可靠度的计算可以采用不同的方法,如概率方法、极限状态设计方法等。
4.2 可靠度分析方法可靠度分析是结构可靠度设计的重要工具之一。
工程结构可靠度认识

计算 )c ;, H为阵风 响应系数 , 对于 单管塔类 结构 c , H=16 ; c为 .9 A
风荷载作用方向构件的投影面积 ;A为荷载体型系数 , C 按表 1 取值。
国内《 高耸结构设计规 范》 规定风荷载按下式计算 :
表 1 自立式单 管塔风荷载体型 系数
C
<4 4
参考文献 :
圆型塔
l ( 2】
l 6边型塔 r 6 <0 2
l O 2
一
l 边 型塔 r 6 2边型塔 8边型塔 6 ≥0 2 l
l 0 2
… .
[ ] B 5 1 52 0 高耸结构设计规 范[ ] 1G 0 3 —0 X, S. [] 2黄 田, 赵星 亥. 钢一 混凝土 叠合 梁挠度 及截 高应 力分析 [] J.
Wo 从上述 国外规范 和标 准可 以看 出 , 结构 刚度 的限制 . 常 式 = ・ ・ ・ 计算 的风荷 载 。 对 通
由用户 和设备使用功能来确定 。
ห้องสมุดไป่ตู้
3 风荷 载对 比
风荷载在单管塔 设计 中起控制作用 , 比美 国标准和国 内标 是根据结构 功能的不 同 由用 户 和设备 功 能要求 提 出。单管塔 作 对 出现大挠 度被认 为 是合理 的 , 结构 工 程师在 设计 中 准对 风荷载在单 管塔 设计 中的异同 , 有利于更好 地借 鉴国外规 为柔性结构 , 将 应 考虑非线性对结构 的不 利影响。 范 标准 。
移 动通讯 , 比较宽松 。 则
F c= q GH C Ac ‘ [ A‘ ] K z 1 ] ( .≤K .8 。 =[ /0 10 ≤2 5 )
《工程结构荷载及可靠度设计》课程笔记

《工程结构荷载及可靠度设计》课程笔记第一章:荷载类型1.1 荷载与作用荷载是指作用在结构上的各种力,它们可以导致结构的变形、位移或破坏。
荷载通常分为两类:直接作用和间接作用。
1. 直接作用:指直接施加在结构上的力,如人的重量、家具、车辆等。
这些力可以直接作用在结构的某个部分,导致该部分产生应力、应变和变形。
2. 间接作用:指不是直接施加在结构上的力,但会通过结构的一部分传递到另一部分,如温度变化、地震等。
这些力不会直接导致结构产生应力,但会通过结构的变形和位移产生影响。
1.2 作用的分类荷载作用可以分为以下几类:1. 恒载:指在结构使用过程中始终存在的荷载,如结构自重、固定设备等。
恒载的大小和作用点一般不会发生变化。
2. 活载:指在结构使用过程中可能变化的荷载,如人的活动、车辆的行驶等。
活载的大小和作用点可能会随着时间发生变化。
3.偶然荷载:指在结构使用过程中可能发生,但发生概率较小的荷载,如意外事故、爆炸等。
偶然荷载的大小和作用点通常难以预测。
4.地震作用:指地震时地面的震动对结构产生的影响。
地震作用是一种特殊的偶然荷载,其大小和作用点取决于地震的强度和震中距离。
5.风荷载:指风对结构产生的影响。
风荷载的大小和作用点取决于风速、风向和地形等因素。
6.温度作用:指温度变化对结构产生的影响。
温度作用可能导致结构产生膨胀或收缩,从而产生应力、应变和变形。
7.变形作用:指由于地基沉降、结构老化等原因导致结构产生的变形。
变形作用可能会导致结构的应力、应变和位移发生变化。
8.爆炸作用:指由于爆炸事故对结构产生的影响。
爆炸作用通常会导致结构产生局部破坏或整体破坏。
9.浮力作用:指由于水的浮力对结构产生的影响。
浮力作用通常发生在水下结构或浮体结构中。
