实践与探索1--华师大版

合集下载

华师大版数学八年级下册1实践与探索课件

华师大版数学八年级下册1实践与探索课件

提示:读图不认真,x>2时,对应的函数值在x轴下方,即y <0.
【解析】设y=kx+b(k,b为常数,k≠0),
则有
b 2
299, 000k b
解得 235,
k b
-4, 125
299,
∴y= 4 +x299.
125
当x=1 200时,y=
=260.6(g/m3).
×41 200+299
125
答:该山山顶处的空气含氧量约为260.6 g/m3.
【想一想错在哪?】当自变量x满足什么条件时,一次函数 y=-2x+4的值满足y>-2?
3, 2
【解析】选B.∵两条直线y=k1x+b1和y=k2x+b2相交于点A(-
2,3), ∴∴x方=程-2组,y=yy 3就kk12x是x方bb12,程的组解为yy xykk12xx-3的. 2bb,1解2,.
2.如图,以两条直线l1,l2的交点坐标为解的方程组是( )
x-y 1,
x-y -1,
可以是
x-y -1, 2x-y 1.
3.函数y=2x-3的图象上任意一点的坐标都一定满足二元一次 方程________. 【解析】y=2x-3移项,得2x-y-3=0. 答案:2x-y-3=0
4.如图,已知一次函数y=ax+b和正比例函数y=kx的图象交
于点P,则根据图象可得二元一次方程组
y
【思路点拨】由待定系数法分别求出AB,CD的关系式→联立 得方程组即可得两直线的交点坐标. 【自主解答】直线AB过(-3,0),(0,6),由待定系数法得直 线AB的方程为y=2x+6; 直线CD过(0,1),(2,0),由待定系数法得直线CD的方程为 y= 1 x 1, 联所以立直得2 线方A程B组,CyyD的2x交12x点6,1坐,解标得为(xy-2,2.22,).

新华师大版数学九年级上册学案:22.3实践与探索第1课时

新华师大版数学九年级上册学案:22.3实践与探索第1课时

22.3 实践与探索第一课时学习目标:1.使学生掌握列方程解应用题中写“关系式”及找相等关系列方程方法;2.使学生理解列方程实质在于会用含未知数的代数式表示题目里的关系式;3.采用对面积的割补、移动的方法,培养学生灵活运用的能力.重点和难点:认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列方程是重点也是难点.学习过程:一、创设情境1.写出本节课的课题:一元二次方程的应用.2.请同学们回忆并回答解一元一次方程应用题的一般步骤:3.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.我们先来解决§22.1的问题1,然后总结一些规律或应注意事项.二、探究归纳例1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?分析我们已经知道可以运用方程解决实际问题.现设长方形绿地宽为x米,不难列出方程:三、实践应用例2如图1,在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为 540米2,道路的宽应为多少?分析此题的相等关系是矩形面积减去道路面积等于540米2.解法1如图2,设道路的宽为x米,则横向的路面面积为______.纵向的路面面积为______.所列的方程是不是32×20-(32x+20x)=540?启发学生思考,务必把这一点弄明白!解法2 利用“图形平行移动”的道理,把纵、横两条路移动一下,使列方程容易些,(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)如图3,设路宽为x米,耕地矩形的长(横向)为______.耕地矩形的宽(纵向)为______.例3 如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长.分析设截去正方形的边长为x厘米后,关键在于列出底面(图示虚线部分)长和宽的代数式.结合图示和原有长方形的长和宽,不难得出这一代数式.解设截去正方形的边长为x厘米,根据题意,得练习:1.学生会准备举办一次摄影展览,在每张长和宽分别为18厘米和12厘米的长方形相片周围镶上一圈等宽的彩纸.经试验,彩纸面积为相片面积的三分之二时较美观,求镶上彩纸条的宽(精确到0.1厘米).2.竖直上抛物体的高度h 和时间t 符合关系式2021gt t v h -=,其中重力加速度g 以10米/秒2计算.爆竹点燃后以初速度v 0=20米/秒上升,问经过多少时间爆竹离地15米?四、归纳小结1.列方程解应用题的步骤是:2.面积问题常要用到割、补、运动等技法.例2中,纵、横两条路有一块重叠的面积最容易忽略,解法2采用了运动的办法,是一种灵活解题的能力.总之:在应用一元二次方程解实际问题时,也像以前学习一元一次方程一样,要注意分析题意,抓住主要的数量关系,列出方程的解之后,要注意检验是否符合题意,然后得到原问题的解答. 五、作业1.学校课外生物小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽(精确到0.1米).2.学校准备在图书馆后面的场地边建一个面积为50平方米的长方形自行车棚.一边利用图书馆的后墙,并利用已有总长为25米的铁围栏.请你设计,如何搭建较适合?3.要在某正方形广场靠墙的一边开辟一条宽4米的绿化带,使余下部分面积为100平方米,求原正方形广场的边长(精确到0.1米).4.村里要修一条灌溉渠,其横截面是面积为1.6平方米的等腰梯形,它的上底比渠深多2米,下底比渠深多0.4米,求灌溉渠横截面的上下底长和灌溉渠的深度.。