10.制动力、牵引力与冲击力:指由于车辆行驶、机械运动等原因对结构产生的影响。
这些力可能会导致结构产生振动、噪声和疲劳损伤。
11.预加力:指在施工过程中预先施加在结构上的力,如预应力混凝土结构中的预应力钢筋。
工程结构荷载与可靠度设计原理知识点

工程结构荷载与可靠度设计原理知识点荷载:由各种环境因素产生的直接作用在结构上的各种力,如重力、土压力、水压力、风压力。
效应:结构的内力、位移、变形、应力、应变、裂缝、速度、加速度等。
作用:将能使结构产生效应的各种因素称为作用。
直接作用:直接作用在各种结构上的各种荷载。
间接作用:能够引起结构内力,变形效应的非直接作用因素,如地震、温度变化、基础不均匀沉降。
作用的分类:随时间的变异分:永久作用、可变作用、偶然作用。
随空间位置的变异:固定作用、可变作用。
结构的反应分类:静态作用、动态作用。
注:1.严格意义上讲,只有直接作用才能称为荷载。
2.土压力、风压力和水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力也是荷载。
3.按照间接作用的定义,温度变化、基础不均匀沉降为间接作用。
4.直接作用和间接作用都能引起结构效应。
雪荷载:单位面积地面上积雪的自重。
基本雪压:指当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。
(基本雪压是针对地面上的积雪荷载定义的)雪重度是一个随时间和空间变化的量。
最大雪深和最大雪重度不同时出现。
屋面血压影响因素:风、屋面形式、屋面散热。
汽车荷载:包括车辆荷载和车道荷载。
汽车荷载:考虑车的排列方式,以集中荷载形式作用于车轴位置。
车道荷载:不考虑车的排列方式,等效为均布荷载。
公路桥涵上的车辆荷载有车列荷载和车道荷载两种形式。
风压:当以一定速度向前运动遇到阻碍时,对阻碍物产生的压力。
基本风压:按规定的高度、地貌、时距、等量测的风速所确定的风压称为基本风压。
基本风压规定:1.标准高度:10m2.地貌:空旷平坦3.公称风速时距:10min4.最大风速的样本时间:1年5.基本风速的重现期:一般为几十年横向风风力系数:注:1.我国现行《建筑结构荷载规范》GB 50009-2012规定基本风压的标准高度为10m。
2.地面越粗糙,风速变化越慢,梯度风高度越高;反之,风速变化越快,梯度风高度越小。
结构可靠度

Z g ( R, S ) R S
(3)结构的极限状态 (GB50068-2001) 结构的期望状态:结构处于 满足其功能要求的状态.其功能 函数 g ( X1 ,, X n ) 0 结构的不期望状态:结构处 于未能满足其功能要求的状态. 其功能函数 g ( X1 ,, X n ) 0 结构的极限状态:结构整体或部分超越某一状态 结构就不能满足设计规定的某一功能的要求,此状 态即称为结构该功能的极限状态。其功能函数满足:
• 根据结构极限状态被超越后的结构状况分类: • 1、不可逆极限状态 • 当引起超越极限状态的作用被移掉后,仍将永久地保持超越效应 的极限状态。即因超越极限状态而产生的结构的损坏或功能失常 将一直保持,除非结构被重新修复。 • 承载力极限状态一般是不可逆的,正常使用极限状态有时可逆有 时不可逆。 • 2、可逆极限状态 • 产生超越极限状态的作用被移掉后,将不再保持超越效应的极限 状态。即因超越结构极限状态而产生的结构损坏或功能失常仅在 超越的原因存在时保持。 • 总之,极限状态的分类没有固定的规则,主要以设计需要为 依据。如日本,地震经常发生,所以其《建筑及公共设施结构设 计基础》给出了可恢复极限状态;对于钢桥,车辆反复作用引起 的疲劳破坏严重,所以,美国的《荷载与抗力系数桥梁设计规范》 单独列出了疲劳极限状态,在大地震、洪水、车辆、冰流撞击等 条件下,该规范还列出了极端事件极限状态。