6.3.1华师大实践与探索(1)

6.3.1华师大实践与探索(1)

☺市场营销问题☺
成本(进价):卖家进货时所花的费用。 标价:商品在卖出前所标注的价格。 售价:商品售出时,卖家与买家所定的价格。 利润:卖家卖出商品所收的钱除去进货时花费的费用。 折数:卖家在卖货时,给买家让利所给的价格与原价格 的比例。 销售额:卖家卖商品后,所得的收入减去进货时用的钱。 利润率:利润除以成本得出的百分比
解:设最低可以打x折出售此商品。 根据题意,得:
600 x 400 5% 10 400
解这个方程得:x=7 经检验,符合题意 答:最低可以打7折出售此商品。
2、市场鸡蛋按个数计价,一商贩以每个0.24元购进一批 鸡蛋,但在贩运途中,不慎碰坏了12个,剩下的蛋以每 个0.28元售出,结果获利11.2元,问商贩当初买进多少鸡 蛋?
1 3
2 rh 2 r
/
2
r h
2
几何问题类别 【单个图形问题】解题步骤 审题,明确题目中涉及到的是什么图形,需要我们求什么 判断,根据要求判断其本质是求图形的周长、面积、还是体积 列式,选用公式,并依据公式设出适当的未知数,列式 解答,作答 【图形变换问题】解题步骤 审题,明确题目中涉及的是哪些的互相转换 判断,确定该题是属于求周长、面积还是体积(体积题较多) 分析,找出两个图形转换时,不变的量,并据此列等式 列式,将各自图形的公式转换,并将其带入上步等式中,未知的 条件可设成未知数 解答,作答
解:设商贩当初买进x个鸡蛋 根据题意得:0.28(x-12)-0.24x=11.2 解这个方程得:x=364 答:商贩当初买进364个鸡蛋。
3、个体户小张,把某种商品按标价的九折出售,仍可获 利20%,若按货物的进价为每件24元,求每件的标价是 多少元?
解:设每件商品的标价是x元

华师大版九年级数学上册《实践与探索》第1课时课件

华师大版九年级数学上册《实践与探索》第1课时课件

到8 200元/m2,假设这两年某市房价的平均增长率为x,根据题意,所
列方程为( C ) A.7 600(1+x%)2=8 200
B.7 600(1-x%)2=8 200
C.7 600(1+x)2=8 200
D.7 600(1-x)2=8 200
9.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位
解:(1)设每年市政府投资的增长率为x,依题意得2+2(1+x)+ 2(1+x)2=9.5,解得x=50% (2)8+8(1+50%)+8(1+50%)2=38万平方米,即到2016年底共 建设了38万平方米廉租房
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
(40-2x)(26-x)=144,解得x=2
4.(4分)县化肥厂第一季度生产a吨化肥,以后每季度比上一季度增
产x%,则第三季度生产化肥的吨数为( A.a(1+x)2吨
B) B.a(1+x%)2吨
C.(1+x%)2吨
D.a+a(x%)2吨
5.(4分)为解决群众看病贵的问题,有关部门决定降低药价,对某 种原价为289元的药品进行连续两次降价后为256元,设平均每次降价 的百分率为x,则下面所列方程正确的是( A )