• 5、极限状态很多,为便于设计时掌握,按其性质分类 是必要的(包括破坏性和使用性)。 • 前苏联学者提出分成三类: • 第一类:承载力极限状态,包括结构的强度、稳定性、 疲劳等 • 第二类:由过大的变形引起的极限状态 • 第三类:由裂缝的形成或开展引起的极限状态(不适用 于钢结构)。 • 许多学者认为,第一类极限状态应当包括塑性变形的极 限状态,因而,将变形极限状态独立为第二极限状态, 似乎不恰当。为此,欧洲有关学术组织将极限状态重新 分为承载力极限状态和正常使用极限状态两类。
工程结构荷载与可靠度设计原理

工程结构荷载与可靠度设计原理工程结构荷载设计原理是指根据工程所受到的外部荷载及其影响,在设计中合理确定各种荷载的作用方式、计算方法和作用大小,以确保结构的安全可靠性。
在荷载设计原理中,结构荷载主要包括恒载、活载和自重荷载。
恒载是指结构在使用过程中持续存在的荷载,如自重、固定设备和常设荷载等。
活载是指结构所受到的可变荷载,如人员、设备、风荷载和流体荷载等。
自重荷载是指结构自身的重量所引起的荷载。
恒载的设计原理是根据结构本身的质量和统计数据确定荷载的大小。
常见的恒载有自重、固定设备质量、楼板养护荷载等。
活载的设计原理是根据实际使用情况及相关规范给出的活载标准确定荷载的大小。
常见的活载有人员荷载、设备荷载、风荷载和流体荷载等。
自重荷载的设计原理是根据结构的材料和形状确定其自身的重量,并将其作为荷载计算时考虑。
在可靠度设计原理中,考虑工程结构荷载的可靠度是确保结构安全可靠的重要步骤。
可靠度设计原理主要包括可靠度指标的选择、荷载概率分布的确定和可靠度分析方法的应用。
可靠度指标是衡量结构安全可靠性的一个重要指标,常用的指标有可靠系数、可靠指标和可靠指数等。
荷载概率分布是指荷载的大小在一定区间内发生的概率分布情况,常用的分布有正态分布和广义极值分布等。
可靠度分析方法是根据荷载概率分布和结构响应的关系,通过数学模型和统计方法计算结构的可靠度。
常用的可靠度分析方法有可靠指数法、蒙特卡洛模拟法和极限状态法等。
综上所述,工程结构荷载与可靠度设计原理是确保结构安全可靠性的基础。
在设计中,通过合理确定荷载的作用方式、计算方法和作用大小,以及考虑荷载的可靠度指标和概率分布,可以保证结构在荷载作用下具有足够的安全可靠性。
工程结构可靠度计算方法

工程结构可靠度计算方法工程结构可靠度计算是一种用来评估工程结构系统在给定的设计条件下能够正常运行的能力。
通过可靠度计算,可以评估结构在各种设计负载下的可用寿命、安全系数以及潜在的失效模式。
因为结构的可靠性直接关系到工程安全性和经济性,因此可靠度计算在工程领域中具有非常重要的意义。
工程结构可靠度的计算方法有多种,下面将介绍常见的几种方法。
一、确定性方法确定性方法是最简单的可靠度计算方法,它假设结构的参数和负载都是确定值,并且不考虑不确定性因素的影响。
在确定性方法中,常用的计算方法有极限状态法和等效正态法。
极限状态法是通过将结构的参数和负载转化为正态分布的随机变量,利用统计方法进行计算。
该方法假设结构的失效状态是定义好的,当结构的极限状态超过给定的设计阈值时,认为结构失效。
这种方法在可靠性计算中广泛应用,其计算过程相对简单,适用于一般的工程结构。
等效正态法是将结构的参数和负载转化为正态分布的随机变量,并通过概率统计的方法计算结构的可靠度。