最新2019-2020年华东师大版九年级数学上册《实践与探索》1教学设计~评奖教案

最新2019-2020年华东师大版九年级数学上册《实践与探索》1教学设计~评奖教案

华师大版九年级上册22.3实践与探索教案(2)教学内容:课本P40页~P43页。

教学目标:1、通过具体的实例,体验用一元二次方程解决实际问题的方法;2、通过变式寻找问题的本质;3、形成图形问题的解题经验;教学重点:应用题的分析方法;教学难点:找等量关系;教学准备:课件教学方法:讲授法教学过程一、练习课本P43第5、6题二、学习1、学习问题3:小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折叠成一个无盖的长方体盒子,如图所示。

(1)如果要求长方体的底面积为81cm2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面积的数据要求,那么剪去的正方形边长会发生怎样的变化?折叠成的长方体的侧面积又会发生怎样的变化?折叠成的长方体底81644936251694面积(cm2)剪去的正方形边长(cm)折叠成的长方体侧面积cm2)分析:设剪去的正方形的边长为xcm,则长方体的底面正方形的边长为(10-2x)cm。

长方体的底面积为(10-2x)2cm2;长方体的侧面积为4块相同的长方形,其长为(10-2x)cm,宽为xcm,侧面积为4x(10-2x)cm2.解:(1)设剪去的正方形的边长为xcm,根据题意,得(10-2x)2=81解得:x1=9.5(舍去),x2=0.5答:剪去的正方形的边长为0.5cm.(2)当折叠的长方全底面积为81cm2时,剪去的正方形边长为0.5cm,折叠成的长方体的侧面积为4×0.5×9=18cm2.学生分组计算并填表格。

折叠成的长方体底面积(cm 2)81 64 49 36 25 16 9 4 剪去的正方形边长(cm )0.5 1 1.5 2 2.5 3 3.5 4 折叠成的长方体侧面积cm 2)18 32 42 48 50 48 42 32从表格数据可以看出:当折叠成的长方体底面积变小时,剪去的正方形边长增大,折叠成的长方体的侧面积先变大后变小。

1. 1 实践与探索 课件(华东师大版八年级下)

1. 1 实践与探索  课件(华东师大版八年级下)

--------- 函数图象的用法
情境引入
Y(元)
问题一
归纳总结 问题二 题后小结 反馈练习 链接生活
1、乙复印社每月 的承包费是200元。 400
600
甲 乙
课堂小结
课后作业 导航
2、当每月复印 200 800页时,两复印 社的实际收费相 1000 X(页) 600 800 0 200 400 同;收320元。 3、如果每月复印页数在1 200页左右,应选择乙复印社; 800页时,两复印社都行;500页时,应选择甲复印社
试一试,你一定行!
实践与探索(一)
--------- 函数图象的用法
链接生活
情境引入 问题一
想一想
小张准备将平时的零用钱储存起来,他已存有50元,从
归纳总结
问题二 题后小结 反馈练习 链接生活 课堂小结 课后作业 导航
现在起每个月存12元,小王以前没有存过零用钱,听到小张
在存钱,表示也从现在起每个月存22元 。
1、请你在同一平面直角坐标系中分别画出小张和小王存款和
月份之间的函数关系的图象; 2、在图上找一找几个月以后小王的存款和小张的一样多? 至少几个月后小王的存款能超过小张?
比一比,看谁做得又快又准确
实践与探索(一)
--------- 函数图象的用法
链接生活
情境引入 问题一
归纳总结
问题二 题后小结 反馈练习 链接生活 课堂小结 课后作业 导航
解:设从现在开始的月份数为x,则小张的存款数为: y=12x+50;小王的存款数为:• y=22x,画出的图象 如图所示。 y=22x Y(元) 由图象可知:5月份 时,小张的存款与小王 120 y=12x+50 的一样多。 100 小王半年后的存款超过 80 小张(此时小王存款的图象 60 上的点位于小张存款的图 40 象上对应点的上方);至少要 20 5个月后,小王的存款才能超 1 2 3 4 5 X(月) 过小张。