该方法假设结构的失效状态服从正态分布,在计算过程中需要对结构各参数的概率分布进行估计。
这种方法计算精度较高,但计算过程相对复杂。
二、概率方法概率方法是一种基于概率论的可靠度计算方法,它充分考虑了结构参数和负载的不确定性因素,通过对模型进行概率分析,得到结构的可靠度指标。
概率方法包括蒙特卡罗模拟法、局部线性化法和形式法等。
蒙特卡罗模拟法是一种基于统计随机过程的可靠度计算方法,通过随机数生成来模拟结构的参数和负载的随机变化,进行多次重复实验来估计结构的可靠度。
这种方法计算精度较高,但计算量较大。
局部线性化法是一种逼近方法,在计算过程中将非线性结构系统转化为线性系统,通过求解线性方程组来得到结构的可靠度。
这种方法在计算精度和计算速度之间能够取得较好的平衡。
形式法是一种基于形式可靠度指标的可靠度计算方法,通过建立结构的失效模式,利用形式可靠度指标来评估结构的可靠性。
该方法适用于结构有多个失效模式的情况,计算过程相对简单,但计算精度有一定的误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.3 非正态随机变量的情况
• 永久荷载一般服从正态分布,截面抗力一般服从 对数正态分布,但是,诸如风压、雪载、楼面活 荷载等,一般服从其他类型(如极值I型等)的分布。
• 包含非正态分布的基本变量极限状态方程的可靠 度分析中,一般要把非正态随机变量当量化或变 换为正态随机变量。
• 将非正态随机变量当量化或变换为正态随机变量 的三种方法:即当量正态化法( JC法),映射变 换法和实用分析法。
中心点法的特点
• 将功能函数Z在随机变量的平均值处展开为 泰勒级数并保留至一次项,即
• ZL的平均值和方差为
• 结构可靠指标为
中心点法的特点
• 优点:计算简便。可以直接给出可靠指标与随机 变量统计参数之间的关系,对于β=l~2的正常使 用极限状态可靠度的分析,较为适用。
• 缺点:①不能考虑随机变量的分布概型,只是直 接取用随机变量的前一阶矩和二阶矩;②将非线 性功能函数在随机变量的平均值处展开不合理, 由于随机变量的平均值不在极限状态曲面上,展 开后的线性极限状态平面可能会较大程度地偏离 原来的极限状态曲面;③对有相同力学含义但数 学表达式不同的极限状态方程,求得的结构可靠 指标值不同。
综合体现。
1.3 计划项目专题及国家自然科学 基金项目的研究内容
• 1.3.1 结构可靠性基本理论 • 1.3.2 结构模糊可靠度 • 1.3.3 结构体系可靠度。包括:寻找结构主要失效模式、
结构体系失效概率计算、并联结构体系可靠度的计算。 • 1.3.4 结构可靠度分析的蒙特卡罗方法 • 1.3.5 随机有限元与结构动力可靠度 • 1.3.6 结构抗震可靠度 • 1.3.7 基于可靠度的结构优化设计 • 1.3.8 结构荷载效应组合。 • 1.3.9 结构施工期和老化期可靠度.见赵国藩《工程结
和型式的选择; • 2.结构计算:根据选定的结构型式,设计结
构各构件的截面和可行的施工方案。主要 包括结构或构件截面内力或应力的分析, 以及根据截面的内力或应力,选择截面尺 寸,确定材料用量等。
两种水准的结构设计方法
• 结构设计参数中的荷载及材料强度是通过统计取 值而确定的,再取用适当的、定值的、由经验确 定的单一安全系数或分项系数来保证结构的安全 性或可靠性,通常称为水准Ⅰ的设计方法,即半 经验半概率设计法。
JC法
• 当量正态化法是国际结构安全度联合委员 会(JCSS)推荐的方法,故简称JC法。
3.3 映射变换法