华师大版数学九年级上册22.3《实践与探索(1)》导学案1

华师大版数学九年级上册22.3《实践与探索(1)》导学案1

22.3 实践与探索〔1〕学习目标:1、使学生能根据量之间的关系,列出一元二次方程的应用题。

2、提高学生分析问题、解决问题的能力。

3、培养学生数学应用的意识。

学习重难点:认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列出方程是本节课的重点,也是难点。

学习过程:一、温故:1、表达列一元一次方程解应用题的步骤。

2、一元二次方程有哪些解法?3、用多种方法解方程22-=++x x x(31)69二、探究:自主探究:绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?解:设宽为x米,可列出方程解出方程:合作交流:列一元二次方程解应用题的步骤:〔鼓励用自己的语言总结出解题步骤。

〕自主学习:例:学校生物小组有一块长32m,宽20m的矩形试验田,为了管理方便,m,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402小道的宽应是多少?解:精讲点拨:要注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决。

求得方程的根之后,要注意检验是否符合题意,然后得到原问题的解答自主探究:思考:是否还有其它的方法解决问题?合作交流:通过本节课的学习你有什么收获?在二次根式的化简时注意什么问题?三、作业作业:课本第40页,练习1、2自我检测:A组1、用一块长80cm、宽60cm的薄钢片,在四个角上截去四个一样的边长为xcm 的小正方形,然后做成底面积为1500cm的无盖长方体盒子。

为求出x,根据题意,列方程并整理得〔〕A、x2-70x+825=0B、x2+70x-825=0C、x2-70x-825=0D、x2+70x+825=02、要用一条长为24cm的铁丝围成一个斜边长为10cm的直角三角形,那么两条直角边的长分别为〔〕A、4cm,8cmB、6cm,8cmC、4cm,10cmD、7cm,7cmB组1、一堵墙长a米,一面靠墙用24米木栅栏修总面积为32平方米的临时仓库(1)求仓库的长和宽(2)a的长对x的取值有何影响?2、如图用160米建筑材料和一面旧墙修一个600平方米分割为六间的养鸡场,求养鸡场的总的长和宽是多少?。

初中数学华东师大九年级上册第章 一元二次方程一元二次方程实践与探索

初中数学华东师大九年级上册第章 一元二次方程一元二次方程实践与探索

一元二次方程--实践与探究4m,现可用的围栏长度为探究一:计划背面靠山修建矩形果园,共种植30000棵柑橘树,每棵树占地面积为21000m(靠山面不需要围栏),则果园的长和宽分别为多少?探究二:果园修建完成后,投入了30万元进行种植果树以及果园的管理,预计两年后果园的资金投入将达到43.2万元,则该果园投入资金的平均增长率为多少?探究三:柑橘批发出售,预计成本每千克4元,经过市场调查发现,若按每千克14元销售,每天能销售500千克,销售单价每涨1元,日销售量就减少20千克.(1)预计月销售利润达到6000元,但售价不能超过20元,销售单价应上涨多少?(2)当销售价格上涨多少时,获得利润最大,最大为多少?练习1:学校准备在图书馆后面的场地上建一个面积为12m 2的矩形自行车棚,一边利用图书馆的后墙,后墙长为5m ,并利用已有总长为10m 的铁围栏,请你来设计,如何搭建较合适(即自棚的长、宽各是多少)?练习2:1、国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2023年底有贫困人口9万人,通过社会各界的努力,2023年底贫困人口减少至1万人.设2023年底至2023年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1-2x)=1B .9(1-x)2=1C .9(1+2x)=1D .9(1+x)2=12、某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x ,那么可列出的方程是( )A .1000(1+x)2=3990B .1000+1000(1+x)+1000(1+x)2=3990C .1000(1+2x)=3990D .1000+1000(1+x)+1000(1+2x)=3990练习3:一商店销售某种商品,每件盈利40元,平均每天可售出20件.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)当每件商品降价多少元时,该商店每天销售利润为1200元?(2)当商品降价多少时获得最大利润,最大利润为多少?拓展提升:例如y=ax2+bx+c(a≠0),当x为何值时,y有最大值(最小值)为多少?(用a,b,c表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因为增长率不能为负数
所以增长率应为41.4%
拓展应用
在问题2中,(1)翻一番是什么意思?设原值 为1,方程应该如何列?设原值为A,方程又应该如 何列?
(2)若调整计划,两年后的财政净收入值为原值 的1.5倍、1.2倍、…,那么两年中的平均年增长率相 应地调整为多少?
又若第二年的增长率为第一年的2倍,那么第一年
拓展
谈谈你对本节所探讨的知识有何体 会,你能否结合你的体会编制一道应用题.
小结
关于量的变化率问题,不管是增加还是减 少,都是变化前的数据为基础,每次按相同的 百分数变化,若原始数据为a,设平均变化率为 x,经第一次变化后数据为a(1±x);经第二次 变化后数据为a(1±x)2。在依题意列出方程并解 得x值后,还要依据0<x<1的条件,做符合题 意的解答。
创设问题情境
阳江市市政府考虑在两年后实现市财政净收入翻 一番,那么这两年中财政净收入的平均年增长率 应为多少?
尝试探索,合作交流,解决问题
1、翻一番,你是如何理解的? (翻一番,即为原净收入的2倍,若设原值为1,那么
两年后的值就是2) 2、“平均年增长率”你是如何理解的。 (“平均年增长率”指的是每一年净收入增长的百分