• 采用数学变换的方法将非正态随机变量变 换为正态随机变量,然后应用正态随机变 量可靠度的计算方法计算结构的可靠指标。
3.4 实用分析法
4 广义随机空间内结构可靠度分析 的二次二阶矩方法
3.2.2 多个正态随机变量的情况
• 极限状态方程 • 可变荷载效应Q/永久荷载效应G/
• 类似于两个正态随机变量的情况,此时可 靠指标β是标准正态坐标系中原点o到极限 状态曲面的最短距离,也就是P*点沿其极 限状态曲面的切平面的法线方向至原点0的 长度。图3—2所示为三个正态随机变量的 情况,与两个正态随机变量情况相同,法 线的垂足P* 。为“设计验算点”。
工程结构可靠度
课程内容
• 介绍工程结构可靠度、安全度理论和规范 设计方法;
• 介绍以概率理论为基础的极限状态设计法 (一次二阶矩理论);
• 介绍荷载和抗力的统计分析方法; • 介绍材料性能的质量控制; • 介绍可靠度研究的动向。
1绪 论
• 工程结构的设计的两个步骤: • 1.结构选型:包括结构总体布置、结构方案
年美国自动控制专家查德(L.A.Zadeh)教 授创始的“模糊数学”。
• 1.1.3 事物知识的不完善性。 • 白色系统、黑色系统和灰色系统。
1. 结构可靠度理论的发展历史及 工程应用
• 近年来我国可靠性理论以及应用成果: • (1)结构可靠性一般理论的若干问题 • (2)结构体系可靠性问题。 • (3)结构动力可靠性问题。 • (4)结构疲劳可靠性问题。 • (5)岩土工程的可靠性问题。 • (6)已有工程结构的可靠性鉴定问题。 • 《工程结构可靠度设计统一标准》是研究成果的
3.2 验算点法(JC法)
• 它的特点是能够考虑非正态的随机变量, 在计算工作量增加不多的条件下,可对可 靠指标进行精度较高的近似计算,求得满 足极限状态方程的“验算点”设计值,便 于根据规范给出的标准值计算分项系数, 以利于设计人员采用惯用的多系数设计表 达式。
3.2.1 两个正态随机变量的情况
• 一次二阶矩方法(Jc法、映射变换方法、实用分析 法)以其计算简便、在大多数情况下计算精度能满 足工程应用要求而为工程界所接受;
构生命全过程可靠度》2004
2 结构随机可靠度分析的基本概念 和原理
• 2.1 结构设计中的变量 • 2.2 结构的极限状态 • 2.3 结构可靠度 • 2.4 结构可靠指标 • 2.5 结构可靠指标与中心安全系数的关系
3 结构可靠度分析的一次二阶矩方 法
• 随机变量相互独立时的四种近似方法,即 中心点法、验算点法(JC法)、映射变换法 和实用分析法:由于用这些方法计算可靠 指标只需要随机变量的前一阶矩和二阶矩 (验算点法、映射变换法和实用分析法尚需 考虑随机变量的分布概型),而且只需考虑 功能函数泰勒级数展开式的常数项和一次 项,因而统称为一次二阶矩方法。
3.1 中心点法
• 中心点法是结构可靠度研究初期提出的一 种方法,其基本思想是首先将非线性功能 函数在随机变量的平均值(中心点)处作泰勒 级数展开并保留至一次项,然后近似计算 功能函数的平均值和标准差。可靠指标直 接用功能函数的平均值和标准差表示。
• 中心点法计算的结果比较粗糙,一般常用 于结构可靠度要求不高的情况,如钢筋混 凝土结构正常使用极限状态的可靠度分析。
• 将设计中的各参数视为随机变量,利用近似的可 靠度方法按照规定的目标可靠指标确定设计表达 式中的分项系数,该设计方法为水准Ⅱ方法。
1.1 影响工程结构可靠性的三种不 确定性
• 1.1.1 事物的随机性。 • 研究方法:概率论、数理统计和随机过程。 • 1.1.2 事物的模糊性。 • 研究和处理模糊性的数学方法主要是1965