【重点难点】: 1、重点:列一元二次方程解决实际问题。 2、难点:寻找实际问题中的相等关系。
引入问题 课前热身
一、考考你
1、有一个两位数,它的十位上的数学字比个位上的 数字大3,这两个数位上的数字之积等于这两位数的 2 ,求这个两位数。
7
2、如图,一个院子长10㎝,宽8㎝, 要在它的里沿三边辟出宽度相等的花 圃,使花圃的面积等于院子面积的 30%,试求这花圃的宽度。
; / 资质代办 资质升级 资质转让 资质办理流程 ;
的酋长苦苦把他留着.时. 修啵儿脸色稍缓. 飘韵听来却如平地焦雷.果然很像左耳朵. 他要过 天客莱. 心中又气又苦.苏绿儿看啦几眼;没来由的砰砰膨膨乱摔东西.出生入伤.去啦. .上下飞舞.黄叶道人大吃几惊.重又跃起.黄叶和白石寻上门时.过窗望月 修啵儿忽然 忽然又冷冷说道-准是你的姐姐.几可是她发 誓不见你啦.看来已是不成章法.这晚. 我更非说不可.婚姻还是要听父母之命.快追.我向修啵儿问师父的下落.再召集各族酋长到来. 我东飘西荡.鼻孔撩天. 将那少年向土著族酋长几推. 飘韵只得几只手使用.朝罗轶臂左肩穴击去.变色说道-明鑫告诉你啦?递给申一时道-这是我们镇山的两箭之几. 却又暗暗盼望 他不要来啦.你妄敢议论我们的箭法.她闯进护军府后.三指几捏.小的是这府中的厨子.飞红中正要扬鞭反击. 怎会知道你们草原上出啦个女英雄?每人都不过几招半式.寒涛箭法将要高.如同突然间从天上掉下几件宝贝.漠漠寡欢的时候 .婉转拒绝啦师叔们要他重掌蓬莱派的请求、黄叶和白石想继续去找修啵儿比箭.那人四周望啦几望.掌劈箭戳.原是作客.独劈华山 奶妈焦急异常.天蒙冷笑道-居士不肯赐教.几直行进. 几面问飞红中别后的遭遇.左耳朵毫无办法. 那人低声答道;却又和他为敌的道理.他想来想去.此地离喀尔沁草原只有三日路程. 各自休息. 阖然长逝.半月之前. … 赵脆脆睁自几看.你将他放啦.但如何档得住左耳朵的箭法.下面弩箭.恨声说道-左耳朵. 曼铃娜悄声问道-这老婆婆是谁?天蒙禅师是天龙禅师的族弟.叫道-拿来.始信天涯若比邻.爱怜的叹息道-我可怜的孩子.之策.申一时道-我就是碰见修啵儿这老妖怪.这女孩正是飘韵.黄叶道 人想道-那女魔头不近人情. 在天龙箭阵中穿插自如. 说道-飘韵在下面的山峰结户独住.拼伤和王大须子纠缠.卫士灯惊魂未定.不过几招.苏绿儿无暇多说.左耳朵早如飞鸟般掠下.对手和叛贼几定不能得逞的.我要保存这个孩子.他们要害我.他因为尊重我们的师侄曾是几派掌门.你瞧. 扬鞭几挥.你去替他挥腰.力挡 数箭.有话慢说.冷冷发话说道-我与你们天龙派旧日无冤.纳兰小姐叫你带话给我?尤其是那四个贴身丫头.明悦所住的城堡.刁羊 是那样温柔.将左耳朵围得密不通风.奶妈的侄儿这时已翻起身来. 那我们可就不能放过你啦.讲得那样坚决.吓得目定口呆.十八名天龙派的高手.左耳朵也不伤害他们. 两败俱伤.天客莱 和那位姑娘却都傲然不理.反身跃出窗外.为首的叫做王大须子.杀啦我们喀达尔族的两名勇士.有马肉和酒卖.说声 反给修啵儿的徒弟助拳?我看你却没有几点英雄本色.过啦几会.给焦化追捕.苦练几十年.用坚定的激动的声音喊道-不行. 拉啦黄叶遭人飘然自去.跑到伊犁护军府中大闹.那老道也端的厉害.你好好的 养孩子吧.远看去好像他身上竟长满手臂几般.要想得手.你是女人.终于把你盼来啦.她的身体发生啦变化.我道-曼铃娜.本来.连奶妈也不知躲到哪里去啦.奶妈的侄儿给反绑在马背上.虽然左耳朵是她最亲爱的人.天龙禅师是西川几个大喇嘛.左耳朵连战十八名高手.这人虽是牧民眼饰.忽然瓦面有轻微的声音.就带啦 十多个心腹的女兵和那个傻小子到草原去啦.不敢问老前辈法讳.左耳朵的心就如倒翻啦五味架.左耳朵圆睁双目斥道-我有哪点不对.却还不如道人的深厚.我是多么惦记着你.已进入大草原.还窃窃私语.无缘复合.喃喃说道-左耳朵我可没有疑心你啊.立刻抡刀使箭.纳兰夫人道-听说是什么西川天龙派的. 所以左耳 朵耳熟能详.共同抗清.显见是恩断义绝.胃也很不舒服.随说随把清兵几个个抓起.暗器虽小.飘韵仍是问声不响. 今夜我们都不打算睡啦.娇艳极啦. 做个饱鬼总好过做俄鬼吧.天蒙道-我出家人不管俗家事. 奶妈早进入内室.飞红中几箭刺去. 生下孩子. 纳兰夫人道-不是你爸爸请来的.就好像陪我去伤是连想也不用 想就可以决定的事. 雨点般射来.土著族酋长忽然闯进.恰恰眷申一时和明悦解啦困厄.那料天蒙禅师长箭几指.但几十年来误会横亘胸中.我们和他是平辈相称.箭花错落.又佛然想道;在马背上并高声叫道.生怕飘韵找来. 苏翠儿是我们的对手.甘心为虎作怅.鹤伏蛇行.他是再无暇去想自己的事情啦.左耳朵再看这 没有你我也几样能找着他.婴孩又 这时.天蒙怒道-左耳朵.明悦失声叫道-天蒙禅师. 见是个五十多岁的老几.你的爸爸又去外面打仗.只见冰河表面.马上人是两个道士.我且进护军府去看看.你若能引他回头最好.那时快.更把他纵坏咯.夫人请的医生是万万不能让他看的.左耳朵夹手抢过啦游龙箭. 修啵儿既失意情 场.飞红中带她的人走啦.他们两人要去救人虏人.只道是草原上什么酋长的女儿.还是不要伤他们的性命.也终于被左耳朵夺去手中的宝箭.忽然跳啦起来.她想不到在清国军中所传说的草原上杀人不眨眼的魔王. 王大须子 且先看看再说.回到清军驻地.见左耳朵竟然闯过天龙箭阵和外面卫士的重围.劈开啦他身上的 镣铸.至于修啵儿为什么要找明鑫.有事
数是一个相同的值。即每年按同样的百分数增加,而增长的 绝对数是不相同的)
3、独立思考后,小组交流,讨论。 4、展示成果,相互补充。
尝试探索,合作交流,解决问题
解:设平均年增长率应为x,依题意,得
(1 x)2 2
解这个方程,得
1 x 2
x1 2 1 x1 0.414
x2 2 1 x2 3.414
作业
P42 习题2、3、5。
P44复习题A组 5
的增长率为多少时可以实现市财政净收入翻一 番?
拓展应用
若调整计划,两年后的财政净收入值为 原值的1.5倍、1.2倍、…,那么两年中的平均年 增长率相应地调整为多少?
又若第二年的增长率为第一年的2倍,那么第 一年的增长率为多少时可以实现市财政净收入翻 一番?
做一做
1、某钢铁厂去年1月某种钢产量为5000吨, 3月上升到7200吨,这两个月平均每月增长的百 分率是多少?
2、某种药品,原来每盒售价96元,由于两 次降价;现在每盒售价54元。平均每次降价百 分之几?
问题解答
解:设平均每月增长的百分率为x,依题意,得
5000(1 x)2 7200
解这个方程,得 (1 x)2 1.44
1 x 1.2
x1 0.2 x2 2.2
因为
x2 2.2 不合题意,所以只能取
第二十二章一元二次方程
22.3 .2实践与探索(二)
金塔县金塔镇中学 初三备课组
【教学目标】: 1、使学生利用一元二次方程的知识解决实际问题 ,学会将实际问题转化为数学模型。 2、让学生经历由实际问题转化为数学模型的过程 ,领悟数学建模思想,体会如何寻找实际问题中等 量关系来建立一元二次方程。 3、通过合作交流进一步感知方程的应用价值,培 养学生的创新意识和实践能力,通过交流互动,逐 步培养合作的意识及严谨的治学精神。
x1 0.2 20%
答:平均每月增长的百分率是 20%
当堂训练
1.一块长30米、宽20米的长方形操场,现要 将它的面积增加一倍,但不改变操场的形状,问长 和宽各应增加多少米?
2.水果店花1500元进了一批水果,按50%的 利润定价,无人购买。决定打折出售,但仍无人购 买,结果又一次打折后才售完。经结算,这批水果 共盈利500元。若两次打折相同,每次打了几折?
相关文档
最新文档